18.175: Lecture 8

Weak laws and
moment-generating/characteristic functions

Scott Sheffield

MIT
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Moment generating functions
Weak law of large numbers: Markov/Chebyshev approach

Weak law of large numbers: characteristic function approach
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Moment generating functions

> Let X be a random variable.

» The moment generating function of X is defined by
M(t) = Mx(t) := E[e¥].

» When X is discrete, can write M(t) = >, e™px(x). So M(t)
is a weighted average of countably many exponential
functions.
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Moment generating functions

> Let X be a random variable.

» The moment generating function of X is defined by
M(t) = Mx(t) := E[e¥].

» When X is discrete, can write M(t) = >, e™px(x). So M(t)
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functions.
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functions.
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Moment generating functions

> Let X be a random variable.

» The moment generating function of X is defined by
M(t) = Mx(t) := E[e¥].

» When X is discrete, can write M(t) = >, e™px(x). So M(t)
is a weighted average of countably many exponential

functions.

» When X is continuous, can write M(t) = [*_e™f(x)dx. So
M(t) is a weighted average of a continuum of exponential
functions.

» We always have M(0) = 1.
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Moment generating functions

> Let X be a random variable.

» The moment generating function of X is defined by
M(t) = Mx(t) := E[e¥].

» When X is discrete, can write M(t) = >, e™px(x). So M(t)
is a weighted average of countably many exponential

functions.

» When X is continuous, can write M(t) = [*_e™f(x)dx. So
M(t) is a weighted average of a continuum of exponential
functions.

» We always have M(0) = 1.

» If b>0and t > 0 then
E[etX] > E[etmin{X,b}] > P{X > b}etb_
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Moment generating functions

> Let X be a random variable.

» The moment generating function of X is defined by
M(t) = Mx(t) := E[e¥].

» When X is discrete, can write M(t) = >, e™px(x). So M(t)
is a weighted average of countably many exponential

functions.

» When X is continuous, can write M(t) = [*_e™f(x)dx. So
M(t) is a weighted average of a continuum of exponential
functions.

» We always have M(0) = 1.

» If b>0and t > 0 then
E[etX] > E[etmin{X,b}] > P{X > b}etb_

» If X takes both positive and negative values with positive
probability then M(t) grows at least exponentially fast in ||
as [t] = 0.
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Moment generating functions actually generate moments

» Let X be a random variable and M(t) = E[e*X].
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Moment generating functions actually generate moments

» Let X be a random variable and M(t) = E[e*X].
> Then M'(t) = 4 E[eX] = E[ £ ()] = E[Xe™].
» in particular, M’'(0) = E[X].
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Moment generating functions actually generate moments

Let X be a random variable and M(t) = E[eX].
Then M'(t) = S E[eX] = E[4(e™)] = E[Xe®™X].
in particular, M’(0) = E[X].

Also M"(t) = SM'(t) = LE[XetX] = E[X2eX].

v

v

v

v
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Moment generating functions actually generate moments

» Let X be a random variable and M(t) = E[e*X].

> Then M'(t) = 4 E[eX] = E[ £ ()] = E[Xe™].

» in particular, M’'(0) = E[X].

> Also M"(t) = S M'(t) = LE[XeX] = E[X2%eX].

» So M"(0) = E[X?]. Same argument gives that nth derivative
of M at zero is E[X"].
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Moment generating functions actually generate moments

» Let X be a random variable and M(t) = E[e*X].

> Then M'(t) = 4 E[eX] = E[ £ ()] = E[Xe™].

» in particular, M’'(0) = E[X].

> Also M"(t) = S M'(t) = LE[XeX] = E[X2%eX].

» So M"(0) = E[X?]. Same argument gives that nth derivative
of M at zero is E[X"].

> Interesting: knowing all of the derivatives of M at a single
point tells you the moments E[X*] for all integer k > 0.
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Moment generating functions actually generate moments

» Let X be a random variable and M(t) = E[e*X].

> Then M'(t) = 4 E[eX] = E[ £ ()] = E[Xe™].

» in particular, M’'(0) = E[X].

> Also M"(t) = S M'(t) = LE[XeX] = E[X2%eX].

» So M"(0) = E[X?]. Same argument gives that nth derivative
of M at zero is E[X"].

> Interesting: knowing all of the derivatives of M at a single
point tells you the moments E[X*] for all integer k > 0.

