18.177: Lecture 2
 Critical percolation

Scott Sheffield

MIT
18.177 Lecture 2

Outline

Review of miracles from last time with new details

FKG inequality and the case $d=2$
18.177 Lecture 2

Outline

Review of miracles from last time with new details

FKG inequality and the case $d=2$
18.177 Lecture 2

Recall: formal definitions

- \mathbb{E}^{d} is set of edges of \mathbb{Z}^{d}

Recall: formal definitions

- \mathbb{E}^{d} is set of edges of \mathbb{Z}^{d}
- $\Omega=\prod_{e \in \mathbb{E}^{d}}\{0,1\}$ is the set of functions $\omega: \mathbb{E}^{d} \rightarrow\{0,1\}$.

Recall: formal definitions

- \mathbb{E}^{d} is set of edges of \mathbb{Z}^{d}
- $\Omega=\prod_{e \in \mathbb{E}^{d}}\{0,1\}$ is the set of functions $\omega: \mathbb{E}^{d} \rightarrow\{0,1\}$.
- \mathcal{F} is the σ-algebra generated by subsets of Ω of form $\left\{\omega: \omega\left(x_{1}\right)=a_{1}, \ldots \omega\left(x_{k}\right)=a_{k}\right\}$. Then P_{p} is the product measure on (Ω, \mathcal{F}).

Recall: formal definitions

- \mathbb{E}^{d} is set of edges of \mathbb{Z}^{d}
- $\Omega=\prod_{e \in \mathbb{E}^{d}}\{0,1\}$ is the set of functions $\omega: \mathbb{E}^{d} \rightarrow\{0,1\}$.
- \mathcal{F} is the σ-algebra generated by subsets of Ω of form $\left\{\omega: \omega\left(x_{1}\right)=a_{1}, \ldots \omega\left(x_{k}\right)=a_{k}\right\}$. Then P_{p} is the product measure on (Ω, \mathcal{F}).
- $C(x)$ is open cluster containing vertex $z \in \mathbb{Z}^{d}$ and we write $C=C(0)$ for origin-containing cluster.

Recall: formal definitions

- \mathbb{E}^{d} is set of edges of \mathbb{Z}^{d}
- $\Omega=\prod_{e \in \mathbb{E}^{d}}\{0,1\}$ is the set of functions $\omega: \mathbb{E}^{d} \rightarrow\{0,1\}$.
- \mathcal{F} is the σ-algebra generated by subsets of Ω of form $\left\{\omega: \omega\left(x_{1}\right)=a_{1}, \ldots \omega\left(x_{k}\right)=a_{k}\right\}$. Then P_{p} is the product measure on (Ω, \mathcal{F}).
- $C(x)$ is open cluster containing vertex $z \in \mathbb{Z}^{d}$ and we write $C=C(0)$ for origin-containing cluster.
- Write $\theta=\theta(p)=P_{p}(|C|=\infty)$.

Recall: formal definitions

- \mathbb{E}^{d} is set of edges of \mathbb{Z}^{d}
- $\Omega=\prod_{e \in \mathbb{E}^{d}}\{0,1\}$ is the set of functions $\omega: \mathbb{E}^{d} \rightarrow\{0,1\}$.
- \mathcal{F} is the σ-algebra generated by subsets of Ω of form $\left\{\omega: \omega\left(x_{1}\right)=a_{1}, \ldots \omega\left(x_{k}\right)=a_{k}\right\}$. Then P_{p} is the product measure on (Ω, \mathcal{F}).
- $C(x)$ is open cluster containing vertex $z \in \mathbb{Z}^{d}$ and we write $C=C(0)$ for origin-containing cluster.
- Write $\theta=\theta(p)=P_{p}(|C|=\infty)$.
- $p_{c}=\sup \{p: \theta(p)=0\}$. We showed $p_{c} \in(0,1)$ when $d \geq 2$.

