
Universal random structures in 2D
Introduction to 18.177, Fall 2015

Scott Sheffield

Massachusetts Institute of Technology

September 15, 2015

Scott Sheffield (MIT) Universal structure September 15, 2015 1 / 67



THE NUMBERS

24 lectures (after this one)

3 problem sets (to be assigned)

1 written project (research or expository) of about

5 pages per student, collaboration allowed
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THE GOALS

Introduce some fundamental objects

Explain how they are related to each other

Explore some open problems
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THE GOAL TODAY

Colloquium-style overview of

major objects and relationships
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Overview
Prologue:

1. Universality: physics intuition, examples

2. Discrete-continuum interplay: scaling limits, discretizations

3. Fractals and complex dynamics: Julia sets, fractal dimensions, Mandelbrot, etc.

Part I: Cast of Characters: What are the most fundamental 2D random objects?

1. Universal random trees: Brownian motion, continuum random tree

2. Universal random surfaces: quantum gravity, planar maps, string theory, CFT

3. Universal random paths: walks, interfaces, Schramm-Loewner evolution, CFT

4. Universal random growth: Eden model, DLA, DBM

Part II: Drama: How are the characters related to each other?

1. Welding random surfaces: a calculus of random surfaces and SLE seams

2. Mating random trees: tree plus tree (conformally mated) equals surface plus path

3. Random growth on random surfaces: dendrites, dragons, surprising tractability

4. Mating random trees produced by a snake: metric spaces and the Brownian map

5. Two “universal random surfaces” are the same: Brownian map equals Liouville
quantum gravity with parameter γ =

√
8/3 (a.k.a. “pure quantum gravity”).
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PROLOGUE:

UNIVERSALITY
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Universality in physics (per Wikipedia)

In statistical mechanics, universality is the observation that there are properties
for a large class of systems that are independent of the dynamical details of the
system. Systems display universality in a scaling limit, when a large number of
interacting parts come together. The modern meaning of the term was introduced
by Leo Kadanoff in the 1960s, but a simpler version of the concept was already
implicit in the van der Waals equation and in the earlier Landau theory of phase
transitions, which did not incorporate scaling correctly. The term is slowly gaining
a broader usage in several fields of mathematics, including combinatorics and
probability theory, whenever the quantitative features of a structure (such as
asymptotic behaviour) can be deduced from a few global parameters appearing in
the definition, without requiring knowledge of the details of the system. The
renormalization group explains universality. It classifies operators in a statistical
field theory into relevant and irrelevant. Relevant operators are those responsible
for perturbations to the free energy, the imaginary time Lagrangian, that will affect
the continuum limit, and can be seen at long distances. Irrelevant operators are
those that only change the short-distance details. The collection of scale-invariant
statistical theories define the universality classes, and the finite-dimensional list
of coefficients of relevant operators parametrize the near critical behavior.
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Stories

I Physicists tell us that empirically many phenomena (such as phase transition
exponents) are surprisingly similar from one material to another. Different
microscopic setup, same “universality class.”

I Sometimes simple toy mathematical models (percolation, Ising model, etc.)
are said to belong to the same universality class as real world statistical
physical systems.

I Mathematical physics game: try to identify the very simplest members of a
given universality class and prove theorems about them. Maybe try tweaking
the model and proving the theorems are still true.

I Example: Gaussian random variables (central limit theorem).

I Example: Brownian motion.

I Example: Brownian motion outer boundary (Mandelbrot 1982; Lawler,
Schramm, Werner 2000).

I Example: percolation (Cardy 1992; Smirnov 2001).
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Percolation interface
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PROLOGUE:

DISCRETE-CONTINUUM
INTERPLAY
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Discrete world vs. continuum world: more stories
I Statistical physics: argue that your (simple) continuum theory approximates

your (not so simple) atomic model when the number of atoms is very large.

I Particle physics: argue that your (well defined) discrete lattice models
approximate your (maybe complicated, maybe ill defined) continuum field
theory when the lattice is very fine.

