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Review of miracles from last time with new details
FKG inequality and the case d = 2

Recall: formal definitions

I Ed is set of edges of Zd

I Ω =
∏

e∈Ed{0, 1} is the set of functions ω : Ed → {0, 1}.
I F is the σ-algebra generated by subsets of Ω of form
{ω : ω(x1) = a1, . . . ω(xk) = ak}. Then Pp is the product
measure on (Ω,F).

I C (x) is open cluster containing vertex z ∈ Zd and we write
C = C (0) for origin-containing cluster.

I Write θ = θ(p) = Pp(|C | =∞).

I pc = sup{p : θ(p) = 0}. We showed pc ∈ (0, 1) when d ≥ 2.

I Big question is whether θ(pc) > 0 when d = 3. (Answer is
known only for d = 2 and d ≥ 19.)
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Review of miracles from last time with new details
FKG inequality and the case d = 2

Recall: tail measurability miracle

I A ∈ F called tail measurable if for each ω, ω′ ∈ Ω that agree
on all but finitely many edges, we have ω ∈ A iff ω′ ∈ A. Let
T be the σ-algebra of tail-measurable events.

I Claim: A ∈ T implies P(A) ∈ {0, 1}.
I Proof: say that B is independent of A if

P(A ∩ B) = P(A)P(B).
I The set of B with this property includes algebra of cylinder

sets. It is closed under countable monotone unions and
intersections. Monotone class theorem says it therefore
includes every B ∈ F .

I In particular A has this property. So P(A ∩ A) = P(A)P(A),
hence P(A) ∈ {0, 1}.

I Let En[A] be the conditional expectation of A given the values
of ω on edges of radius n ball Sn centered at zero.

I For any A, limn→∞ En[A] = 1A almost surely.
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Recall: translation invariance miracle

I A ∈ F called translation invariant if for each ω, ω′ ∈ Ω with
ω(x) = ω′(x + y) for some fixed y ∈ Zd and all x , we have
ω ∈ A iff ω′ ∈ A. Let I be the σ-algebra of translation
invariant events.

I Claim: A ∈ I implies P(A) ∈ {0, 1}.
I Proof: find an n large enough so that En[A] and 1A are very

close with very high probability. Then consider a disjoint
translation of the ball.

I Terminology: P is ergodic with respect to translations if every
set in I has P probability zero or one. We showed Pp is
ergodic for all p.

I Ergodic theorem: if F : Ω→ R has finite expectation, then
average of F , over the translations of ω by elements of Sn,
P-a.s. tends to this expectation as n→∞.
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Review of miracles from last time with new details
FKG inequality and the case d = 2

Recall: Burton Keane argument

I Call x a trifurcation if it lies in an infinite open cluster, has
exactly three open edges incident into it, and deleting it splits
this infinite cluster into three infinite pieces (no finite pieces)

I If have infinitely many open clusters, have positive probability
that origin is trifurcation.

I Expected number of trifurcations in box [1, n]d grows like nd

time a constant.
I But combinatorial argument shows that the possible number

of trifurcations in the box goes like surface area of the box.
I Conclude that we almost surely don’t have infinitely many

clusters.
I If θ(p) = 0 have a.s. zero infinite clusters. If θ(p) = 1 have

a.s. one infinite cluster.
I By ergodic theorem: asymptotic density of infinite cluster is

a.s. θ(p).
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Review of miracles from last time with new details
FKG inequality and the case d = 2

Recall: facts about θ : [0, 1]→ [0, 1]

I Endpoints: θ(0) = 0 and θ(1) = 1.

I Monotonicity: θ is non-decreasing. (Assign uniform member
of [0, 1] to each edge, use cute coupling trick.)

I pc lower bound: Write λ(d) := limn→∞ σ(n)1/n where σ(n)
is number of self-avoiding paths of length n beginning at the
origin. Then pc(d) ≥ 1/λ(d).

I pc upper bound: Peierls argument shows pc(2) < 1− 1/λ(2)
(hence pc(d) < 1− 1/λ(2) when d ≥ 2).

I Continuity: Can now show continuity of θ on (pc , 1].
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FKG inequality

I An event A ⊂ Ω is increasing if ω1 ≤ ω2 (i.e., ω1(e) ≤ ω2(e)
for all e ∈ Ed) and ω1 ∈ A together imply ω2 ∈ A.

I A random variable X is increasing if ω1 ≤ ω2 implies
X (ω1) ≤ X (ω2).

I FKG Inequality: Ep(XY ) ≥ Ep(X )Ep(Y ) for increasing
random variables X and Y .

I FKG Inequality: Pp(A ∩ B) ≥ Pp(A)Pp(B) for increasing
events A and B.

I Proof: Simple induction applies if random variables depend
on finitely many edges.

I Proof: More generally, let Xn and Yn be conditional
expectations given first n edges in enumeration of edges.
Then Xn → X and Yn → Y a.s. by martingale convergence
(and in L2(Pp)). Take limits.
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BK inequality

I Say increasing events A and B happen disjointly if we can
write ω = ω1 + ω2 where ω1 ∈ A and ω2 ∈ B.

I BK inequality says that the probability that A and B occur
disjointly is most P(A)P(B).
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Can’t have both infinite cluster and dual cluster in Z2

I A simple geometric argument due to Zhang shows that we
cannot have both an infinite cluster and an infinite dual
cluster with Pp positive probability when d = 2.

I If we did, then by FKG and symmetry, we would have a high
probability of having a path going from each of top and
bottom of a box to infinity, and a dual path going from each
of left and right side of box to infinity. This implies there has
to be either more than one infinite cluster or more than one
infinite dual cluster.

I In particular, symmetry implies that a.s. we have no infinite
cluster when p = 1/2.

I But this doesn’t quite prove p = pc . Could there be a range
of p values for which there is neither an infinite cluster nor an
infinite dual cluster?
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