Recall: formal definitions

- \mathbb{E}^{d} is set of edges of \mathbb{Z}^{d}
- $\Omega=\prod_{e \in \mathbb{E}^{d}}\{0,1\}$ is the set of functions $\omega: \mathbb{E}^{d} \rightarrow\{0,1\}$.
- \mathcal{F} is the σ-algebra generated by subsets of Ω of form $\left\{\omega: \omega\left(x_{1}\right)=a_{1}, \ldots \omega\left(x_{k}\right)=a_{k}\right\}$. Then P_{p} is the product measure on (Ω, \mathcal{F}).
- $C(x)$ is open cluster containing vertex $z \in \mathbb{Z}^{d}$ and we write $C=C(0)$ for origin-containing cluster.
- Write $\theta=\theta(p)=P_{p}(|C|=\infty)$.
- $p_{c}=\sup \{p: \theta(p)=0\}$. We showed $p_{c} \in(0,1)$ when $d \geq 2$.
- Big question is whether $\theta\left(p_{c}\right)>0$ when $d=3$. (Answer is known only for $d=2$ and $d \geq 19$.)

Recall: tail measurability miracle

- $A \in \mathcal{F}$ called tail measurable if for each $\omega, \omega^{\prime} \in \Omega$ that agree on all but finitely many edges, we have $\omega \in A$ iff $\omega^{\prime} \in A$. Let \mathcal{T} be the σ-algebra of tail-measurable events.

Recall: tail measurability miracle

- $A \in \mathcal{F}$ called tail measurable if for each $\omega, \omega^{\prime} \in \Omega$ that agree on all but finitely many edges, we have $\omega \in A$ iff $\omega^{\prime} \in A$. Let \mathcal{T} be the σ-algebra of tail-measurable events.
- Claim: $A \in \mathcal{T}$ implies $P(A) \in\{0,1\}$.

Recall: tail measurability miracle

- $A \in \mathcal{F}$ called tail measurable if for each $\omega, \omega^{\prime} \in \Omega$ that agree on all but finitely many edges, we have $\omega \in A$ iff $\omega^{\prime} \in A$. Let \mathcal{T} be the σ-algebra of tail-measurable events.
- Claim: $A \in \mathcal{T}$ implies $P(A) \in\{0,1\}$.
- Proof: say that B is independent of A if $P(A \cap B)=P(A) P(B)$.

Recall: tail measurability miracle

- $A \in \mathcal{F}$ called tail measurable if for each $\omega, \omega^{\prime} \in \Omega$ that agree on all but finitely many edges, we have $\omega \in A$ iff $\omega^{\prime} \in A$. Let \mathcal{T} be the σ-algebra of tail-measurable events.
- Claim: $A \in \mathcal{T}$ implies $P(A) \in\{0,1\}$.
- Proof: say that B is independent of A if $P(A \cap B)=P(A) P(B)$.
- The set of B with this property includes algebra of cylinder sets. It is closed under countable monotone unions and intersections. Monotone class theorem says it therefore includes every $B \in \mathcal{F}$.

Recall: tail measurability miracle

- $A \in \mathcal{F}$ called tail measurable if for each $\omega, \omega^{\prime} \in \Omega$ that agree on all but finitely many edges, we have $\omega \in A$ iff $\omega^{\prime} \in A$. Let \mathcal{T} be the σ-algebra of tail-measurable events.
- Claim: $A \in \mathcal{T}$ implies $P(A) \in\{0,1\}$.
- Proof: say that B is independent of A if $P(A \cap B)=P(A) P(B)$.
- The set of B with this property includes algebra of cylinder sets. It is closed under countable monotone unions and intersections. Monotone class theorem says it therefore includes every $B \in \mathcal{F}$.
- In particular A has this property. So $P(A \cap A)=P(A) P(A)$, hence $P(A) \in\{0,1\}$.

Recall: tail measurability miracle

- $A \in \mathcal{F}$ called tail measurable if for each $\omega, \omega^{\prime} \in \Omega$ that agree on all but finitely many edges, we have $\omega \in A$ iff $\omega^{\prime} \in A$. Let \mathcal{T} be the σ-algebra of tail-measurable events.
- Claim: $A \in \mathcal{T}$ implies $P(A) \in\{0,1\}$.
- Proof: say that B is independent of A if $P(A \cap B)=P(A) P(B)$.
- The set of B with this property includes algebra of cylinder sets. It is closed under countable monotone unions and intersections. Monotone class theorem says it therefore includes every $B \in \mathcal{F}$.
- In particular A has this property. So $P(A \cap A)=P(A) P(A)$, hence $P(A) \in\{0,1\}$.
- Let $E_{n}[A]$ be the conditional expectation of A given the values of ω on edges of radius n ball S_{n} centered at zero.