I One mathematical goal: develop continuum theories to help you
understand scaling limits of beloved discrete models.

I Another mathematical goal: develop discrete approximations to help you
understand beloved continuum theories (like Navier-Stokes and Yang-Mills).

I Interplay between the discrete and continuum is at the heart of many fields
within physics and mathematics.

I Mathematically rigorous connections between discrete and continuum are
sometimes hard to prove, which leads to....

I Non-rigorous approach: (common in physics) just assume you can pass
from discrete to continuum and back whenever you need to. Then check
whether end result seems to match experiments or simulations.

I Conformal symmetry: plays special role in 2D, following work by Belavin,
Polyakov, Zamolodchikov and others in 1980’s.
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PROLOGUE:

NON-RANDOM FRACTALS
FROM COMPLEX DYNAMICS
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Google search for Julia sets
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FRACTALS FROM COMPLEX DYNAMICS

Published 1989, by Roger T. Stevens

I Julia sets (Julia, 1918), popularized in 1980’s

I Consider map φ(z) = z2.

I Maps C \ D conformally to self (2 to 1) where
D is unit disc. Repeated iteration takes points
in C \ D to ∞, leaves others bounded.

I If K is another compact set with connected
hull, can construct a similar (2 to 1) conformal
map φK from C \ K to itself.

I Might expect more intricate sets K to yield
more intricate maps. But suppose we take
φK (z) = z2 + c and let K be set of points
remaining bounded under repeated iteration.

I K is a (filled) Julia set. Can “mate” Julia sets
to form sphere (Douady 1983, Milnor 1994, see
Arnaud Chéritat’s animations).

I Popular lexicon: chaos theory, butterly effect,
fractal, self-similar. What about random
fractals, only self similar in law?

Scott Sheffield (MIT) Universal structure September 15, 2015 14 / 67



FRACTALS FROM COMPLEX DYNAMICS

Published 1989, by Roger T. Stevens

I Julia sets (Julia, 1918), popularized in 1980’s

I Consider map φ(z) = z2.

I Maps C \ D conformally to self (2 to 1) where
D is unit disc. Repeated iteration takes points
in C \ D to ∞, leaves others bounded.

I If K is another compact set with connected
hull, can construct a similar (2 to 1) conformal
map φK from C \ K to itself.

I Might expect more intricate sets K to yield
more intricate maps. But suppose we take
φK (z) = z2 + c and let K be set of points
remaining bounded under repeated iteration.

I K is a (filled) Julia set. Can “mate” Julia sets
to form sphere (Douady 1983, Milnor 1994, see
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Part I:

CAST OF CHARACTERS

A Trees

B Simple curves, non-simple
curves, space-filling curves

C Surfaces

D Growth
Scott Sheffield (MIT) Universal structure September 15, 2015 15 / 67



RANDOM TREES

t

Xt

C−Yt

I This is the easiest “universal” random fractal to explain.

I Aldous (1993) constructs continuum random tree (CRT) from a Brownian
excursion. To produce tree, start with graph of Brownian excursion and then
identify points connected by horizontal line segment that lies below graph except at
endpoints. Result is a random matric space.

I Discrete analog: Consider a tree embedded in the plane with n edges and a
distinguished root. As one traces the outer boundary of the tree clockwise, distance
from root performs a simple walk on Z+ with 2n steps, starting and ending at 0.

I Simple bijection between rooted planar trees and walks of this type.

I CRT is in some sense the “uniformly random planar tree” of a given size.

Scott Sheffield (MIT) Universal structure September 15, 2015 16 / 67



RANDOM TREES

t

Xt

C−Yt

I This is the easiest “universal” random fractal to explain.

I Aldous (1993) constructs continuum random tree (CRT) from a Brownian
excursion. To produce tree, start with graph of Brownian excursion and then
identify points connected by horizontal line segment that lies below graph except at
endpoints. Result is a random matric space.

