18.177: Lecture 3
 Critical percolation

Scott Sheffield

MIT

Outline

Recollections

Exponential decay

Intuition when d is very large

Outline

Recollections

Exponential decay

Intuition when d is very large

18.440 Lecture 3

Recall

- Basic tools: Zero-one law for tail/translation-invariant events, ergodic theorem, FKG inequality, BK inequality.

Recall

- Basic tools: Zero-one law for tail/translation-invariant events, ergodic theorem, FKG inequality, BK inequality.
- Consequences: number of infinite clusters is P_{p} a.s. constant. Constant's in $\{0,1, \infty\}$. In fact in $\{0,1\}$. Unique infinite cluster with asymptotic density $\theta(p)$ a.s. if $\theta(p)>0$.

Recall

- Basic tools: Zero-one law for tail/translation-invariant events, ergodic theorem, FKG inequality, BK inequality.
- Consequences: number of infinite clusters is P_{p} a.s. constant. Constant's in $\{0,1, \infty\}$. In fact in $\{0,1\}$. Unique infinite cluster with asymptotic density $\theta(p)$ a.s. if $\theta(p)>0$.
- Consequence of path-counting tricks: p_{c} bounded away from zero and one for all d.

Recall

- Basic tools: Zero-one law for tail/translation-invariant events, ergodic theorem, FKG inequality, BK inequality.
- Consequences: number of infinite clusters is P_{p} a.s. constant. Constant's in $\{0,1, \infty\}$. In fact in $\{0,1\}$. Unique infinite cluster with asymptotic density $\theta(p)$ a.s. if $\theta(p)>0$.
- Consequence of path-counting tricks: p_{c} bounded away from zero and one for all d.
- Consequence of formula for $\theta(p): \theta(p)$ upper semi-continuous.

Recall

- Basic tools: Zero-one law for tail/translation-invariant events, ergodic theorem, FKG inequality, BK inequality.
- Consequences: number of infinite clusters is P_{p} a.s. constant. Constant's in $\{0,1, \infty\}$. In fact in $\{0,1\}$. Unique infinite cluster with asymptotic density $\theta(p)$ a.s. if $\theta(p)>0$.
- Consequence of path-counting tricks: p_{c} bounded away from zero and one for all d.
- Consequence of formula for $\theta(p): \theta(p)$ upper semi-continuous.
- Consequence of lack of atoms above p_{c} for time vertex joins infinite cluster: $\theta(p)$ continuous on $\left[p_{c}, 1\right]$.

Recall

- Basic tools: Zero-one law for tail/translation-invariant events, ergodic theorem, FKG inequality, BK inequality.
- Consequences: number of infinite clusters is P_{p} a.s. constant. Constant's in $\{0,1, \infty\}$. In fact in $\{0,1\}$. Unique infinite cluster with asymptotic density $\theta(p)$ a.s. if $\theta(p)>0$.
- Consequence of path-counting tricks: p_{c} bounded away from zero and one for all d.
- Consequence of formula for $\theta(p): \theta(p)$ upper semi-continuous.
- Consequence of lack of atoms above p_{c} for time vertex joins infinite cluster: $\theta(p)$ continuous on $\left[p_{c}, 1\right]$.
- Consequence of FKG: Can't have both infinite cluster/dual-cluster when $d=2$. Thus $\theta(1 / 2)=0, p_{c} \geq 1 / 2$.

Trick we have already used a lot

- I give you an event like E_{x}, the event that one can draw exist four edge-disjoint paths from x to infinity.

Trick we have already used a lot

- I give you an event like E_{x}, the event that one can draw exist four edge-disjoint paths from x to infinity.
- Suppose that with positive P_{p} probability E_{x} occurs for some x somewhere in \mathbb{Z}^{d}.

Trick we have already used a lot

- I give you an event like E_{x}, the event that one can draw exist four edge-disjoint paths from x to infinity.
- Suppose that with positive P_{p} probability E_{x} occurs for some x somewhere in \mathbb{Z}^{d}.
- Then with probability one E_{x} occurs for infinitely many x values (in fact, an asymptotically positive density of x values).