Recall: tail measurability miracle

- $A \in \mathcal{F}$ called tail measurable if for each $\omega, \omega^{\prime} \in \Omega$ that agree on all but finitely many edges, we have $\omega \in A$ iff $\omega^{\prime} \in A$. Let \mathcal{T} be the σ-algebra of tail-measurable events.
- Claim: $A \in \mathcal{T}$ implies $P(A) \in\{0,1\}$.
- Proof: say that B is independent of A if $P(A \cap B)=P(A) P(B)$.
- The set of B with this property includes algebra of cylinder sets. It is closed under countable monotone unions and intersections. Monotone class theorem says it therefore includes every $B \in \mathcal{F}$.
- In particular A has this property. So $P(A \cap A)=P(A) P(A)$, hence $P(A) \in\{0,1\}$.
- Let $E_{n}[A]$ be the conditional expectation of A given the values of ω on edges of radius n ball S_{n} centered at zero.
- For any $A, \lim _{n \rightarrow \infty} E_{n}[A]=1_{A}$ almost surely.

Recall: translation invariance miracle

- $A \in \mathcal{F}$ called translation invariant if for each $\omega, \omega^{\prime} \in \Omega$ with $\omega(x)=\omega^{\prime}(x+y)$ for some fixed $y \in \mathbb{Z}^{d}$ and all x, we have $\omega \in A$ iff $\omega^{\prime} \in A$. Let \mathcal{I} be the σ-algebra of translation invariant events.

Recall: translation invariance miracle

- $A \in \mathcal{F}$ called translation invariant if for each $\omega, \omega^{\prime} \in \Omega$ with $\omega(x)=\omega^{\prime}(x+y)$ for some fixed $y \in \mathbb{Z}^{d}$ and all x, we have $\omega \in A$ iff $\omega^{\prime} \in A$. Let \mathcal{I} be the σ-algebra of translation invariant events.
- Claim: $A \in \mathcal{I}$ implies $P(A) \in\{0,1\}$.

Recall: translation invariance miracle

- $A \in \mathcal{F}$ called translation invariant if for each $\omega, \omega^{\prime} \in \Omega$ with $\omega(x)=\omega^{\prime}(x+y)$ for some fixed $y \in \mathbb{Z}^{d}$ and all x, we have $\omega \in A$ iff $\omega^{\prime} \in A$. Let \mathcal{I} be the σ-algebra of translation invariant events.
- Claim: $A \in \mathcal{I}$ implies $P(A) \in\{0,1\}$.
- Proof: find an n large enough so that $E_{n}[A]$ and 1_{A} are very close with very high probability. Then consider a disjoint translation of the ball.

Recall: translation invariance miracle

- $A \in \mathcal{F}$ called translation invariant if for each $\omega, \omega^{\prime} \in \Omega$ with $\omega(x)=\omega^{\prime}(x+y)$ for some fixed $y \in \mathbb{Z}^{d}$ and all x, we have $\omega \in A$ iff $\omega^{\prime} \in A$. Let \mathcal{I} be the σ-algebra of translation invariant events.
- Claim: $A \in \mathcal{I}$ implies $P(A) \in\{0,1\}$.
- Proof: find an n large enough so that $E_{n}[A]$ and 1_{A} are very close with very high probability. Then consider a disjoint translation of the ball.
- Terminology: P is ergodic with respect to translations if every set in \mathcal{I} has P probability zero or one. We showed P_{p} is ergodic for all p.

Recall: translation invariance miracle

- $A \in \mathcal{F}$ called translation invariant if for each $\omega, \omega^{\prime} \in \Omega$ with $\omega(x)=\omega^{\prime}(x+y)$ for some fixed $y \in \mathbb{Z}^{d}$ and all x, we have $\omega \in A$ iff $\omega^{\prime} \in A$. Let \mathcal{I} be the σ-algebra of translation invariant events.
- Claim: $A \in \mathcal{I}$ implies $P(A) \in\{0,1\}$.
- Proof: find an n large enough so that $E_{n}[A]$ and 1_{A} are very close with very high probability. Then consider a disjoint translation of the ball.
- Terminology: P is ergodic with respect to translations if every set in \mathcal{I} has P probability zero or one. We showed P_{p} is ergodic for all p.
- Ergodic theorem: if $F: \Omega \rightarrow \mathbb{R}$ has finite expectation, then average of F, over the translations of ω by elements of S_{n}, P-a.s. tends to this expectation as $n \rightarrow \infty$.

