18.175: Lecture 5

More integration and expectation

Scott Sheffield

MIT
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Recall Lebesgue integration

> Lebesgue: If you can measure, you can integrate.
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> Lebesgue: If you can measure, you can integrate.

» In more words: if (2, F) is a measure space with a measure
with ¢(2) < 00) and f : Q — R is F-measurable, then we
can define [ fdyu (for non-negative f, also if both £\ 0 and
—f A0 and have finite integrals...)
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Recall Lebesgue integration

> Lebesgue: If you can measure, you can integrate.

» In more words: if (2, F) is a measure space with a measure
with ¢(2) < 00) and f : Q — R is F-measurable, then we
can define [ fdyu (for non-negative f, also if both £\ 0 and
—f A0 and have finite integrals...)

> Idea: define integral, verify linearity and positivity (a.e.
non-negative functions have non-negative integrals) in 4
cases:

> f takes only finitely many values.
» f is bounded (hint: reduce to previous case by rounding down
or up to nearest multiple of e for e — 0).
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Recall Lebesgue integration

> Lebesgue: If you can measure, you can integrate.

» In more words: if (2, F) is a measure space with a measure
with ¢(2) < 00) and f : Q — R is F-measurable, then we
can define [ fdyu (for non-negative f, also if both £\ 0 and
—f A0 and have finite integrals...)

> Idea: define integral, verify linearity and positivity (a.e.
non-negative functions have non-negative integrals) in 4
cases:

> f takes only finitely many values.
» f is bounded (hint: reduce to previous case by rounding down
or up to nearest multiple of e for e — 0).

» f is non-negative (hint: reduce to previous case by taking
f AN for N — o).
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Recall Lebesgue integration

> Lebesgue: If you can measure, you can integrate.

» In more words: if (2, F) is a measure space with a measure
with ¢(2) < 00) and f : Q — R is F-measurable, then we
can define [ fdyu (for non-negative f, also if both £\ 0 and
—f A0 and have finite integrals...)

> Idea: define integral, verify linearity and positivity (a.e.
non-negative functions have non-negative integrals) in 4
cases:

> f takes only finitely many values.

» f is bounded (hint: reduce to previous case by rounding down
or up to nearest multiple of e for e — 0).

» f is non-negative (hint: reduce to previous case by taking
f AN for N — o).

» f is any measurable function (hint: treat positive/negative
parts separately, difference makes sense if both integrals finite).
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Lebesgue integration

» Theorem: if f and g are integrable then:
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Lebesgue integration

» Theorem: if f and g are integrable then:
» If f >0 a.s. then [ fdu > 0.
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Lebesgue integration

» Theorem: if f and g are integrable then:

» If f >0 a.s. then [ fdu > 0.
» For a,b e R, have [(af + bg)du=a [ fdu+b [ gdpu.
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Lebesgue integration

» Theorem: if f and g are integrable then:
» If f >0 a.s. then [ fdu > 0.
» For a,b e R, have [(af + bg)du=a [ fdu+b [ gdpu.
» If g < f as. then [gdu < [ fdpu.
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Lebesgue integration

» Theorem: if f and g are integrable then:

If f >0 a.s. then [ fdu > 0.

For a,b € R, have [(af + bg)du=a [fdp+b [ gdp.
If g < f as. then [gdp < [fdp.

If g =f a.e. then [gdu= [fdpu.

vV vy Vvyy
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Lebesgue integration

» Theorem: if f and g are integrable then:

If f >0 a.s. then [ fdu > 0.

For a,b € R, have [(af + bg)du=a [fdp+b [ gdp.
If g < f as. then [gdp < [fdp.

If g =f a.e. then [gdu= [fdpu.
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Lebesgue integration

» Theorem: if f and g are integrable then:

If f >0 a.s. then [ fdu > 0.

For a,b € R, have [(af + bg)du=a [fdp+b [ gdp.

If g < f as. then [gdp < [fdp.

If g =f a.e. then [gdu= [fdpu.

| [ fdu| < [ |fldu.

» When (Q, F, p) = (R, R9, \), write [ f(x)dx = [ 1gfdA.

vV vy vy VvYy
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Expectation

» Given probability space (2, F, P) and random variable X, we
write EX = fXdP. Always defined if X > 0, or if integrals of
max{X,0} and min{X,0} are separately finite.
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Expectation

» Given probability space (2, F, P) and random variable X, we
write EX = [ XdP. Always defined if X > 0, or if integrals of
max{X,0} and min{X,0} are separately finite.

» EX* is called kth moment of X. Also, if m = EX then
E(X — m)? is called the variance of X.
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Properties of expectation/integration

» Jensen’s inequality: If i is probability measure and
¢ : R — Ris convex then ¢( [ fdu) < [ ¢(f)dp. If X'is
random variable then E¢(X) > ¢(EX).
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» Jensen’s inequality: If i is probability measure and
¢ : R — Ris convex then ¢( [ fdu) < [ ¢(f)dp. If X'is
random variable then E¢(X) > ¢(EX).

» Main idea of proof: Approximate ¢ below by linear function
L that agrees with ¢ at EX.
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Properties of expectation/integration

» Jensen’s inequality: If i is probability measure and
¢ : R — Ris convex then ¢( [ fdu) < [ ¢(f)dp. If X'is
random variable then E¢(X) > ¢(EX).