Trick we have already used a lot

- I give you an event like E_{x}, the event that one can draw exist four edge-disjoint paths from x to infinity.
- Suppose that with positive P_{p} probability E_{x} occurs for some x somewhere in \mathbb{Z}^{d}.
- Then with probability one E_{x} occurs for infinitely many x values (in fact, an asymptotically positive density of x values).
- If we take a large enough box, we can make the probability that E_{x} occurs for some x in the box arbitrarily close to one.

Trick we have already used a lot

- I give you an event like E_{x}, the event that one can draw exist four edge-disjoint paths from x to infinity.
- Suppose that with positive P_{p} probability E_{x} occurs for some x somewhere in \mathbb{Z}^{d}.
- Then with probability one E_{x} occurs for infinitely many x values (in fact, an asymptotically positive density of x values).
- If we take a large enough box, we can make the probability that E_{x} occurs for some x in the box arbitrarily close to one.
- In fact, we arrange so that (with probability close to one) the fraction of x values in the box for which E_{x} occurs is within δ of its expectation.

Trick we have already used a lot

- I give you an event like E_{x}, the event that one can draw exist four edge-disjoint paths from x to infinity.
- Suppose that with positive P_{p} probability E_{x} occurs for some x somewhere in \mathbb{Z}^{d}.
- Then with probability one E_{x} occurs for infinitely many x values (in fact, an asymptotically positive density of x values).
- If we take a large enough box, we can make the probability that E_{x} occurs for some x in the box arbitrarily close to one.
- In fact, we arrange so that (with probability close to one) the fraction of x values in the box for which E_{x} occurs is within δ of its expectation.
- You say, "There's at least a tiny positive chance that there's a squirrel somewhere."

Trick we have already used a lot

- I give you an event like E_{x}, the event that one can draw exist four edge-disjoint paths from x to infinity.
- Suppose that with positive P_{p} probability E_{x} occurs for some x somewhere in \mathbb{Z}^{d}.
- Then with probability one E_{x} occurs for infinitely many x values (in fact, an asymptotically positive density of x values).
- If we take a large enough box, we can make the probability that E_{x} occurs for some x in the box arbitrarily close to one.
- In fact, we arrange so that (with probability close to one) the fraction of x values in the box for which E_{x} occurs is within δ of its expectation.
- You say, "There's at least a tiny positive chance that there's a squirrel somewhere."
- I say, "Any sufficiently large box has probability at least .99999 of being infested by positive density of squirrels."

Outline

Recollections

Exponential decay

Intuition when d is very large

Outline

Recollections

Exponential decay

Intuition when d is very large

18.440 Lecture 3

Exponential decay in sub-critical regime

- Claim: If $p<p_{c}$ then there is a $\psi(p)>0$ such that $P_{p}\left(A_{n}\right)<e^{-n \psi(p)}$ where A_{n} is event $C \not \subset \Lambda_{n}$.

Exponential decay in sub-critical regime

- Claim: If $p<p_{c}$ then there is a $\psi(p)>0$ such that $P_{p}\left(A_{n}\right)<e^{-n \psi(p)}$ where A_{n} is event $C \not \subset \Lambda_{n}$.
- Claim implies that expected number of clusters "surrounding" origin is finite when $d=2$.

Exponential decay in sub-critical regime

- Claim: If $p<p_{c}$ then there is a $\psi(p)>0$ such that $P_{p}\left(A_{n}\right)<e^{-n \psi(p)}$ where A_{n} is event $C \not \subset \Lambda_{n}$.
- Claim implies that expected number of clusters "surrounding" origin is finite when $d=2$.
- This claim now implies Kesten's theorem, that $p_{c}=1 / 2$.

Exponential decay in sub-critical regime

- Claim: If $p<p_{c}$ then there is a $\psi(p)>0$ such that $P_{p}\left(A_{n}\right)<e^{-n \psi(p)}$ where A_{n} is event $C \not \subset \Lambda_{n}$.
- Claim implies that expected number of clusters "surrounding" origin is finite when $d=2$.
- This claim now implies Kesten's theorem, that $p_{c}=1 / 2$.
- Proof requires some new tools.

Another fundamental tool: Russo's formula

- Consider event A depending on finitely many vertices and look at $P_{p}(A)$ as a function of p.

