18.175: Lecture 33

Ergodic theory

Scott Sheffield

MIT

Outline

Setup

Birkhoff's ergodic theorem

Outline

Setup

Birkhoff's ergodic theorem

▶ Consider independent bond percolation on \mathbb{Z}^2 with some fixed parameter p > 1/2. Look at some simulations.

- ▶ Consider independent bond percolation on \mathbb{Z}^2 with some fixed parameter p > 1/2. Look at some simulations.
- Let Ω be the set of maps from the edges of \mathbb{Z}^2 to $\{0,1\}$, \mathcal{F} the usual product σ -algebra, and $P=P_p$ the probability measure.

- ▶ Consider independent bond percolation on \mathbb{Z}^2 with some fixed parameter p > 1/2. Look at some simulations.
- Let Ω be the set of maps from the edges of \mathbb{Z}^2 to $\{0,1\}$, \mathcal{F} the usual product σ -algebra, and $P=P_p$ the probability measure.
- Now consider an $n \times n$ box centered at 0 and ask: what fraction of the points in that box belong to an infinite clusters? Does this fraction converge to a limit (in some sense: in probability, or maybe almost surely) as $n \to \infty$?

- ▶ Consider independent bond percolation on \mathbb{Z}^2 with some fixed parameter p > 1/2. Look at some simulations.
- Let Ω be the set of maps from the edges of \mathbb{Z}^2 to $\{0,1\}$, \mathcal{F} the usual product σ -algebra, and $P=P_p$ the probability measure.
- Now consider an n × n box centered at 0 and ask: what fraction of the points in that box belong to an infinite clusters? Does this fraction converge to a limit (in some sense: in probability, or maybe almost surely) as n → ∞?
- ▶ Let $C_x = 1_{x \in \text{infinitecluster}}$. If the C_x were independent or each other, then this would just be a law of large numbers question. But the C_x are not independent of each other far from it.

- ▶ Consider independent bond percolation on \mathbb{Z}^2 with some fixed parameter p > 1/2. Look at some simulations.
- Let Ω be the set of maps from the edges of \mathbb{Z}^2 to $\{0,1\}$, \mathcal{F} the usual product σ -algebra, and $P=P_p$ the probability measure.
- Now consider an $n \times n$ box centered at 0 and ask: what fraction of the points in that box belong to an infinite clusters? Does this fraction converge to a limit (in some sense: in probability, or maybe almost surely) as $n \to \infty$?
- ▶ Let $C_x = 1_{x \in \text{infinitecluster}}$. If the C_x were independent or each other, then this would just be a law of large numbers question. But the C_x are not independent of each other far from it.
- We don't have independence. We have translation invariance instead. Is that good enough?

- ▶ Consider independent bond percolation on \mathbb{Z}^2 with some fixed parameter p > 1/2. Look at some simulations.
- Let Ω be the set of maps from the edges of \mathbb{Z}^2 to $\{0,1\}$, \mathcal{F} the usual product σ -algebra, and $P=P_p$ the probability measure.
- Now consider an $n \times n$ box centered at 0 and ask: what fraction of the points in that box belong to an infinite clusters? Does this fraction converge to a limit (in some sense: in probability, or maybe almost surely) as $n \to \infty$?
- ▶ Let $C_x = 1_{x \in \text{infinitecluster}}$. If the C_x were independent or each other, then this would just be a law of large numbers question. But the C_x are not independent of each other far from it.
- ► We don't have independence. We have translation invariance instead. Is that good enough?
- ▶ More general: C_x distributed in *some* translation invariant way, $EC_0 < \infty$. Is mean of C_x (on large box) nearly constant?

Let θ_x be the translation of the \mathbb{Z}^2 that moves 0 to x. Each θ_x induces a measure-preserving translation of Ω . Then $C_x(\omega) = C_0(\theta_{-x}(\omega))$. So summing up the C_x values is the same as summing up the $C_0(\theta_x(\omega))$ value over a range of x.

- Let θ_x be the translation of the \mathbb{Z}^2 that moves 0 to x. Each θ_x induces a measure-preserving translation of Ω . Then $C_x(\omega) = C_0(\theta_{-x}(\omega))$. So summing up the C_x values is the same as summing up the $C_0(\theta_x(\omega))$ value over a range of x.
- ▶ The group of translations is generated by a one-step vertical and a one-step horizontal translation. Refer to the corresponding (commuting, P-preserving) maps on Ω as ϕ_1 and ϕ_2 .

- Let θ_x be the translation of the \mathbb{Z}^2 that moves 0 to x. Each θ_x induces a measure-preserving translation of Ω . Then $C_x(\omega) = C_0(\theta_{-x}(\omega))$. So summing up the C_x values is the same as summing up the $C_0(\theta_x(\omega))$ value over a range of x.
- ▶ The group of translations is generated by a one-step vertical and a one-step horizontal translation. Refer to the corresponding (commuting, P-preserving) maps on Ω as ϕ_1 and ϕ_2 .
- We're interested in averaging $C_0(\phi_1^l \phi_2^k \omega)$ over a range of (j,k) pairs.