Recall: Burton Keane argument

- Call x a trifurcation if it lies in an infinite open cluster, has exactly three open edges incident into it, and deleting it splits this infinite cluster into three infinite pieces (no finite pieces)

Recall: Burton Keane argument

- Call x a trifurcation if it lies in an infinite open cluster, has exactly three open edges incident into it, and deleting it splits this infinite cluster into three infinite pieces (no finite pieces)
- If have infinitely many open clusters, have positive probability that origin is trifurcation.

Recall: Burton Keane argument

- Call x a trifurcation if it lies in an infinite open cluster, has exactly three open edges incident into it, and deleting it splits this infinite cluster into three infinite pieces (no finite pieces)
- If have infinitely many open clusters, have positive probability that origin is trifurcation.
- Expected number of trifurcations in box $[1, n]^{d}$ grows like n^{d} time a constant.

Recall: Burton Keane argument

- Call x a trifurcation if it lies in an infinite open cluster, has exactly three open edges incident into it, and deleting it splits this infinite cluster into three infinite pieces (no finite pieces)
- If have infinitely many open clusters, have positive probability that origin is trifurcation.
- Expected number of trifurcations in box $[1, n]^{d}$ grows like n^{d} time a constant.
- But combinatorial argument shows that the possible number of trifurcations in the box goes like surface area of the box.

Recall: Burton Keane argument

- Call x a trifurcation if it lies in an infinite open cluster, has exactly three open edges incident into it, and deleting it splits this infinite cluster into three infinite pieces (no finite pieces)
- If have infinitely many open clusters, have positive probability that origin is trifurcation.
- Expected number of trifurcations in box $[1, n]^{d}$ grows like n^{d} time a constant.
- But combinatorial argument shows that the possible number of trifurcations in the box goes like surface area of the box.
- Conclude that we almost surely don't have infinitely many clusters.

Recall: Burton Keane argument

- Call x a trifurcation if it lies in an infinite open cluster, has exactly three open edges incident into it, and deleting it splits this infinite cluster into three infinite pieces (no finite pieces)
- If have infinitely many open clusters, have positive probability that origin is trifurcation.
- Expected number of trifurcations in box $[1, n]^{d}$ grows like n^{d} time a constant.
- But combinatorial argument shows that the possible number of trifurcations in the box goes like surface area of the box.
- Conclude that we almost surely don't have infinitely many clusters.
- If $\theta(p)=0$ have a.s. zero infinite clusters. If $\theta(p)=1$ have a.s. one infinite cluster.

Recall: Burton Keane argument

- Call x a trifurcation if it lies in an infinite open cluster, has exactly three open edges incident into it, and deleting it splits this infinite cluster into three infinite pieces (no finite pieces)
- If have infinitely many open clusters, have positive probability that origin is trifurcation.
- Expected number of trifurcations in box $[1, n]^{d}$ grows like n^{d} time a constant.
- But combinatorial argument shows that the possible number of trifurcations in the box goes like surface area of the box.
- Conclude that we almost surely don't have infinitely many clusters.
- If $\theta(p)=0$ have a.s. zero infinite clusters. If $\theta(p)=1$ have a.s. one infinite cluster.
- By ergodic theorem: asymptotic density of infinite cluster is a.s. $\theta(p)$.

Recall: facts about $\theta:[0,1] \rightarrow[0,1]$

- Endpoints: $\theta(0)=0$ and $\theta(1)=1$.

Recall: facts about $\theta:[0,1] \rightarrow[0,1]$

- Endpoints: $\theta(0)=0$ and $\theta(1)=1$.
- Monotonicity: θ is non-decreasing. (Assign uniform member of $[0,1]$ to each edge, use cute coupling trick.)

Recall: facts about $\theta:[0,1] \rightarrow[0,1]$

- Endpoints: $\theta(0)=0$ and $\theta(1)=1$.
- Monotonicity: θ is non-decreasing. (Assign uniform member of $[0,1]$ to each edge, use cute coupling trick.)
- p_{c} lower bound: Write $\lambda(d):=\lim _{n \rightarrow \infty} \sigma(n)^{1 / n}$ where $\sigma(n)$ is number of self-avoiding paths of length n beginning at the origin. Then $p_{c}(d) \geq 1 / \lambda(d)$.

