18.440 PROBLEM SET SIX, DUE APRIL 1

A. FROM TEXTBOOK CHAPTER FIVE:

1. Problems: $14,17,33$
2. Theoretical Exercises: 9, 12, 15, 19, 29, 30
B. At time zero, a single bacterium in a dish divides into two bacteria. This species of bacteria has the following property: after a bacterium B divides into two new bacteria B_{1} and B_{2}, the subsequent length of time until each B_{i} divides is an exponential random variable of rate $\lambda=1$, independently of everything else happening in the dish.
3. Compute the expectation of the time T_{n} at which the number of bacteria reaches n.
4. Compute the variance of T_{n}.
5. Are both of the answers above unbounded, as functions of n ? Give a rough numerical estimate of the values when $n=10^{50}$.
