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Bond percolation definition

I Origins: Broadbent (1954), Broadbent/Hammersley (1957).

I Textbooks (on course reserve): Percolation by Grimmett
(2nd ed., 1999). Percolation by Bollobás and Riordan (2006).

I Model: Toss independent p coin to declare each edge in a
grid (an induced subgraph of Zd) open or closed.

I Percolation: Is there an open path from origin to boundary
of fixed large box? If water “percolates” through the medium
along open edges, does origin “get wet” when box is
submerged in water?

I Infinite percolation: Can infinitely many vertices be reached
by open paths from origin? (Is open cluster C = C (0)
containing 0 infinite?)

I Percolation probability: Write θ = θ(p) = Pp(|C | =∞).
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Formal definitions

I Ed is set of edges of Zd

I Ω =
∏

e∈Ed{0, 1} is the set of functions ω : Ed → {0, 1}.
I F is the σ-algebra generated by finite dimensional cylinders of

Ω and Pp is the product measure on (Ω,F).
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What kind of function is θ : [0, 1]→ [0, 1]?

I Endpoints: θ(0) = 0 and θ(1) = 1.

I Monotonicity: θ is non-decreasing—in fact, strictly
increasing. (Assign uniform member of [0, 1] to each edge,
use cute coupling trick.)

I Upper semi-continuity: θ(p) = 1−
∑∞

n=1 Pp(|C | = n), and
limit of decreasing sequence of continuous functions is upper
semicontinuous.

I pc lower bound: Write λ(d) := limn→∞ σ(n)1/n where σ(n)
is number of self-avoiding paths of length n beginning at the
origin. Then pc(d) ≥ 1/λ(d).

I pc upper bound: Peierls argument shows pc(2) < 1− 1/λ(2)
(hence pc(d) < 1− 1/λ(2) when d ≥ 2).
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Zero-one laws

I Kolmogorov zero-one law: Any tail measurable event (i.e.,
event whose occurrence is unaffected by changing finitely
many edges) has probability zero or one.

I Consequence: Probability ψ(p) that exists infinite cluster
somewhere is 0 if θ(p) = 0 and 1 if θ(p) > 0.

I In particular have at least one infinite cluster a.s. if p > pc ,
and a.s. don’t if p < pc .

I Lévy zero-one law: Conditional expectation of

I Translation invariance zero-one law: Any translation
invariant event has probability zero or one.

I Consequence: For any p, the number of infinite clusters is
almost surely in {0, 1,∞}.

I Burton-Keane argument (next slide): The number of
infinite clusters is a.s. not ∞, for any p.
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I Lévy zero-one law: Conditional expectation of

I Translation invariance zero-one law: Any translation
invariant event has probability zero or one.

I Consequence: For any p, the number of infinite clusters is
almost surely in {0, 1,∞}.

I Burton-Keane argument (next slide): The number of
infinite clusters is a.s. not ∞, for any p.

18.177 Lecture 1



Overview
FKG inequality
More to come

Zero-one laws

I Kolmogorov zero-one law: Any tail measurable event (i.e.,
event whose occurrence is unaffected by changing finitely
many edges) has probability zero or one.

I Consequence: Probability ψ(p) that exists infinite cluster
somewhere is 0 if θ(p) = 0 and 1 if θ(p) > 0.

I In particular have at least one infinite cluster a.s. if p > pc ,
and a.s. don’t if p < pc .
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Burton Keane argument

I Call x a trifurcation if it lies in an infinite open cluster, has
exactly three open edges incident into it, and deleting it splits
this infinite cluster into three infinite pieces (no finite pieces)

I If have infinitely many open clusters, have positive probability
that origin is trifurcation.

I Expected number of trifurcations in box [1, n]d grows like nd

time a constant.

I But combinatorial argument shows that the possible number
of trifurcations in the box goes like surface area of the box.

I Conclude that we almost surely don’t have infinitely many
clusters.

18.177 Lecture 1



Overview
FKG inequality
More to come

Burton Keane argument

I Call x a trifurcation if it lies in an infinite open cluster, has
exactly three open edges incident into it, and deleting it splits
this infinite cluster into three infinite pieces (no finite pieces)

I If have infinitely many open clusters, have positive probability
that origin is trifurcation.

I Expected number of trifurcations in box [1, n]d grows like nd

time a constant.

I But combinatorial argument shows that the possible number
of trifurcations in the box goes like surface area of the box.

I Conclude that we almost surely don’t have infinitely many
clusters.

