MATH 177 PROBLEM SET 2

A. Read the Wikipedia article on Ito's formula (Ito's lemma). It states that if $dX_t = \sigma_t dB_t + \mu_t dt$ and f is a twice differentiable real function of two variables, then

$$df(t, X_t) = \left(\frac{\partial f}{\partial t} + \mu_t \frac{\partial f}{\partial x} + \frac{\sigma_t^2}{2} \frac{\partial^2 f}{\partial x^2}\right) dt + \sigma_t \frac{\partial f}{\partial x} dB_t. \tag{1}$$

Answer the following using the Ito formalism:

- 1. Compute $d(B_t)^2$ and $d(B_t^2t^3)$ and de^{B_t} .
- 2. Find the constant a for which $e^{\gamma B_t at}$ is a martingale. Check your result by applying Ito's formula and showing that the drift term (the dt term) vanishes. Check also directly that the expectation at time t = 1 is 1.
- 3. Find an a for which $X_t = B_t^2 at$ is a martingale. Find an adapted process s = s(t), an increasing function of t, such that $X_{s(t)}$ is a Brownian motion.

B. Suppose that $dX_t = \sigma_t dB_t + \mu_t dt$, where σ is ordinary Brownian motion but X_t , σ_t , and μ_t are complex valued. Suppose that $f: \mathbb{C} \to \mathbb{C}$ is analytic. Show (e.g., using Ito's formula for real-valued functions f of higher dimensional drift-diffusion processes, as on the Wikipedia page) that

$$df(X_t) = f'(X_t)dX_t + \frac{\sigma_t^2}{2}f''(X_t)dt,$$

where f' and f'' are complex derivatives.

C. Let

$$dg_t(z) = \frac{2}{(g_t(z) - W_t)} dt$$

be the usual Loewner flow and write $f_t(z) = g_t(z) - W_t$. Fix $x \in \mathbb{H}$ and compute the following (with all the Ito's formula details).

- 1. $df_t(z)$
- 2. $d \log f_t(z)$
- 3. $df'_t(z)$
- 4. $d \log f_t'(z)$

Do the same in the case of reverse flow, where $dg_t = \frac{-2}{(g_t(z)-W_t)}dt$. In each case, find a linear combination $h_t(z)$ of $\log f_t(z)$ and $\log f_t'(z)$ which is a local martingale. Suppose we write $a_t = g_t(-1)$ and fix $\alpha \in \mathbb{R}$. Can you define a process W_t that makes $\log(g_t(z) - a_t) + h_t(z)$ a local martingale for each fixed $z \in \mathbb{H}$?

- D. Let α be a complex number in the upper half plane, and consider the continuous path $f(s) = \alpha s$. Compute explicitly the half-plane capacity f([0,s]) and the conformal map $\Phi: \mathbb{H} \setminus f([0,s])$ to \mathbb{H} , normalized so that $\lim_{z\to\infty} \Phi(z) z = 0$. Verify Loewner's theorem in this setting.
- E. Read the (short) Wikipedia article on Bessel processes and verify the claims about the path being recurrent, transient, neighborhood recurrent depending on dimension. You can consult Revuz-Yor (or another source) if needed.
- F. Read the St. Flour lecture notes by Wendelin Werner and write a one-paragraph summary of each of your two favorite sections.