> Another way to think of this: write
2y2 3y3
eX =14+ etX+ 55+ 504
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Moment generating functions actually generate moments

» Let X be a random variable and M(t) = E[e*X].

> Then M'(t) = 4 E[eX] = E[ £ ()] = E[Xe™].

» in particular, M’'(0) = E[X].

> Also M"(t) = S M'(t) = LE[XeX] = E[X2%eX].

» So M"(0) = E[X?]. Same argument gives that nth derivative
of M at zero is E[X"].

> Interesting: knowing all of the derivatives of M at a single
point tells you the moments E[X*] for all integer k > 0.

> Another way to think of this: write
eX =14 tX + 8¢ L 28 4
» Taking expectatlons glves
E[eX] =1+ tmy + t2’?2 + t3m3 + ..., where my is the kth
moment. The kth derivative at Z€ero is my.
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Moment generating functions for independent sums

» Let X and Y be independent random variables and
Z=X+Y.
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Moment generating functions for independent sums

» Let X and Y be independent random variables and
Z=X+Y.

» Write the moment generating functions as Mx(t) = E[etX]
and My(t) = E[etY] and Mz(t) = E[e%*].
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Moment generating functions for independent sums

» Let X and Y be independent random variables and
Z=X+Y.

» Write the moment generating functions as Mx(t) = E[etX]
and My (t) = E[etY] and Mz(t) = E[et?].

> If you knew Mx and My, could you compute M7?
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Moment generating functions for independent sums

>

Let X and Y be independent random variables and
Z=X+Y.

Write the moment generating functions as Mx(t) = E[e*X]
and My (t) = E[etY] and Mz(t) = E[et?].

If you knew Mx and My, could you compute M7?

By independence, Mz(t) = E[e!X+Y)] = E[eXetY] =
E[e™X]E[etY] = Mx(t)My(t) for all t.

v

v

v
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Moment generating functions for independent sums

» Let X and Y be independent random variables and
Z=X+Y.

» Write the moment generating functions as Mx(t) = E[etX]
and My (t) = E[etY] and Mz(t) = E[et?].

> If you knew Mx and My, could you compute M7?

» By independence, Mz(t) = E[e!X*+Y)] = E[eXetY] =
E[e™X]E[etY] = Mx(t)My(t) for all t.

> In other words, adding independent random variables
corresponds to multiplying moment generating functions.
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Moment generating functions for sums of i.i.d. random

variables

» We showed that if Z =X+ Y and X and Y are independent,
then Mz(t) = Mx(t)/\/ly(t)
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Moment generating functions for sums of i.i.d. random

variables

» We showed that if Z =X+ Y and X and Y are independent,
then Mz(t) = Mx(t)/\/ly(t)

> If X1...X, are i.i.d. copies of X and Z = X1 + ...+ X, then
what is M>?
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Moment generating functions for sums of i.i.d. random

variables

» We showed that if Z =X+ Y and X and Y are independent,
then Mz(t) = Mx(t)/\/ly(t)

> If X1...X, are i.i.d. copies of X and Z = X1 + ...+ X, then
what is M>?

» Answer: Mg. Follows by repeatedly applying formula above.
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Moment generating functions for sums of i.i.d. random

variables

» We showed that if Z =X+ Y and X and Y are independent,
then Mz(t) = Mx(t)/\/ly(t)

> If X1...X, are i.i.d. copies of X and Z = X1 + ...+ X, then
what is M>?

» Answer: Mg. Follows by repeatedly applying formula above.

» This a big reason for studying moment generating functions.
It helps us understand what happens when we sum up a lot of
independent copies of the same random variable.
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Other observations

» |If Z = aX then can | use Mx to determine M,?
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Other observations

» |If Z = aX then can | use Mx to determine M,?
> Answer: Yes. Mz(t) = E[e’] = E[e??X] = Mx(at).
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Other observations

» |If Z = aX then can | use Mx to determine M,?
> Answer: Yes. Mz(t) = E[e’] = E[e??X] = Mx(at).
» If Z =X + b then can | use Mx to determine M7
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Other observations

» |If Z = aX then can | use Mx to determine M,?
Answer: Yes. Mz(t) = E[e??] = E[et®X] = Mx(at).

If Z= X+ b then can | use Mx to determine M;?
Answer: Yes. Mz(t) = E[e??] = E[e™*+Pt] = ePt Mx(t).

v

v

v
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Other observations

» |If Z = aX then can | use Mx to determine M,?