Another fundamental tool: Russo's formula

- Consider event A depending on finitely many vertices and look at $P_{p}(A)$ as a function of p.
- Derivative $\frac{\partial}{\partial p} P_{p}(A)=E_{p}(N(A))$ where $N(A)$ is number of edges pivotal for A.

Another fundamental tool: Russo's formula

- Consider event A depending on finitely many vertices and look at $P_{p}(A)$ as a function of p.
- Derivative $\frac{\partial}{\partial p} P_{p}(A)=E_{p}(N(A))$ where $N(A)$ is number of edges pivotal for A.
- Expected number of edges open and pivotal is $p E_{p}(N(A))=p \frac{\partial}{\partial p} P_{p}(A)$.

Another fundamental tool: Russo's formula

- Consider event A depending on finitely many vertices and look at $P_{p}(A)$ as a function of p.
- Derivative $\frac{\partial}{\partial p} P_{p}(A)=E_{p}(N(A))$ where $N(A)$ is number of edges pivotal for A.
- Expected number of edges open and pivotal is $p E_{p}(N(A))=p \frac{\partial}{\partial p} P_{p}(A)$.
- Thus $\frac{\partial}{\partial p} P_{p}(A)$ is $p^{-1} E_{p}(N(A) ; A)$.

Exponential decay (per Grimmett pages 88 to 102)

- Let A_{n} be the event that $C \not \subset S_{n}$.

Exponential decay (per Grimmett pages 88 to 102)

- Let A_{n} be the event that $C \not \subset S_{n}$.
- Write $g_{p}(n)=P_{p}\left(A_{n}\right)=P_{p}\left(A_{n}(x)\right)$ for any x.

Exponential decay (per Grimmett pages 88 to 102)

- Let A_{n} be the event that $C \not \subset S_{n}$.
- Write $g_{p}(n)=P_{p}\left(A_{n}\right)=P_{p}\left(A_{n}(x)\right)$ for any x.
- $g_{p}^{\prime}(n)=\frac{1}{p} E_{p}\left(N\left(A_{n}\right) ; A_{n}\right)=\frac{1}{p} E_{p}\left(N\left(A_{n}\right) \mid A_{n}\right) g_{p}(n)$

Exponential decay (per Grimmett pages 88 to 102)

- Let A_{n} be the event that $C \not \subset S_{n}$.
- Write $g_{p}(n)=P_{p}\left(A_{n}\right)=P_{p}\left(A_{n}(x)\right)$ for any x.
- $g_{p}^{\prime}(n)=\frac{1}{p} E_{p}\left(N\left(A_{n}\right) ; A_{n}\right)=\frac{1}{p} E_{p}\left(N\left(A_{n}\right) \mid A_{n}\right) g_{p}(n)$
- $\frac{g_{\rho}^{\prime}(n)}{g_{p}(n)}=\frac{1}{p} E_{p}\left(N\left(A_{n}\right) \mid A_{n}\right)$

Exponential decay (per Grimmett pages 88 to 102)

- Let A_{n} be the event that $C \not \subset S_{n}$.
- Write $g_{p}(n)=P_{p}\left(A_{n}\right)=P_{p}\left(A_{n}(x)\right)$ for any x.
- $g_{p}^{\prime}(n)=\frac{1}{p} E_{p}\left(N\left(A_{n}\right) ; A_{n}\right)=\frac{1}{p} E_{p}\left(N\left(A_{n}\right) \mid A_{n}\right) g_{p}(n)$
- $\frac{g_{\rho}^{\prime}(n)}{g_{p}(n)}=\frac{1}{p} E_{p}\left(N\left(A_{n}\right) \mid A_{n}\right)$
- Take $0 \leq \alpha<\beta \leq 1$ and integrate above from α to β :

Exponential decay (per Grimmett pages 88 to 102)

- Let A_{n} be the event that $C \not \subset S_{n}$.
- Write $g_{p}(n)=P_{p}\left(A_{n}\right)=P_{p}\left(A_{n}(x)\right)$ for any x.
- $g_{p}^{\prime}(n)=\frac{1}{p} E_{p}\left(N\left(A_{n}\right) ; A_{n}\right)=\frac{1}{p} E_{p}\left(N\left(A_{n}\right) \mid A_{n}\right) g_{p}(n)$
- $\frac{g_{\rho}^{\prime}(n)}{g_{p}(n)}=\frac{1}{p} E_{p}\left(N\left(A_{n}\right) \mid A_{n}\right)$
- Take $0 \leq \alpha<\beta \leq 1$ and integrate above from α to β :
- $g_{\alpha}(n)=g_{\beta}(n) \exp \left(-\int_{\alpha}^{\beta} \frac{1}{p} E_{p}\left(N\left(A_{n}\right) \mid A_{n}\right) d p\right)$