I Discrete analog: Consider a tree embedded in the plane with n edges and a
distinguished root. As one traces the outer boundary of the tree clockwise, distance
from root performs a simple walk on Z+ with 2n steps, starting and ending at 0.

I Simple bijection between rooted planar trees and walks of this type.

I CRT is in some sense the “uniformly random planar tree” of a given size.

Scott Sheffield (MIT) Universal structure September 15, 2015 16 / 67



RANDOM TREES

t

Xt

C−Yt

I This is the easiest “universal” random fractal to explain.

I Aldous (1993) constructs continuum random tree (CRT) from a Brownian
excursion. To produce tree, start with graph of Brownian excursion and then
identify points connected by horizontal line segment that lies below graph except at
endpoints. Result is a random matric space.

I Discrete analog: Consider a tree embedded in the plane with n edges and a
distinguished root. As one traces the outer boundary of the tree clockwise, distance
from root performs a simple walk on Z+ with 2n steps, starting and ending at 0.

I Simple bijection between rooted planar trees and walks of this type.

I CRT is in some sense the “uniformly random planar tree” of a given size.

Scott Sheffield (MIT) Universal structure September 15, 2015 16 / 67



RANDOM TREES

t

Xt

C−Yt

I This is the easiest “universal” random fractal to explain.

I Aldous (1993) constructs continuum random tree (CRT) from a Brownian
excursion. To produce tree, start with graph of Brownian excursion and then
identify points connected by horizontal line segment that lies below graph except at
endpoints. Result is a random matric space.

I Discrete analog: Consider a tree embedded in the plane with n edges and a
distinguished root. As one traces the outer boundary of the tree clockwise, distance
from root performs a simple walk on Z+ with 2n steps, starting and ending at 0.

I Simple bijection between rooted planar trees and walks of this type.

I CRT is in some sense the “uniformly random planar tree” of a given size.

Scott Sheffield (MIT) Universal structure September 15, 2015 16 / 67



RANDOM TREES

t

Xt

C−Yt

I This is the easiest “universal” random fractal to explain.

I Aldous (1993) constructs continuum random tree (CRT) from a Brownian
excursion. To produce tree, start with graph of Brownian excursion and then
identify points connected by horizontal line segment that lies below graph except at
endpoints. Result is a random matric space.

I Discrete analog: Consider a tree embedded in the plane with n edges and a
distinguished root. As one traces the outer boundary of the tree clockwise, distance
from root performs a simple walk on Z+ with 2n steps, starting and ending at 0.

I Simple bijection between rooted planar trees and walks of this type.

I CRT is in some sense the “uniformly random planar tree” of a given size.

Scott Sheffield (MIT) Universal structure September 15, 2015 16 / 67



RANDOM PATHS

Given a simply connected planar domain D with boundary points a and b and a
parameter κ ∈ [0,∞), the Schramm-Loewner evolution SLEκ is a random
non-self-crossing path in D from a to b.

b

a

η

D

The parameter κ roughly indicates how “windy” the path is. Would like to argue
that SLE is in some sense the “canonical” random non-self-crossing path. What
symmetries characterize SLE?
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Conformal Markov property of SLE

b

a

η

D

φ

D̃ φ ◦ η

φ(a)

φ(b)

If φ conformally maps D to D̃ and η is an SLEκ from a to b in D, then φ ◦ η is an
SLEκ from φ(a) to φ(b) in D̃.
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Markov Property

b

a

η

D

b

D

Given η up to a
stopping time t...

law of remainder is SLE in
D \ η[0, t] from η(t) to b.

η(t)
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Chordal Schramm-Loewner evolution (SLE)

I THEOREM [Oded Schramm]: Conformal invariance and the Markov
property completely determine the law of SLE, up to a single parameter
which we denote by κ ≥ 0.