Answer: Yes. Mz(t) = E[e??] = E[et®X] = Mx(at).

If Z= X+ b then can | use Mx to determine M;?
Answer: Yes. Mz(t) = E[e??] = E[e™*+Pt] = ePt Mx(t).
Latter answer is the special case of Mz(t) = Mx(t)My(t)
where Y is the constant random variable b.

v

v

v

v
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Existence issues

» Seems that unless fx(x) decays superexponentially as x tends
to infinity, we won't have Mx(t) defined for all t.

18 175 l ecture 8



Existence issues

» Seems that unless fx(x) decays superexponentially as x tends
to infinity, we won't have Mx(t) defined for all t.

» What is M if X is standard Cauchy, so that fx(x) = m

18 175 l ecture 8



Existence issues

» Seems that unless fx(x) decays superexponentially as x tends
to infinity, we won't have Mx(t) defined for all t.

» What is M if X is standard Cauchy, so that fx(x) = m

> Answer: Mx(0) =1 (as is true for any X) but otherwise
Mx (t) is infinite for all t # 0.
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Existence issues

» Seems that unless fx(x) decays superexponentially as x tends
to infinity, we won't have Mx(t) defined for all t.

» What is M if X is standard Cauchy, so that fx(x) =

m(1+x2)"
> Answer: Mx(0) =1 (as is true for any X) but otherwise
Mx (t) is infinite for all t # 0.

> Informal statement: moment generating functions are not
defined for distributions with fat tails.
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Moment generating functions
Weak law of large numbers: Markov/Chebyshev approach

Weak law of large numbers: characteristic function approach
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Weak law of large numbers: Markov/Chebyshev approach
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Markov's and Chebyshev's inequalities

» Markov’s inequality: Let X be non-negative random
variable. Fix a > 0. Then P{X > a} < EX],

18 175 l ecture 8



Markov's and Chebyshev's inequalities

» Markov’s inequality: Let X be non-negative random
variable. Fix a > 0. Then P{X > a} < EX],
» Proof: Consider a random variable Y defined by
X >
Y = ? - a. Since X > Y with probability one, it
0 X<a
follows that E[X] > E[Y] = aP{X > a}. Divide both sides by

a to get Markov's inequality.
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Markov's and Chebyshev's inequalities

» Markov’s inequality: Let X be non-negative random
variable. Fix a > 0. Then P{X > a} < EX],

» Proof: Consider a random variable Y defined by

X >
Y = ? - a. Since X > Y with probability one, it
0 X<a
follows that E[X] > E[Y] = aP{X > a}. Divide both sides by
a to get Markov's inequality.

» Chebyshev’s inequality: If X has finite mean i, variance o2,

and k > 0 then

2
g
PUX — il > k} < 7.
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Markov's and Chebyshev's inequalities

» Markov’s inequality: Let X be non-negative random
variable. Fix a > 0. Then P{X > a} < EX],

» Proof: Consider a random variable Y defined by

X >
Y = ? - a. Since X > Y with probability one, it
0 X<a

follows that E[X] > E[Y] = aP{X > a}. Divide both sides by
a to get Markov's inequality.

» Chebyshev’s inequality: If X has finite mean i, variance o2,

and k > 0 then
o2
P{\X—M\Zk}ﬁp-

» Proof: Note that (X — p)? is a non-negative random variable
and P{|X — p| > k} = P{(X — p)?> > k?}. Now apply
Markov's inequality with a = k2.
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Markov and Chebyshev: rough idea

» Markov’s inequality: Let X be non-negative random variable
with finite mean. Fix a constant a > 0. Then
P{X > a} < X,
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Markov and Chebyshev: rough idea

» Markov’s inequality: Let X be non-negative random variable
with finite mear{m.]Fix a constant a > 0. Then
E[X
P{X >a} < =
» Chebyshev’s inequality: If X has finite mean i, variance o2,
and k > 0 then

2
g
PX —ul 2 k} < 75.
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Markov and Chebyshev: rough idea

» Markov’s inequality: Let X be non-negative random variable
with finite mear{m.]Fix a constant a > 0. Then
E[X
P{X >a} < =
» Chebyshev’s inequality: If X has finite mean i, variance o2,
and k > 0 then

o2
PUX — 2 K} < 75,
> Inequalities allow us to deduce limited information about a

distribution when we know only the mean (Markov) or the
mean and variance (Chebyshev).
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Markov and Chebyshev: rough idea

» Markov’s inequality: Let X be non-negative random variable
with finite mear{m.]Fix a constant a > 0. Then
E[X
P{X >a} < =
» Chebyshev’s inequality: If X has finite mean i, variance o2,
and k > 0 then

2
g
PX —ul 2 k} < 75.