Exponential decay (per Grimmett pages 88 to 102)

- Let A_{n} be the event that $C \not \subset S_{n}$.
- Write $g_{p}(n)=P_{p}\left(A_{n}\right)=P_{p}\left(A_{n}(x)\right)$ for any x.
- $g_{p}^{\prime}(n)=\frac{1}{p} E_{p}\left(N\left(A_{n}\right) ; A_{n}\right)=\frac{1}{p} E_{p}\left(N\left(A_{n}\right) \mid A_{n}\right) g_{p}(n)$
- $\frac{g_{\rho}^{\prime}(n)}{g_{p}(n)}=\frac{1}{p} E_{p}\left(N\left(A_{n}\right) \mid A_{n}\right)$
- Take $0 \leq \alpha<\beta \leq 1$ and integrate above from α to β :
- $g_{\alpha}(n)=g_{\beta}(n) \exp \left(-\int_{\alpha}^{\beta} \frac{1}{p} E_{p}\left(N\left(A_{n}\right) \mid A_{n}\right) d p\right)$
- If we can can show $E_{p}\left(N\left(A_{n}\right) \mid A_{n}\right)$ grows roughly linearly in n when $p<p_{c}$ (the bound should hold uniformly for an interval of p values), then this will imply that when $p<p_{c}$ there is a $\psi(p)>0$ such that $P_{p}\left(A_{n}\right)<e^{-n \psi(p)}$.

Conditional expectation of number of pivots grows linearly

- So we need to show that $E_{p}\left(N\left(A_{n}\right) \mid A_{n}\right)$ grows roughly linearly in n when $p<p_{c}$.

Conditional expectation of number of pivots grows linearly

- So we need to show that $E_{p}\left(N\left(A_{n}\right) \mid A_{n}\right)$ grows roughly linearly in n when $p<p_{c}$.
- We kind of think that conditioned on A_{n}, the cluster looks like a "long string of sausages" with a lot of pivots.

Conditional expectation of number of pivots grows linearly

- So we need to show that $E_{p}\left(N\left(A_{n}\right) \mid A_{n}\right)$ grows roughly linearly in n when $p<p_{c}$.
- We kind of think that conditioned on A_{n}, the cluster looks like a "long string of sausages" with a lot of pivots.
- Write $M=\max \left\{k: A_{k}\right.$ occurs $\}$. Idea: try to show that number $N\left(A_{n}\right)$ (conditioned on A_{n}) is at least as large as number of renewals of renewal process whose elements have approximately same distribution as M. We'd like the individual sausages to be smaller than copies of M.

Conditional expectation of number of pivots grows linearly

- So we need to show that $E_{p}\left(N\left(A_{n}\right) \mid A_{n}\right)$ grows roughly linearly in n when $p<p_{c}$.
- We kind of think that conditioned on A_{n}, the cluster looks like a "long string of sausages" with a lot of pivots.
- Write $M=\max \left\{k: A_{k}\right.$ occurs $\}$. Idea: try to show that number $N\left(A_{n}\right)$ (conditioned on A_{n}) is at least as large as number of renewals of renewal process whose elements have approximately same distribution as M. We'd like the individual sausages to be smaller than copies of M.
- It's kind of annoying that we don't even know a priori that M has finite expectation. We'll have to find some sort of bootstrapping trick for getting around this eventually.

A nice lemma involving M

- Define sequence of pivotal edges e_{1}, e_{2}, \ldots on the event A_{n}, and ρ_{i} distance between start/endpoints of successive sausages..

