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Recall definitions

I Probability space is triple (Ω,F ,P) where Ω is sample
space, F is set of events (the σ-algebra) and P : F → [0, 1] is
the probability function.

I σ-algebra is collection of subsets closed under
complementation and countable unions. Call (Ω,F) a
measure space.

I Measure is function µ : F → R satisfying µ(A) ≥ µ(∅) = 0
for all A ∈ F and countable additivity: µ(∪iAi ) =

∑
i µ(Ai )

for disjoint Ai .

I Measure µ is probability measure if µ(Ω) = 1.

I The Borel σ-algebra B on a topological space is the smallest
σ-algebra containing all open sets.
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Recall definitions

I Real random variable is function X : Ω→ R such that the
preimage of every Borel set is in F .

I Note: to prove X is measurable, it is enough to show that the
pre-image of every open set is in F .

I Can talk about σ-algebra generated by random variable(s):
smallest σ-algebra that makes a random variable (or a
collection of random variables) measurable.
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Lebesgue integration

I Lebesgue: If you can measure, you can integrate.

I In more words: if (Ω,F) is a measure space with a measure µ
with µ(Ω) <∞) and f : Ω→ R is F-measurable, then we
can define

∫
fdµ (for non-negative f , also if both f ∨ 0 and

−f ∧ 0 and have finite integrals...)
I Idea: define integral, verify linearity and positivity (a.e.

non-negative functions have non-negative integrals) in 4
cases:

I f takes only finitely many values.
I f is bounded (hint: reduce to previous case by rounding down

or up to nearest multiple of ε for ε→ 0).
I f is non-negative (hint: reduce to previous case by taking

f ∧ N for N →∞).
I f is any measurable function (hint: treat positive/negative

parts separately, difference makes sense if both integrals finite).
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Lebesgue integration

I Can we extend previous discussion to case µ(Ω) =∞?

I Theorem: if f and g are integrable then:

I If f ≥ 0 a.s. then
∫
fdµ ≥ 0.

I For a, b ∈ R, have
∫

(af + bg)dµ = a
∫
fdµ+ b

∫
gdµ.

I If g ≤ f a.s. then
∫
gdµ ≤

∫
fdµ.

I If g = f a.e. then
∫
gdµ =

∫
fdµ.

I |
∫
fdµ| ≤

∫
|f |dµ.

I When (Ω,F , µ) = (Rd ,Rd , λ), write
∫
E f (x)dx =

∫
1E fdλ.
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Expectation

I Given probability space (Ω,F ,P) and random variable X , we
write EX =

∫
XdP. Always defined if X ≥ 0, or if integrals of

max{X , 0} and min{X , 0} are separately finite.

I Since expectation is an integral, we can interpret our basic
properties of integrals (as well as results to come: Jensen’s
inequality, Hölder’s inequality, Fatou’s lemma, monotone
convergence, dominated convergence, etc.) as properties of
expectation.

I EX k is called kth moment of X . Also, if m = EX then
E (X −m)2 is called the variance of X .
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