> Inequalities allow us to deduce limited information about a
distribution when we know only the mean (Markov) or the
mean and variance (Chebyshev).

» Markov: if E[X] is small, then it is not too likely that X is
large.
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Markov and Chebyshev: rough idea

» Markov’s inequality: Let X be non-negative random variable
with finite mear{m.]Fix a constant a > 0. Then
E[X
P{X >a} < =
» Chebyshev’s inequality: If X has finite mean i, variance o2,
and k > 0 then

2
g
PX —ul 2 k} < 75.

> Inequalities allow us to deduce limited information about a
distribution when we know only the mean (Markov) or the
mean and variance (Chebyshev).

» Markov: if E[X] is small, then it is not too likely that X is
large.

» Chebyshev: if 02> = Var[X] is small, then it is not too likely
that X is far from its mean.
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Statement of weak law of large numbers

» Suppose X; are i.i.d. random variables with mean p.
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Statement of weak law of large numbers

» Suppose X; are i.i.d. random variables with mean p.

» Then the value A, := w is called the empirical
average of the first n trials.
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» Then the value A, := w is called the empirical
average of the first n trials.

> We'd guess that when n is large, A, is typically close to p.
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Statement of weak law of large numbers

» Suppose X; are i.i.d. random variables with mean p.

» Then the value A, := w is called the empirical
average of the first n trials.

> We'd guess that when n is large, A, is typically close to p.

» Indeed, weak law of large numbers states that for all ¢ > 0
we have lim,_oo P{|As — u| > €} = 0.
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Statement of weak law of large numbers

» Suppose X; are i.i.d. random variables with mean p.

» Then the value A, := w is called the empirical
average of the first n trials.

> We'd guess that when n is large, A, is typically close to p.

» Indeed, weak law of large numbers states that for all ¢ > 0
we have lim,_o P{|An — | > €} =0.

» Example: as n tends to infinity, the probability of seeing more
than .50001n heads in n fair coin tosses tends to zero.
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Proof of weak law of large numbers in finite variance case

» As above, let X; be i.i.d. random variables with mean p and
write A, := w

18 175 lecture 8



Proof of weak law of large numbers in finite variance case

» As above, let X; be i.i.d. random variables with mean p and
write A, := w

» By additivity of expectation, E[A,] = u.
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Proof of weak law of large numbers in finite variance case

» As above, let X; be i.i.d. random variables with mean p and
write A, := w

» By additivity of expectation, E[A,] = u.
» Similarly, Var[A,] = no? — a2/n.

n
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Proof of weak law of large numbers in finite variance case

v

As above, let X; be i.i.d. random variables with mean y and
write A, := w

v

By additivity of expectation, E[A,] = u.
Similarly, Var[A,] = ”n%z =a?/n.
By Chebyshev P{|A,, —pl > e} < V%[ZA"] — o2

nez”

v

v
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Proof of weak law of large numbers in finite variance case

» As above, let X; be i.i.d. random variables with mean p and
write A, := w

» By additivity of expectation, E[A,] = u.
» Similarly, Var[A,] = no? — a2/n.

n2

> By Chebyshev P{|A, — u| > ¢} < LIZAI — 2

nez”
» No matter how small € is, RHS will tend to zero as n gets
large.

18 175 l ecture 8



L? weak law of large numbers

» Say X; and X; are uncorrelated if E(X;X;) = EX;EX;.
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L? weak law of large numbers

» Say X; and X; are uncorrelated if E(X;X;) = EX;EX;.

» Chebyshev/Markov argument works whenever variables are
uncorrelated (does not actually require independence).
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What else can you do with just variance bounds?

» Having “almost uncorrelated” X; is sometimes enough: just
need variance of A, to go to zero.
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What else can you do with just variance bounds?

» Having “almost uncorrelated” X; is sometimes enough: just
need variance of A, to go to zero.

» Toss an bins into n balls. How many bins are filled?
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What else can you do with just variance bounds?