I Explicit construction: An SLE path γ from 0 to ∞ in the complex upper
half plane H can be defined in an interesting way: given path γ one can
construct conformal maps gt : H \ γ([0, t])→ H (normalized to look like
identity near infinity, i.e., limz→∞ gt(z)− z = 0). In SLEκ, one defines gt via
an ODE (which makes sense for each fixed z):

∂tgt(z) =
2

gt(z)−Wt
, g0(z) = z ,

where Wt =
√
κBt =LAW Bκt and Bt is ordinary Brownian motion.
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SLE phases [Rohde, Schramm]

κ ≤ 4 κ ∈ (4, 8) κ ≥ 8
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Radial Schramm-Loewner evolution (SLE)

I In radial SLE path grows from boundary of domain to center.

I Modified version allow growth from multiple boundary points (or a
continuum of points) at once.

I This will be important when we think about continuum growth models.

I Radial SLE: ∂tgt(z) = gt(z) ξt+gt(z)
ξt−gt(z) where ξt = e i

√
κBt .

I Radial measure-driven Loewner evolution: ∂tgt(z)=
∫
gt(z) x+gt(z)

x−gt(z)dmt(x)

where, for each g , mt is a measure on the complex unit circle.
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Continuum space-filling path
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Uniform spanning tree
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RANDOM SURFACES

Start out with a sheet of paper
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RANDOM SURFACES

P
E
N

Get out pen and ruler
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RANDOM SURFACES

P
E
N

Measure and mark squares squares of equal size
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RANDOM SURFACES

Get out scissors
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RANDOM SURFACES

Cut into squares
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RANDOM SURFACES

GLUE

Get out bottle of glue
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RANDOM SURFACES

GLUE

Attach squares along boundaries with glue to form a surface “without holes.”
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What is the structure of a typical quadrangulation when the number of faces is large?
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What is the structure of a typical quadrangulation when the number of faces is large?
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Random quadrangulation with 25,000 faces

(Simulation due to J.F. Marckert)
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Background

(Simulation due to J.F. Marckert)

1. First studied by Tutte in 1960s while working
on the four color theorem.

2. Many variants (triangulations,
quadrangulations, etc.) Some come equipped
with extra statistical physics structure (a
distinguished spanning tree, a general
distinguished edge subset, a “spin” function on
vertices, etc.)

3. Can be interpreted as Riemannian manifolds
with conical singularities.

4. Converges in law in Gromov-Hausdorff sense to
random metric space called Brownian map,
homeomorphic to the 2-sphere, Hausdorff
dimension 4 (established in several works by
subsets of Chaissang, Schaefer, Le Gall, Paulin,
Miermont)

5. Important tool: Bijections encoding surface via
pair of trees.
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Random quadrangulation

Packed with Stephenson’s CirclePack.
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Red tree

Packed with Stephenson’s CirclePack.
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Red and blue trees

Packed with Stephenson’s CirclePack.
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Red and blue trees alone do not determine the map structure

Packed with Stephenson’s CirclePack.
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Random quadrangulation with red and blue trees

Packed with Stephenson’s CirclePack.
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Path snaking between the trees. Encodes the trees and how they are glued together.

Packed with Stephenson’s CirclePack.
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How was the graph embedded into R2?

Packed with Stephenson’s CirclePack.
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Can subivide each quadrilateral to obtain a triangulation without multiple edges.

Packed with Stephenson’s CirclePack.
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Circle pack the resulting triangulation.

Packed with Stephenson’s CirclePack.
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Circle pack the resulting triangulation.

Packed with Stephenson’s CirclePack.
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Circle pack the resulting triangulation.

Packed with Stephenson’s CirclePack.
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What is the “limit” of this embedding? Circle packings are related to conformal maps.

Packed with Stephenson’s CirclePack.
Scott Sheffield (MIT) Universal structure September 15, 2015 29 / 67



Conformal maps (from David Gu’s web gallery)
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Picking a surface at random in the continuum
Uniformization theorem: every simply connected Riemannian surface can be
conformally mapped to either the unit disk, the plane, or the sphere S2 in R3

ψ

Isothermal coordinates: Metric for the surface takes the form eρ(z)dz for some smooth
function ρ where dz is the Euclidean metric.
⇒ Can parameterize the space of surfaces with smooth functions.