Recall: facts about $\theta:[0,1] \rightarrow[0,1]$

- Endpoints: $\theta(0)=0$ and $\theta(1)=1$.
- Monotonicity: θ is non-decreasing. (Assign uniform member of $[0,1]$ to each edge, use cute coupling trick.)
- p_{c} lower bound: Write $\lambda(d):=\lim _{n \rightarrow \infty} \sigma(n)^{1 / n}$ where $\sigma(n)$ is number of self-avoiding paths of length n beginning at the origin. Then $p_{c}(d) \geq 1 / \lambda(d)$.
- p_{c} upper bound: Peierls argument shows $p_{c}(2)<1-1 / \lambda(2)$ (hence $p_{c}(d)<1-1 / \lambda(2)$ when $d \geq 2$).

Recall: facts about $\theta:[0,1] \rightarrow[0,1]$

- Endpoints: $\theta(0)=0$ and $\theta(1)=1$.
- Monotonicity: θ is non-decreasing. (Assign uniform member of $[0,1]$ to each edge, use cute coupling trick.)
- p_{c} lower bound: Write $\lambda(d):=\lim _{n \rightarrow \infty} \sigma(n)^{1 / n}$ where $\sigma(n)$ is number of self-avoiding paths of length n beginning at the origin. Then $p_{c}(d) \geq 1 / \lambda(d)$.
- p_{c} upper bound: Peierls argument shows $p_{c}(2)<1-1 / \lambda(2)$ (hence $p_{c}(d)<1-1 / \lambda(2)$ when $d \geq 2$).
- Continuity: Can now show continuity of θ on $\left(p_{c}, 1\right]$.

Outline

Review of miracles from last time with new details

FKG inequality and the case $d=2$
18.177 Lecture 2

Outline

Review of miracles from last time with new details

FKG inequality and the case $d=2$
18.177 Lecture 2

FKG inequality

- An event $A \subset \Omega$ is increasing if $\omega_{1} \leq \omega_{2}$ (i.e., $\omega_{1}(e) \leq \omega_{2}(e)$ for all $e \in \mathbb{E}^{d}$) and $\omega_{1} \in A$ together imply $\omega_{2} \in A$.

FKG inequality

- An event $A \subset \Omega$ is increasing if $\omega_{1} \leq \omega_{2}$ (i.e., $\omega_{1}(e) \leq \omega_{2}(e)$ for all $e \in \mathbb{E}^{d}$) and $\omega_{1} \in A$ together imply $\omega_{2} \in A$.
- A random variable X is increasing if $\omega_{1} \leq \omega_{2}$ implies $X\left(\omega_{1}\right) \leq X\left(\omega_{2}\right)$.

FKG inequality

- An event $A \subset \Omega$ is increasing if $\omega_{1} \leq \omega_{2}$ (i.e., $\omega_{1}(e) \leq \omega_{2}(e)$ for all $e \in \mathbb{E}^{d}$) and $\omega_{1} \in A$ together imply $\omega_{2} \in A$.
- A random variable X is increasing if $\omega_{1} \leq \omega_{2}$ implies $X\left(\omega_{1}\right) \leq X\left(\omega_{2}\right)$.
- FKG Inequality: $\mathbb{E}_{p}(X Y) \geq \mathbb{E}_{p}(X) \mathbb{E}_{p}(Y)$ for increasing random variables X and Y.

FKG inequality

- An event $A \subset \Omega$ is increasing if $\omega_{1} \leq \omega_{2}$ (i.e., $\omega_{1}(e) \leq \omega_{2}(e)$ for all $e \in \mathbb{E}^{d}$) and $\omega_{1} \in A$ together imply $\omega_{2} \in A$.
- A random variable X is increasing if $\omega_{1} \leq \omega_{2}$ implies $X\left(\omega_{1}\right) \leq X\left(\omega_{2}\right)$.
- FKG Inequality: $\mathbb{E}_{p}(X Y) \geq \mathbb{E}_{p}(X) \mathbb{E}_{p}(Y)$ for increasing random variables X and Y.
- FKG Inequality: $P_{p}(A \cap B) \geq P_{p}(A) P_{p}(B)$ for increasing events A and B.

