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Recall definitions

» Probability space is triple (2, F, P) where Q is sample
space, F is set of events (the o-algebra) and P: F — [0,1] is
the probability function.
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Recall definitions

» Probability space is triple (2, F, P) where Q is sample
space, F is set of events (the o-algebra) and P: F — [0,1] is
the probability function.

» o-algebra is collection of subsets closed under
complementation and countable unions. Call (2, F) a
measure space.

» Measure is function p : F — R satisfying u(A) > ,u(@) =0
for all A € F and countable additivity: pu(U;jA;) = )
for disjoint A;.

» Measure y is probability measure if ;(Q2) = 1.

» The Borel o-algebra B on a topological space is the smallest
o-algebra containing all open sets.
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Recall definitions

» Real random variable is function X : Q — R such that the
preimage of every Borel set is in F.
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Recall definitions

» Real random variable is function X : Q — R such that the
preimage of every Borel set is in F.

> Note: to prove X is measurable, it is enough to show that the
pre-image of every open set is in F.

» Can talk about o-algebra generated by random variable(s):
smallest o-algebra that makes a random variable (or a
collection of random variables) measurable.
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Lebesgue integration

> Lebesgue: If you can measure, you can integrate.
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» In more words: if (2, F) is a measure space with a measure
with ¢(2) < 00) and f : Q — R is F-measurable, then we
can define [ fdyu (for non-negative f, also if both £\ 0 and
—f A0 and have finite integrals...)
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Lebesgue integration

> Lebesgue: If you can measure, you can integrate.

» In more words: if (2, F) is a measure space with a measure
with ¢(2) < 00) and f : Q — R is F-measurable, then we
can define [ fdyu (for non-negative f, also if both £\ 0 and
—f A0 and have finite integrals...)

> Idea: define integral, verify linearity and positivity (a.e.
non-negative functions have non-negative integrals) in 4
cases:

> f takes only finitely many values.

» f is bounded (hint: reduce to previous case by rounding down
or up to nearest multiple of e for e — 0).

» f is non-negative (hint: reduce to previous case by taking
f AN for N — o).

» f is any measurable function (hint: treat positive/negative
parts separately, difference makes sense if both integrals finite).
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Lebesgue integration

» Can we extend previous discussion to case p(2) = o0?
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Lebesgue integration

» Can we extend previous discussion to case p(2) = o0?

» Theorem: if f and g are integrable then:

If f >0 a.s. then [ fdu > 0.

For a,b € R, have [(af + bg)du=a [ fdp+ b [ gdu.

If g < f as. then [gdu < [ fdpu.

If g =f a.e. then [gdu= [fdu.

| ol < [ 1Fldu.

» When (Q, F, p) = (RY, R, \), write [ f(x)dx = [ 1gfd\.
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Expectation

» Given probability space (2, F, P) and random variable X, we
write EX = fXdP. Always defined if X > 0, or if integrals of
max{X,0} and min{X,0} are separately finite.
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Expectation

» Given probability space (2, F, P) and random variable X, we
write EX = [ XdP. Always defined if X > 0, or if integrals of
max{X,0} and min{X,0} are separately finite.

» Since expectation is an integral, we can interpret our basic
properties of integrals (as well as results to come: Jensen's
inequality, Holder's inequality, Fatou's lemma, monotone
convergence, dominated convergence, etc.) as properties of
expectation.
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Expectation

» Given probability space (2, F, P) and random variable X, we
write EX = [ XdP. Always defined if X > 0, or if integrals of
max{X,0} and min{X,0} are separately finite.

» Since expectation is an integral, we can interpret our basic
properties of integrals (as well as results to come: Jensen's
inequality, Holder's inequality, Fatou's lemma, monotone
convergence, dominated convergence, etc.) as properties of
expectation.

» EXk is called kth moment of X. Also, if m = EX then
E(X — m)? is called the variance of X.
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