18.177 Lecture 1



Overview
FKG inequality
More to come

Burton Keane argument

I Call x a trifurcation if it lies in an infinite open cluster, has
exactly three open edges incident into it, and deleting it splits
this infinite cluster into three infinite pieces (no finite pieces)

I If have infinitely many open clusters, have positive probability
that origin is trifurcation.

I Expected number of trifurcations in box [1, n]d grows like nd

time a constant.

I But combinatorial argument shows that the possible number
of trifurcations in the box goes like surface area of the box.

I Conclude that we almost surely don’t have infinitely many
clusters.

18.177 Lecture 1



Overview
FKG inequality
More to come

Burton Keane argument

I Call x a trifurcation if it lies in an infinite open cluster, has
exactly three open edges incident into it, and deleting it splits
this infinite cluster into three infinite pieces (no finite pieces)

I If have infinitely many open clusters, have positive probability
that origin is trifurcation.

I Expected number of trifurcations in box [1, n]d grows like nd

time a constant.

I But combinatorial argument shows that the possible number
of trifurcations in the box goes like surface area of the box.

I Conclude that we almost surely don’t have infinitely many
clusters.

18.177 Lecture 1



Overview
FKG inequality
More to come

Burton Keane argument

I Call x a trifurcation if it lies in an infinite open cluster, has
exactly three open edges incident into it, and deleting it splits
this infinite cluster into three infinite pieces (no finite pieces)

I If have infinitely many open clusters, have positive probability
that origin is trifurcation.

I Expected number of trifurcations in box [1, n]d grows like nd

time a constant.

I But combinatorial argument shows that the possible number
of trifurcations in the box goes like surface area of the box.

I Conclude that we almost surely don’t have infinitely many
clusters.

18.177 Lecture 1



Overview
FKG inequality
More to come

Big question

I When p > pc we almost surely have a unique infinite cluster
(with asymptotic density given by θ(p) > 0).

I When p < pc there is almost surely no infinite cluster (and
θ(p) = 0).

I We know that exactly one of the two conclusions above holds
for p = pc .

I Which one?

I Answer is known when d = 2. In this case we have θ(pc) = 0
and pc = 1/2 (a fact that follows from duality, but is not
nearly as obvious as you might think).

I Answer is also known for d ≥ 19. In this case we also have
θ(pc) = 0.

I Unknown when 3 ≤ d ≤ 18, but people seem convinced that
θ(pc) = 0 for all d . Why?
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FKG inequality

I An event A ⊂ Ω is increasing if ω1 ≤ ω2 (i.e., ω1(e) ≤ ω2(e)
for all e ∈ Ed) and ω1 ∈ A together imply ω2 ∈ A.

I A random variable X is increasing if ω1 ≤ ω2 implies
X (ω1) ≤ X (ω2).

I FKG Inequality: Ep(XY ) ≥ Ep(X )Ep(Y ) for increasing
random variables X and Y .

I FKG Inequality: Pp(A ∩ B) ≥ Pp(A)Pp(B) for increasing
events A and B.

I Proof: Simple induction applies if random variables depend
on finitely many edges.

I Proof: More generally, let Xn and Yn be conditional
expectations given first n edges in enumeration of edges.
Then Xn → X and Yn → Y a.s. by martingale convergence
(and in L2(Pp)). Take limits.
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Then Xn → X and Yn → Y a.s. by martingale convergence
(and in L2(Pp)). Take limits.
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I An event A ⊂ Ω is increasing if ω1 ≤ ω2 (i.e., ω1(e) ≤ ω2(e)
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Can’t have both infinite cluster and dual cluster in Z2

I A simple geometric argument due to Zhang shows that we
cannot have both an infinite cluster and an infinite dual
cluster with Pp positive probability when d = 2.

I If we did, then by FKG and symmetry, we would have a high
probability of having a path going from each of top and
bottom of a box to infinity, and a dual path going from each
of left and right side of box to infinity. This implies there has
to be either more than one infinite cluster or more than one
infinite dual cluster.
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More to come

I We will find that whenever p < pc the random variable |C |
has exponentially decaying law.

I We will use this to prove Kesten’s theorem: that pc = 1/2
when d = 2.

I Barsky, Grimmett, Newman: if there is an infinite cluster
when p = pc for any d ≥ 3 then it has to be fairly strange.
There is no infinite cluster on any half space when p = pc , so
any path to infinity has to oscillate back and forth a lot.
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