FKG inequality

- An event $A \subset \Omega$ is increasing if $\omega_{1} \leq \omega_{2}$ (i.e., $\omega_{1}(e) \leq \omega_{2}(e)$ for all $e \in \mathbb{E}^{d}$) and $\omega_{1} \in A$ together imply $\omega_{2} \in A$.
- A random variable X is increasing if $\omega_{1} \leq \omega_{2}$ implies $X\left(\omega_{1}\right) \leq X\left(\omega_{2}\right)$.
- FKG Inequality: $\mathbb{E}_{p}(X Y) \geq \mathbb{E}_{p}(X) \mathbb{E}_{p}(Y)$ for increasing random variables X and Y.
- FKG Inequality: $P_{p}(A \cap B) \geq P_{p}(A) P_{p}(B)$ for increasing events A and B.
- Proof: Simple induction applies if random variables depend on finitely many edges.

FKG inequality

- An event $A \subset \Omega$ is increasing if $\omega_{1} \leq \omega_{2}$ (i.e., $\omega_{1}(e) \leq \omega_{2}(e)$ for all $e \in \mathbb{E}^{d}$) and $\omega_{1} \in A$ together imply $\omega_{2} \in A$.
- A random variable X is increasing if $\omega_{1} \leq \omega_{2}$ implies $X\left(\omega_{1}\right) \leq X\left(\omega_{2}\right)$.
- FKG Inequality: $\mathbb{E}_{p}(X Y) \geq \mathbb{E}_{p}(X) \mathbb{E}_{p}(Y)$ for increasing random variables X and Y.
- FKG Inequality: $P_{p}(A \cap B) \geq P_{p}(A) P_{p}(B)$ for increasing events A and B.
- Proof: Simple induction applies if random variables depend on finitely many edges.
- Proof: More generally, let X_{n} and Y_{n} be conditional expectations given first n edges in enumeration of edges. Then $X_{n} \rightarrow X$ and $Y_{n} \rightarrow Y$ a.s. by martingale convergence (and in $L^{2}\left(P_{p}\right)$). Take limits.

BK inequality

- Say increasing events A and B happen disjointly if we can write $\omega=\omega_{1}+\omega_{2}$ where $\omega_{1} \in A$ and $\omega_{2} \in B$.

BK inequality

- Say increasing events A and B happen disjointly if we can write $\omega=\omega_{1}+\omega_{2}$ where $\omega_{1} \in A$ and $\omega_{2} \in B$.
- BK inequality says that the probability that A and B occur disjointly is most $P(A) P(B)$.

Can't have both infinite cluster and dual cluster in \mathbb{Z}^{2}

- A simple geometric argument due to Zhang shows that we cannot have both an infinite cluster and an infinite dual cluster with P_{p} positive probability when $d=2$.

Can't have both infinite cluster and dual cluster in \mathbb{Z}^{2}

- A simple geometric argument due to Zhang shows that we cannot have both an infinite cluster and an infinite dual cluster with P_{p} positive probability when $d=2$.
- If we did, then by FKG and symmetry, we would have a high probability of having a path going from each of top and bottom of a box to infinity, and a dual path going from each of left and right side of box to infinity. This implies there has to be either more than one infinite cluster or more than one infinite dual cluster.

Can't have both infinite cluster and dual cluster in \mathbb{Z}^{2}

- A simple geometric argument due to Zhang shows that we cannot have both an infinite cluster and an infinite dual cluster with P_{p} positive probability when $d=2$.
- If we did, then by FKG and symmetry, we would have a high probability of having a path going from each of top and bottom of a box to infinity, and a dual path going from each of left and right side of box to infinity. This implies there has to be either more than one infinite cluster or more than one infinite dual cluster.
- In particular, symmetry implies that a.s. we have no infinite cluster when $p=1 / 2$.

Can't have both infinite cluster and dual cluster in \mathbb{Z}^{2}

- A simple geometric argument due to Zhang shows that we cannot have both an infinite cluster and an infinite dual cluster with P_{p} positive probability when $d=2$.
- If we did, then by FKG and symmetry, we would have a high probability of having a path going from each of top and bottom of a box to infinity, and a dual path going from each of left and right side of box to infinity. This implies there has to be either more than one infinite cluster or more than one infinite dual cluster.
- In particular, symmetry implies that a.s. we have no infinite cluster when $p=1 / 2$.
- But this doesn't quite prove $p=p_{c}$. Could there be a range of p values for which there is neither an infinite cluster nor an infinite dual cluster?