A nice lemma involving M

- Define sequence of pivotal edges e_{1}, e_{2}, \ldots on the event A_{n}, and ρ_{i} distance between start/endpoints of successive sausages..
- Lemma: fix $k>0$, integers $r_{1}, r_{2}, \ldots r_{k}$ such that $\sum_{i=1}^{k} r_{i} \leq n-k$. Then

$$
\begin{aligned}
& P_{p}\left(\rho_{k} \leq r_{k}, \rho_{i}=r_{i} \text { for } 1 \leq i<k \mid A_{n}\right) \geq \\
& P_{p}\left(M \leq r_{k}\right) P_{p}\left(\rho_{i}=r_{i} \text { for } 1 \leq i<k \mid A_{n}\right)
\end{aligned}
$$

A nice lemma involving M

- Define sequence of pivotal edges e_{1}, e_{2}, \ldots on the event A_{n}, and ρ_{i} distance between start/endpoints of successive sausages..
- Lemma: fix $k>0$, integers $r_{1}, r_{2}, \ldots r_{k}$ such that $\sum_{i=1}^{k} r_{i} \leq n-k$. Then

$$
\begin{aligned}
& P_{p}\left(\rho_{k} \leq r_{k}, \rho_{i}=r_{i} \text { for } 1 \leq i<k \mid A_{n}\right) \geq \\
& P_{p}\left(M \leq r_{k}\right) P_{p}\left(\rho_{i}=r_{i} \text { for } 1 \leq i<k \mid A_{n}\right)
\end{aligned}
$$

- We have to have at least two disjoint paths up to starting point of first pivotal edge. BK inequality implies

$$
P_{p}\left(\left\{\rho_{1}>r_{2}\right\} \cap A_{n}\right) \leq P_{p}\left(A_{r_{1}+1}\right) P_{p}\left(A_{n}\right) .
$$

A nice lemma involving M

- Define sequence of pivotal edges e_{1}, e_{2}, \ldots on the event A_{n}, and ρ_{i} distance between start/endpoints of successive sausages..
- Lemma: fix $k>0$, integers $r_{1}, r_{2}, \ldots r_{k}$ such that $\sum_{i=1}^{k} r_{i} \leq n-k$. Then

$$
\begin{aligned}
& P_{p}\left(\rho_{k} \leq r_{k}, \rho_{i}=r_{i} \text { for } 1 \leq i<k \mid A_{n}\right) \geq \\
& P_{p}\left(M \leq r_{k}\right) P_{p}\left(\rho_{i}=r_{i} \text { for } 1 \leq i<k \mid A_{n}\right)
\end{aligned}
$$

- We have to have at least two disjoint paths up to starting point of first pivotal edge. BK inequality implies

$$
P_{p}\left(\left\{\rho_{1}>r_{2}\right\} \cap A_{n}\right) \leq P_{p}\left(A_{r_{1}+1}\right) P_{p}\left(A_{n}\right) .
$$

- Extend to the general case.

Nice consequence of nice lemma

- CLAIM: For $0<p<1$, we have $E_{p}\left(N\left(A_{n}\right) \mid A_{n}\right) \geq \frac{n}{\sum_{i=0}^{n} g_{p}(i)-1}$.

Nice consequence of nice lemma

- CLAIM: For $0<p<1$, we have $E_{p}\left(N\left(A_{n}\right) \mid A_{n}\right) \geq \frac{n}{\sum_{i=0}^{n} g_{p}(i)-1}$.
- From previous lemma, we have $P_{p}\left(\rho_{1}+\rho_{2}+\ldots+\rho_{k} \leq\right.$ $\left.n-k \mid A_{n}\right) \geq P\left(M_{1}+M_{2}+\ldots+M_{k} \leq n-k\right)$, where M_{i} are i.i.d. with the law of M.

Nice consequence of nice lemma

- CLAIM: For $0<p<1$, we have $E_{p}\left(N\left(A_{n}\right) \mid A_{n}\right) \geq \frac{n}{\sum_{i=0}^{n} g_{p}(i)-1}$.
- From previous lemma, we have $P_{p}\left(\rho_{1}+\rho_{2}+\ldots+\rho_{k} \leq\right.$ $\left.n-k \mid A_{n}\right) \geq P\left(M_{1}+M_{2}+\ldots+M_{k} \leq n-k\right)$, where M_{i} are i.i.d. with the law of M.
- Summing over k we obtain

$$
\begin{aligned}
& \qquad \begin{array}{l}
E_{p}\left(N\left(A_{n}\right) \mid A_{n}\right) \geq \sum_{k=1}^{\infty} P\left(M_{1}+\ldots+M_{k} \leq n\right) \\
=\sum_{k=1}^{\infty} P(K \geq k+1)=E(K)-1
\end{array} \\
& \text { where } K=\min \left\{k: M_{1}+\ldots+M_{k}>n\right\} .
\end{aligned}
$$