» Having “almost uncorrelated” X; is sometimes enough: just
need variance of A, to go to zero.

» Toss an bins into n balls. How many bins are filled?

» When n is large, the number of balls in the first bin is
approximately a Poisson random variable with expectation «.
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What else can you do with just variance bounds?

» Having “almost uncorrelated” X; is sometimes enough: just
need variance of A, to go to zero.

» Toss an bins into n balls. How many bins are filled?

» When n is large, the number of balls in the first bin is
approximately a Poisson random variable with expectation «.

» Probability first bin contains no ball is (1 —1/n)*" ~ e™.
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What else can you do with just variance bounds?

» Having “almost uncorrelated” X; is sometimes enough: just
need variance of A, to go to zero.

» Toss an bins into n balls. How many bins are filled?

» When n is large, the number of balls in the first bin is
approximately a Poisson random variable with expectation «.
» Probability first bin contains no ball is (1 —1/n)*" ~ e™.

» We can explicitly compute variance of the number of bins
with no balls. Allows us to show that fraction of bins with no

balls concentrates about its expectation, which is e,
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How do you extend to random variables without variance?

> Assume X, are i.i.d. non-negative instances of random
variable X with finite mean. Can one prove law of large
numbers for these?
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How do you extend to random variables without variance?

> Assume X, are i.i.d. non-negative instances of random

variable X with finite mean. Can one prove law of large
numbers for these?

» Try truncating. Fix large N and write A= X1x~y and
B = X1x<n so that X = A+ B. Choose N so that EB is
very small. Law of large numbers holds for A.
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Moment generating functions
Weak law of large numbers: Markov/Chebyshev approach

Weak law of large numbers: characteristic function approach
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Weak law of large numbers: characteristic function approach
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Extent of weak law

» Question: does the weak law of large numbers apply no
matter what the probability distribution for X is?
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Extent of weak law

» Question: does the weak law of large numbers apply no

matter what the probability distribution for X is?

> Is it always the case that if we define A, := X1+X2tatXn thep

A, is typically close to some fixed value when n is large?
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Extent of weak law

» Question: does the weak law of large numbers apply no

matter what the probability distribution for X is?
> Is it always the case that if we define A, := X1+X2tatXn thep
A, is typically close to some fixed value when n is large?

» What if X is Cauchy?
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Extent of weak law

Question: does the weak law of large numbers apply no

matter what the probability distribution for X is?

— X1+X2++Xn then
n

v

v

Is it always the case that if we define A, :
A, is typically close to some fixed value when n is large?
What if X is Cauchy?

In this strange and delightful case A, actually has the same
probability distribution as X.

v

v
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Extent of weak law

Question: does the weak law of large numbers apply no

matter what the probability distribution for X is?

— X1+X2++Xn then
n

v

> Is it always the case that if we define A, :
A, is typically close to some fixed value when n is large?

» What if X is Cauchy?

> In this strange and delightful case A, actually has the same
probability distribution as X.

» In particular, the A, are not tightly concentrated around any
particular value even when n is very large.
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Extent of weak law

Question: does the weak law of large numbers apply no

matter what the probability distribution for X is?

— X1+X2++Xn then
n

v

> Is it always the case that if we define A, :
A, is typically close to some fixed value when n is large?

» What if X is Cauchy?

> In this strange and delightful case A, actually has the same
probability distribution as X.

» In particular, the A, are not tightly concentrated around any
particular value even when n is very large.

» But weak law holds as long as E[|X]] is finite, so that y is
well defined.
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Extent of weak law

v

Question: does the weak law of large numbers apply no
matter what the probability distribution for X is?

Is it always the case that if we define A, := X1+X2tatXn thep

A, is typically close to some fixed value when n is large?
What if X is Cauchy?

In this strange and delightful case A, actually has the same
probability distribution as X.

In particular, the A, are not tightly concentrated around any
particular value even when n is very large.

But weak law holds as long as E[|X]|] is finite, so that y is
well defined.

One standard proof uses characteristic functions.
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Characteristic functions

» Let X be a random variable.
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Characteristic functions

» Let X be a random variable.

» The characteristic function of X is defined by
B(t) = ¢x(t) := E[e™X]. Like M(t) except with i thrown in.
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Characteristic functions

» Let X be a random variable.