I If ρ = 0, get the same surface

I If ∆ρ = 0, i.e. if ρ is harmonic, the surface described is flat

Question: Which measure on ρ? If we want our surface to be a perturbation of a flat

metric, natural to choose ρ as the canonical perturbation of a harmonic function.
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The Gaussian free field

I The discrete Gaussian free field (DGFF) is a
Gaussian random surface model.

I Measure on functions h : D → R for D ⊆ Z2 and
h|∂D = ψ with density respect to Lebesgue
measure on R|D|:

1

Z exp

(
−1

2

∑
x∼y

(h(x)− h(y))2

)

I Natural perturbation of a harmonic function

I Fine mesh limit: converges to the continuum GFF,
i.e. the standard Gaussian wrt the Dirichlet inner
product

(f , g)∇ =
1

2π

∫
∇f (x) · ∇g(x)dx .

I Continuum GFF not a function — only a
generalized function
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Liouville quantum gravity

I Liouville quantum gravity: eγh(z)dz
where h is a GFF and γ ∈ [0, 2)

I Random surface model: Polyakov,
1980. Motivated by string theory.

I Rigorous construction of measure:
Høegh-Krohn, 1971, γ ∈ [0,

√
2).

Kahane, 1985, γ ∈ [0, 2).

I Does not make literal sense since h
takes values in the space of
distributions.

I Can make sense of random area
measure using a regularization
procedure.

I Areas of regions and lengths of curves
are well defined.

γ = 0.5

(Number of subdivisions)
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RANDOM GROWTH
I FPP/Eden model growth, introduced by

Eden (1961) and Hammersley and Welsh
(1965)

I Associate with a graph (V ,E) i.i.d. exp(1)
edge weights

I Consider case that graph is Z2.

I Question: Large scale behavior of shape of
ball wrt perturbed metric?

I Cox and Durrett (1981) showed that the
macroscopic shape is convex

I Computer simulations show that it is not a
Euclidean disk

I Z2 is not isotropic enough

I Vahidi-Asl and Weirmann (1990) showed
that the rescaled ball converges to a disk if
Z2 is replaced by the Voronoi tesselation
associated with a Poisson process
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Markovian formulation
Eden exploration

C0

Sample the cluster Cn+1 from Cn by selecting an edge uniformly at random on ∂Cn, and

then adding the vertex which is attached to it. VARIANT: Choose locations from

harmonic measure (DLA) or harmonic measure to η power (η-DBM).
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Euclidean Diffusion Limited Aggregation (DLA) introduced by Witten-Sander 1981.
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DLA in nature: “A DLA cluster grown from a copper sulfate solution in an electrodeposition

cell” (from Wikipedia)
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DLA in nature: Magnese oxide patterns on the surface of a rock. (Halsey, Physics Today 2000)
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DLA in art: “High-voltage dielectric breakdown within a block of plexiglas” (from Wikipedia)
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DLA in physics
Introduced by Witten and Sander in 1981 as a model for crystal growth. (Mineral

deposits, Hele-Shaw flow, electrodeposition, lichen growth, lightning paths, coral, etc.)

An active area of research in physics for the last 33 years:
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DLA in math?

Not a lot of progress. (A related process called internal DLA is mathematically
much more well understood.) Expected that (as with Eden model) lattice versions
may have anisotropic features in limit.

Open questions

I Does DLA have a “scaling limit”?

I Is the shape random at large scales?

I Does the macroscopic shape look like a tree?

I What is its asymptotic dimension? Simulation prediction: ≈ 1.71 on Z2

I Is there a universal isotropic continuum analog of DLA?

What about DLA on random planar maps and Liouville quantum gravity surfaces?
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Part II:
DRAMA
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STORY A:

SURFACE PLUS SURFACE =
SURFACE PLUS CURVE
independence on both sides
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WELDING RANDOM SURFACES
Can “weld” and “slice” special quantum surfaces called quantum wedges (with “weight”
parameters indicating thickness) to obtain wedges (with other weights).