» Main idea of proof: Approximate ¢ below by linear function
L that agrees with ¢ at EX.

» Applications: Utility, hedge fund payout functions.

» Hélder’s inequality: Write |||, = ([ |f|Pdu)'/? for
1< p<oo. If1/p+1/q =1, then | |fgldu < |],lglls.

» Main idea of proof: Rescale so that ||f||,|lg|lq = 1. Use
some basic calculus to check that for any positive x and y we
have xy < xP/p + y9/p. Write x = |f|, y = |g| and integrate
toget [|fgldu < 2 +1=1=|f|,lely
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Properties of expectation/integration

» Jensen’s inequality: If i is probability measure and
¢ : R — Ris convex then ¢( [ fdu) < [ ¢(f)dp. If X'is
random variable then E¢(X) > ¢(EX).

» Main idea of proof: Approximate ¢ below by linear function
L that agrees with ¢ at EX.

» Applications: Utility, hedge fund payout functions.

» Hélder’s inequality: Write |||, = ([ |f|Pdu)'/? for
1<p<oc f1/p+1/q=1, then | |fgldy < |Ifllsllglq.

» Main idea of proof: Rescale so that ||f||,|lg|lq = 1. Use
some basic calculus to check that for any positive x and y we
have xy < xP/p + y9/p. Write x = |f|, y = |g| and integrate
to get [ Ifgldu < 2+ =1=|fl,lgls.

» Cauchy-Schwarz inequality: Special case p = g = 2. Gives
[ |fgldp < ||f]l2]lg||2. Says that dot product of two vectors is
at most product of vector lengths.
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Bounded convergence theorem

» Bounded convergence theorem: Consider probability
measure 1 and suppose |f,| < M a.s. for all n and some fixed
M > 0, and that f, — f in probability (i.e.,
limp—soo pu{x : [fa(x) — f(x)| > €} =0 for all € > 0). Then

/fd,u: lim /fndu.
n—oo

(Build counterexample for infinite measure space using wide
and short rectangles?...)
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Bounded convergence theorem

» Bounded convergence theorem: Consider probability
measure 1 and suppose |f,| < M a.s. for all n and some fixed
M > 0, and that f, — f in probability (i.e.,
limp—soo pu{x : [fa(x) — f(x)| > €} =0 for all € > 0). Then

/fd,u: lim /fndu.
n—oo

(Build counterexample for infinite measure space using wide
and short rectangles?...)

» Main idea of proof: for any €, § can take n large enough so
[ |fo — fldu < Mé + €.
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Fatou's lemma

» Fatou’s lemma: If f, > 0 then

Iiminf/f,,duz /(Iiminff,,)d,u.

n—o00 n—oo

(Counterexample for opposite-direction inequality using thin
and tall rectangles?)
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Fatou's lemma

» Fatou’s lemma: If f, > 0 then

. S L
I|’7n_1>!>r<1>f/ fadp > /(Ilnrr_klor;f fr)dp.
(Counterexample for opposite-direction inequality using thin

and tall rectangles?)

» Main idea of proof: first reduce to case that the f, are
increasing by writing g,(x) = inf,m>p fm(x) and observing that
gn(x) 1 g(x) = liminf,_ fy(x). Then truncate, used
bounded convergence, take limits.
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More integral properties

» Monotone convergence: If f, > 0 and f, T f then

/ fodp t / fd .
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More integral properties

» Monotone convergence: If f, > 0 and f, T f then

/ fodp t / fd .

» Main idea of proof: one direction obvious, Fatou gives other.
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More integral properties

» Monotone convergence: If f, > 0 and f, T f then

/ fodp t / fd .

» Main idea of proof: one direction obvious, Fatou gives other.

» Dominated convergence: If f, — f a.e. and |f,| < g for all
n and g is integrable, then [ f,du — [ fdpu.

18 175 l ecture 5



More integral properties

v

Monotone convergence: If f, > 0 and f, T f then

/ fodp t / fd .

Main idea of proof: one direction obvious, Fatou gives other.

v

v

Dominated convergence: If f, — f a.e. and || < g for all
n and g is integrable, then [ f,du — [ fdpu.

v

Main idea of proof: Fatou for functions g + f, > 0 gives one
side. Fatou for g — f, > 0 gives other.

18 175 l ecture 5



Computing expectations

» Change of variables. Measure space (2, F, P). Let X be
random variable in (S, S) with distribution p. Then if
f(5,8)— (R R) is measurable we have

Ef(X) = fs w(dy).
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Computing expectations

» Change of variables. Measure space (2, F, P). Let X be
random variable in (S, S) with distribution p. Then if
f(5,8) = (R, R) is measurable we have
Ef(X) = [s f(y)u(dy).

» Prove by checking for indicators, simple functions,
non-negative functions, integrable functions.
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Computing expectations

» Change of variables. Measure space (2, F, P). Let X be
random variable in (S, S) with distribution p. Then if
f(5,8) = (R, R) is measurable we have
Ef(X) = [s f(y)u(dy).

» Prove by checking for indicators, simple functions,
non-negative functions, integrable functions.

» Examples: normal, exponential, Bernoulli, Poisson,
geometric...
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