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Recall expectation definition

I Given probability space (Ω,F ,P) and random variable X (i.e.,
measurable function X from Ω to R), we write EX =

∫
XdP.

I Expectation is always defined if X ≥ 0 a.s., or if integrals of
max{X , 0} and min{X , 0} are separately finite.
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Strong law of large numbers

I Theorem (strong law): If X1,X2, . . . are i.i.d. real-valued
random variables with expectation m and An := n−1

∑n
i=1 Xi

are the empirical means then limn→∞ An = m almost surely.

I What does i.i.d. mean?

I Answer: independent and identically distributed.

I Okay, but what does independent mean in this context? And
how do you even define an infinite sequence of independent
random variables? Is that even possible? It’s kind of an empty
theorem if it turns out that the hypotheses are never satisfied.
And by the way, what measure space and σ-algebra are we
using? And is the event that the limit exists even measurable
in this σ-algebra? Because if it’s not, what does it mean to
say it has probability one? Also, why do they call it the strong
law? Is there also a weak law?
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Independence of two events/random variables/σ-algebras

I Probability space is triple (Ω,F ,P) where Ω is sample
space, F is set of events (the σ-algebra) and P : F → [0, 1] is
the probability function.

I Two events A and B are independent if
P(A ∩ B) = P(A)P(B).

I Random variables X and Y are independent if for all
C ,D ∈ R, we have
P(X ∈ C ,Y ∈ D) = P(X ∈ C )P(Y ∈ D), i.e., the events
{X ∈ C} and {Y ∈ D} are independent.

I Two σ-fields F and G are independent if A and B are
independent whenever A ∈ F and B ∈ G. (This definition also
makes sense if F and G are arbitrary algebras, semi-algebras,
or other collections of measurable sets.)
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Independence of multiple events/random
variables/σ-algebras

I Say events A1,A2, . . . ,An are independent if for each
I ⊂ {1, 2, . . . , n} we have P(∩i∈IAi ) =

∏
i∈I P(Ai ).

I Question: does pairwise independence imply independence?

I Say random variables X1,X2, . . . ,Xn are independent if for
any measurable sets B1,B2, . . . ,Bn, the events that Xi ∈ Bi

are independent.

I Say σ-algebras F1,F2, . . . ,Fn if any collection of events (one
from each σ-algebra) are independent. (This definition also
makes sense if the Fi are algebras, semi-algebras, or other
collections of measurable sets.)
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Extending to σ-algebras

I Theorem: If A1,A2, . . . ,An are independent, and each Ai is
a π-system, then σ(A1), . . . , σ(An) are independent.

I Main idea of proof: Apply the π-λ theorem.
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Kolmogorov’s Extension Theorem

I Task: make sense of this statement. Let Ω be the set of
all countable sequences ω = (ω1, ω2, ω3 . . .) of real numbers.
Let F be the smallest σ-algebra that makes the maps ω → ωi

measurable. Let P be the probability measure that makes the
ωi independent identically distributed normals with mean
zero, variance one.

I We could also ask about i.i.d. sequences of coin tosses or i.i.d.
samples from some other space.

I The F described above is the natural product σ-algebra:
smallest σ-algebra generated by the “finite dimensional
rectangles” of form {ω : ωi ∈ (ai , bi ], 1 ≤ i ≤ n}.

I Question: what things are in this σ-algebra? How about the
event that the ωi converge to a limit?
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Kolmogorov’s Extension Theorem

I Kolmogorov extension theorem: If we have consistent
probability measures on (Rn,Rn), then we can extend them
uniquely to a probability measure on RN.

I Proved using semi-algebra variant of Carathéeodory’s
extension theorem.
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