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Basic properties

I Brownian motion is real-valued process Bt , t ≥ 0.

I Independent increments: If t0 < t1 < t2 . . . then
B(t0),B(t1 − t0),B(t2 − t1), . . . are independent.

I Gaussian increments: If s, t ≥ 0 then B(s + t)− B(s) is
normal with variance t.

I Continuity: With probability one, t → Bt is continuous.

I Hmm... does this mean we need to use a σ-algebra in which
the event “Bt is continuous” is a measurable?

I Suppose Ω is set of all functions of t, and we use smallest
σ-field that makes each Bt a measurable random variable...
does that fail?
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Basic properties

I Translation invariance: is Bt0+t − Bt0 a Brownian motion?

I Brownian scaling: fix c , then Bct agrees in law with c1/2Bt .

I Another characterization: B is jointly Gaussian, EBs = 0,
EBsBt = s ∧ t, and t → Bt a.s. continuous.
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Defining Brownian motion

I Can define joint law of Bt values for any finite collection of
values.

I Can observe consistency and extend to countable set by
Kolmogorov. This gives us measure in σ-field F0 generated by
cylinder sets.

I But not enough to get a.s. continuity.

I Can define Brownian motion jointly on diadic rationals pretty
easily. And claim that this a.s. extends to continuous path in
unique way.

I Check out Kolmogorov continuity theorem.

I Can prove Hölder continuity using similar estimates (see
problem set).

I Can extend to higher dimensions: make each coordinate
independent Brownian motion.
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I Can prove Hölder continuity using similar estimates (see
problem set).

I Can extend to higher dimensions: make each coordinate
independent Brownian motion.

18.175 Lecture 36



Defining Brownian motion

I Can define joint law of Bt values for any finite collection of
values.

I Can observe consistency and extend to countable set by
Kolmogorov. This gives us measure in σ-field F0 generated by
cylinder sets.

I But not enough to get a.s. continuity.

I Can define Brownian motion jointly on diadic rationals pretty
easily. And claim that this a.s. extends to continuous path in
unique way.

I Check out Kolmogorov continuity theorem.
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More σ-algebra thoughts

I Write Fo
s = σ(Br : r ≤ s).

I Write F+
s = ∩t>sFo

t

I Note right continuity: ∩t>sF+
t = F+

s .

I F+
s allows an “infinitesimal peek at future”
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Markov property

I If s ≥ 0 and Y is bounded and C-measurable, then for all
x ∈ Rd , we have

Ex(Y ◦ θs |F+
s ) = EBsY ,

where the RHS is function φ(x) = ExY evaluated at x = Bs .
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Blumenthal’s 0-1 law

I If A ∈ F+
0 , then P(A) ∈ {0, 1} (if P is probability law for

Brownian motion started at fixed value x at time 0).

I There’s nothing you can learn from infinitesimal neighborhood
of future.
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