I Weight parameter W = γ(γ + 2
γ
− α) is additive under the welding operation.

I Interface between welding of independent wedges W1,W2 of weight W1 and W2 is
an SLEκ(W1 − 2;W2 − 2) on combined surface.

I Glue canonical random surfaces, seam becomes canonical random path.
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STORY B:

TREE PLUS TREE =
SURFACE PLUS

SPACE-FILLING CURVE
LHS independent or correlated,

RHS independent
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MATING RANDOM TREES
X ,Y independent Brownian excursions on [0, 1]. Pick C > 0 large so that the graphs of
X and C − Y are disjoint.

t

Xt

C−Yt

I Identify points on the graph of X if they are connected by a horizontal line which is
below the graph; yields a continuum random tree (CRT)

I Same for C − Yt yields an independent CRT

I Glue the CRTs together by declaring points on the vertical lines to be equivalent

Q: What is the resulting structure? A: Sphere with a space-filling path. A peanosphere.
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Surface is topologically a sphere by Moore’s theorem

Theorem (Moore 1925)
Let ∼= be any topologically closed equivalence relation on the sphere S2. Assume
that each equivalence class is connected and not equal to all of S2. Then the
quotient space S2/ ∼= is homeomorphic to S2 if and only if no equivalence class
separates the sphere into two or more connected components.

I An equivalence relation is topologically closed iff for any two sequences (xn)
and (yn) with

I xn ∼= yn for all n
I xn → x and yn → y

I we have that x ∼= y .
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STORY C:

SURFACE TREE PLUS
SURFACE TREE =

SURFACE PLUS
SELF-HITTING CURVE

independence on both sides
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Gluing independent Lévy trees
Can view SLEκ′ process, κ′ ∈ (4, 8) as a gluing of two κ′

4
-stable Lévy trees.

t

Xt

C−Yt

I The two trees of quantum disks almost surely determine both the SLEκ′ and the
LQG surface on which it is drawn

I Can convert questions about SLEκ′ into questions about κ′

4
-stable processes.

I Scaling limit of “exploration path” on random planar map should be SLE6 on a√
8/3-LQG. Using welding machinery, we can understand well the “bubbles” cut

out by such an exploration process. We can understand conditional law of
unexplored region given what we have seen.
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-stable Lévy trees.

t

Xt

C−Yt

I The two trees of quantum disks almost surely determine both the SLEκ′ and the
LQG surface on which it is drawn

I Can convert questions about SLEκ′ into questions about κ′

4
-stable processes.

I Scaling limit of “exploration path” on random planar map should be SLE6 on a√
8/3-LQG. Using welding machinery, we can understand well the “bubbles” cut

out by such an exploration process. We can understand conditional law of
unexplored region given what we have seen.

Scott Sheffield (MIT) Universal structure September 15, 2015 50 / 67



Gluing independent Lévy trees
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STORY D:

GROWTH ON SURFACE =
“RESHUFFLED” CURVE

ON SURFACE
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RANDOM GROWTH ON RANDOM SURFACES

I Can we make sense of η-DBM on a γ-LQG? We have shown how to tile an
LQG surface with diadic squares of “about the same size” so we could run a
DLA on this set of squares and try to take a fine mesh limit.

I Or we could try η-DBM on corresponding RPM, which one would expect to
behave similarly....

I Question: Are there coral reefs, snowflakes, lichen, crystals, plants, lightning
bolts, etc. whose growth rates are affected by a random medium (something
like LQG)? The simulations look similar but have a bit more personality when
γ is larger (as we will see). They look like Chinese dragons.

I We will ultimately want to construct a candidate for the scaling limit, which
we will call (for reasons explained later) quantum Loewner evolution:
QLE(γ2, η).

I But first let’s look at some computer generated images (and some
animations), starting with an Eden exploration.
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Eden model on
√

8/3-LQG
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DLA on a
√

2-LQG
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Eden model on planar map

I Random planar map, random vertex x . Perform FPP from x .