Nice consequence of nice lemma

- CLAIM: For $0<p<1$, we have $E_{p}\left(N\left(A_{n}\right) \mid A_{n}\right) \geq \frac{n}{\sum_{i=0}^{n} g_{p}(i)-1}$.
- From previous lemma, we have $P_{p}\left(\rho_{1}+\rho_{2}+\ldots+\rho_{k} \leq\right.$ $\left.n-k \mid A_{n}\right) \geq P\left(M_{1}+M_{2}+\ldots+M_{k} \leq n-k\right)$, where M_{i} are i.i.d. with the law of M.
- Summing over k we obtain

$$
\begin{gathered}
\qquad \begin{array}{c}
E_{p}\left(N\left(A_{n}\right) \mid A_{n}\right) \geq \sum_{k=1}^{\infty} P\left(M_{1}+\ldots+M_{k} \leq n\right) \\
=\sum_{k=1}^{\infty} P(K \geq k+1)=E(K)-1, \\
\text { where } K=\min \left\{k: M_{1}+\ldots+M_{k}>n\right\} . \\
-E(K)>\frac{n}{E\left(M_{1}\right)}=\frac{n}{1+E\left(\min \left\{M_{1}, n\right\}\right)}=\frac{n}{\sum_{i=0}^{n} g_{p}(i)} .
\end{array}
\end{gathered}
$$

Bootstrapping

- First we show that for $p<p_{c}$ there is a $\delta(p)$ such that $g_{p}(n) \leq \delta(p) n^{-1 / 2}$.

Bootstrapping

- First we show that for $p<p_{c}$ there is a $\delta(p)$ such that $g_{p}(n) \leq \delta(p) n^{-1 / 2}$.
- Plugging this into earlier formula lets us show that $\sum_{n=1}^{\infty} g_{\alpha}(n)<\infty$ for $\alpha<p_{c}$, and complete the exponential decay proof.

Outline

Recollections

Exponential decay

Intuition when d is very large

Outline

Recollections

Exponential decay

Intuition when d is very large
18.440 Lecture 3

Large d intuition

- Suppose that $d=10^{10^{100}}$. What does percolation look like then?

Large d intuition

- Suppose that $d=10^{10^{100}}$. What does percolation look like then?
- Let's consider the case $p=\frac{1}{2 d}$. Then the expected number of vertices connected to the origin is one.

Large d intuition

- Suppose that $d=10^{10^{100}}$. What does percolation look like then?
- Let's consider the case $p=\frac{1}{2 d}$. Then the expected number of vertices connected to the origin is one.
- Expected number of additional vertices connected to each of these is about one.

Large d intuition

- Suppose that $d=10^{10^{100}}$. What does percolation look like then?
- Let's consider the case $p=\frac{1}{2 d}$. Then the expected number of vertices connected to the origin is one.
- Expected number of additional vertices connected to each of these is about one.
- Get approximately a critical Galton-Watson tree with Poisson offspring numbers.

Large d intuition

- Suppose that $d=10^{10^{100}}$. What does percolation look like then?
- Let's consider the case $p=\frac{1}{2 d}$. Then the expected number of vertices connected to the origin is one.
- Expected number of additional vertices connected to each of these is about one.
- Get approximately a critical Galton-Watson tree with Poisson offspring numbers.
- Expect to have lots of large tree like clusters intersecting the n^{d} box.

Large d intuition

- Suppose that $d=10^{10^{100}}$. What does percolation look like then?
- Let's consider the case $p=\frac{1}{2 d}$. Then the expected number of vertices connected to the origin is one.
- Expected number of additional vertices connected to each of these is about one.
- Get approximately a critical Galton-Watson tree with Poisson offspring numbers.
- Expect to have lots of large tree like clusters intersecting the n^{d} box.
- Heuristically, tree with k vertices should have a longest path of length \sqrt{k}. Is distance of tip from origin about $k^{1 / 4}$?