» The characteristic function of X is defined by
B(t) = ¢x(t) := E[e™X]. Like M(t) except with i thrown in.
» Recall that by definition et = cos(t) + isin(t).
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Characteristic functions

Let X be a random variable.

v

v

The characteristic function of X is defined by

B(t) = ¢x(t) := E[e™X]. Like M(t) except with i thrown in.
Recall that by definition et = cos(t) + isin(t).
Characteristic functions are similar to moment generating
functions in some ways.

v

v
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Characteristic functions

> Let X be a random variable.
» The characteristic function of X is defined by
#(t) = dx(t) := E[e™X]. Like M(t) except with i thrown in.
» Recall that by definition e’ = cos(t) + isin(t).
» Characteristic functions are similar to moment generating
functions in some ways.

> For example, ¢px+y = ¢xdy, just as Mxy = MxMy, if X
and Y are independent.
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Characteristic functions

> Let X be a random variable.
» The characteristic function of X is defined by
#(t) = dx(t) := E[e™X]. Like M(t) except with i thrown in.
» Recall that by definition e’ = cos(t) + isin(t).
» Characteristic functions are similar to moment generating
functions in some ways.

> For example, ¢px+y = ¢xdy, just as Mxy = MxMy, if X
and Y are independent.

> And ¢.x(t) = ¢x(at) just as Max(t) = Mx(at).
» And if X has an mth moment then E[X™]| = i’"gbg(m)(O).

» But characteristic functions have an advantage: they are well
defined at all t for all random variables X.
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Continuity theorems

» Let X be random variable, X, a sequence of random variables.
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Continuity theorems
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» Say X, converge in distribution or converge in law to X if
limp—oo Fx,(x) = Fx(x) at all x € R at which Fx is
continuous.
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variable that is equal to p with probability one).

18 175 l ecture 8



Continuity theorems

» Let X be random variable, X, a sequence of random variables.

» Say X, converge in distribution or converge in law to X if
limp—oo Fx,(x) = Fx(x) at all x € R at which Fx is
continuous.

» The weak law of large numbers can be rephrased as the
statement that A, converges in law to u (i.e., to the random
variable that is equal to p with probability one).

» Lévy’s continuity theorem (coming later): if

Jim_ Px,(t) = ¢x(t)

for all t, then X,, converge in law to X.

18 175 l ecture 8



Continuity theorems

» Let X be random variable, X, a sequence of random variables.

» Say X, converge in distribution or converge in law to X if
limp—oo Fx,(x) = Fx(x) at all x € R at which Fx is
continuous.

» The weak law of large numbers can be rephrased as the
statement that A, converges in law to u (i.e., to the random
variable that is equal to p with probability one).

» Lévy’s continuity theorem (coming later): if

lim_ Px,(t) = ¢x(t)

for all t, then X,, converge in law to X.

» By this theorem, we can prove weak law of large numbers by
showing lim,—o0 4, (t) = ¢,(t) = e for all t. When p =0,
amounts to showing lim,_, ¢a,(t) =1 for all ¢.

» Moment generating analog: if moment generating
functions My, (t) are defined for all t and n and, for all t,
limp— 00 Mx, (t) = Mx(t), then X, converge in law to X.
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Proof sketch for weak law of large numbers, finite mean

case

» As above, let X; be i.i.d. instances of random variable X with
mean zero. Write A, := w Weak law of large
numbers holds for i.i.d. instances of X if and only if it holds
for i.i.d. instances of X — u. Thus it suffices to prove the
weak law in the mean zero case.
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» As above, let X; be i.i.d. instances of random variable X with
mean zero. Write A, := w Weak law of large
numbers holds for i.i.d. instances of X if and only if it holds
for i.i.d. instances of X — u. Thus it suffices to prove the
weak law in the mean zero case.
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> Since E[X] =0, we have ¢ (0) = E[£e™];—o = iE[X] = 0.

> Write g(t) = log ¢x(t) so ¢x(t) = e8(1). Then g(0) = 0 and
(by chain rule) g’(0) = lim._o M = lime_o0 @ =0.

> Now ¢a,(t) = dx(t/n)" = e™(t/). Since g(0) = g'(0) = 0
we have lim,_o ng(t/n) = limp_ 00 £8%) — 0/if ¢ is fixed.

T
Thus lim,_o e"€t/" =1 for all ¢.

> By Lévy's continuity theorem, the A, converge in law to 0
(i.e., to the random variable that is 0 with probability one).
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