Important observations:

I Conditional law of map given ball at time n only depends on the boundary lengths of
the outside components.

Exploration respects the Markovian structure of the map.

I If we work on an “infinite” planar map, the conditional law of the map in the
unbounded component only depends on the boundary length

Belief: Isotropic enough so that at large scales this is close to a ball in the graph metric
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First passage percolation on random planar maps III

Variant:

I Pick two edges on outer boundary
of cluster

I Color vertices between edges blue
and yellow

I Color vertices on rest of map blue
or yellow with prob. 1

2

I Explore percolation (blue/yellow)
interface

I Forget colors

I Repeat

I This exploration also respects the Markovian structure of the map.

I If we work on an “infinite” planar map, the conditional law of the map in the
unbounded component only depends on the boundary length.

I Expect that at large scales this growth process looks the same as FPP, hence the
same as the graph metric ball
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Continuum limit ansatz

I Sample a random planar map

and two edges uniformly at random

I Color vertices blue/yellow with probability 1/2

and draw percolation interface

I Conformally map to the sphere

Ansatz Image of random map converges to a
√

8/3-LQG surface and the image of the

interface converges to an independent SLE6.
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Continuum analog of first passage percolation on LQG

I Start off with
√

8/3-LQG surface

I Fix δ > 0 small and a starting point x

I Draw δ units of SLE6

I Resample the tip according to
boundary length

I Repeat

I Know the conditional law of the LQG
surface at each stage, using
exploration results

QLE(8/3, 0) is the limit as δ → 0 of this growth process. It is described in terms of a

radial Loewner evolution which is driven by a measure valued diffusion.

QLE(8/3, 0) is SLE6 with tip re-randomization. It can be understood as a

“reshuffling” of the exploration procedure associated to the peanosphere.
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What is QLE(γ2, η)?

QLE(8/3, 0) is a member of a two-parameter family of processes called QLE(γ2, η)

I γ is the type of LQG surface on which the process grows

I η determines the manner in which it grows

Let µHARM (resp. µLEN) be harmonic (resp. length) measure on a γ-LQG surface. The
rate of growth (i.e., rate at which microscopic particles are added) is proportional to(

dµHARM

dµLEN

)η
dµLEN.

I First passage percolation: η = 0

I Diffusion limited aggregation: η = 1

I η-dieletric breakdown model: general values of η
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Discrete approximation of QLE(8/3, 0). Metric ball on a
√

8/3-LQG
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Discrete approximation of QLE(2, 1). DLA on a
√

2-LQG
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QLE(γ2, η) processes we can construct

γ2

η

0

1

−1

1 2 3 4

(2, 1)

(8/3, 0) (4, 1/4)

Each of the QLE(γ2, η) processes with (γ2, η) on the orange curves is built from an

SLEκ process using tip re-randomization.
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STORY E:

BROWNIAN MAP =√
8/3-LIOUVILLE QUANTUM

GRAVITY
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Dancing snake: a natural random walk on the space of discrete “snakes.”
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(Xt, Yt)

(0, 0)

(Xt, Yt)

(0, 0) (0, 0)(a, 0) (a, 0)(inf{X·}, 0)

1. The dancing snake has a scaling limit called the Brownian snake.

2. The x and y coordinates of the Brownian snake’s head are two functions.

3. Each of these describes a tree (via the same construction we used to make
CRT from Brownian motion).

4. Gluing these two trees together gives a random surface called the Brownian
map.
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Some QLE-based results

I Existence of QLE(γ2, η) on the orange curves as a Markovian exploration of
a γ-LQG surface.

I A proof that when γ2 = 8/3 and η = 0, QLE describes the growth of metric
balls in Liouville quantum gravity.

I A proof that, under the metric defined by QLE, Liouville quantum gravity is
equivalent (as a random metric measure space) to the Brownian map.

I An understanding of a continuum analog of DLA on a random surface
corresponding to γ2 = 2.
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ψ

Thanks!
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