- Let θ_x be the translation of the \mathbb{Z}^2 that moves 0 to x. Each θ_x induces a measure-preserving translation of Ω . Then $C_x(\omega) = C_0(\theta_{-x}(\omega))$. So summing up the C_x values is the same as summing up the $C_0(\theta_x(\omega))$ value over a range of x.
- ▶ The group of translations is generated by a one-step vertical and a one-step horizontal translation. Refer to the corresponding (commuting, P-preserving) maps on Ω as ϕ_1 and ϕ_2 .
- We're interested in averaging $C_0(\phi_1^j\phi_2^k\omega)$ over a range of (j,k) pairs.
- ▶ Let's simplify matters still further and consider the one-dimensional problem. In this case, we have a random variable *X* and we study empirical averages of the form

$$N^{-1}\sum_{n=1}^{N}X(\phi^{n}\omega).$$

► Could take *X_i* i.i.d.

- ▶ Could take X_j i.i.d.
- ▶ Or X_n could be a Markov chain, with each individual X_j distributed according to a stationary distribution π .

- ▶ Could take X_j i.i.d.
- ▶ Or X_n could be a Markov chain, with each individual X_j distributed according to a stationary distribution π .
- ▶ Rotations of the circle. Say X_0 is uniform in [0,1] and generally $X_j = X_0 + \alpha j$ modulo 1.

- ▶ Could take X_j i.i.d.
- ▶ Or X_n could be a Markov chain, with each individual X_j distributed according to a stationary distribution π .
- ▶ Rotations of the circle. Say X_0 is uniform in [0,1] and generally $X_i = X_0 + \alpha j$ modulo 1.
- ▶ If $X_0, X_1, ...$ is stationary and $g : \mathbb{R}^{\{0,1,...\}} \to \mathbb{R}$ is measurable, then $Y_k = g(X_k, X_{k+1}, ...)$ is stationary.

- ▶ Could take X_j i.i.d.
- ▶ Or X_n could be a Markov chain, with each individual X_j distributed according to a stationary distribution π .
- ▶ Rotations of the circle. Say X_0 is uniform in [0,1] and generally $X_i = X_0 + \alpha j$ modulo 1.
- ▶ If $X_0, X_1,...$ is stationary and $g : \mathbb{R}^{\{0,1,...\}} \to \mathbb{R}$ is measurable, then $Y_k = g(X_k, X_{k+1},...)$ is stationary.
- ▶ Bernoulli shift. X_0, X_1, \ldots are i.i.d. and $Y_k = \sum_{j=1}^{\infty} X_{k+j} 2^{-j}$.

- ▶ Could take X_j i.i.d.
- ▶ Or X_n could be a Markov chain, with each individual X_j distributed according to a stationary distribution π .
- ▶ Rotations of the circle. Say X_0 is uniform in [0,1] and generally $X_i = X_0 + \alpha j$ modulo 1.
- ▶ If $X_0, X_1,...$ is stationary and $g : \mathbb{R}^{\{0,1,...\}} \to \mathbb{R}$ is measurable, then $Y_k = g(X_k, X_{k+1},...)$ is stationary.
- ▶ Bernoulli shift. X_0, X_1, \ldots are i.i.d. and $Y_k = \sum_{j=1}^{\infty} X_{k+j} 2^{-j}$.
- ► Can constructed two-sided (Z-indexed) stationary sequence from one-sided stationary sequence by Kolmogorov extension.

- ▶ Could take X_i i.i.d.
- ▶ Or X_n could be a Markov chain, with each individual X_j distributed according to a stationary distribution π .
- ▶ Rotations of the circle. Say X_0 is uniform in [0,1] and generally $X_i = X_0 + \alpha j$ modulo 1.
- ▶ If $X_0, X_1,...$ is stationary and $g : \mathbb{R}^{\{0,1,...\}} \to \mathbb{R}$ is measurable, then $Y_k = g(X_k, X_{k+1},...)$ is stationary.
- ▶ Bernoulli shift. X_0, X_1, \ldots are i.i.d. and $Y_k = \sum_{j=1}^{\infty} X_{k+j} 2^{-j}$.
- ► Can constructed two-sided (Z-indexed) stationary sequence from one-sided stationary sequence by Kolmogorov extension.
- ▶ What if *X_i* are i.i.d. tosses of a *p*-coin, where *p* is itself random?

Say that A is **invariant** if the symmetric difference between $\phi(A)$ and A has measure zero.

- Say that A is **invariant** if the symmetric difference between $\phi(A)$ and A has measure zero.
- ▶ Observe: class \mathcal{I} of invariant events is a σ -field.

- Say that A is **invariant** if the symmetric difference between $\phi(A)$ and A has measure zero.
- ▶ Observe: class \mathcal{I} of invariant events is a σ -field.
- ▶ Measure preserving transformation is called **ergodic** if \mathcal{I} is trivial, i.e., every set $A \in \mathcal{I}$ satisfies $P(A) \in \{0,1\}$.

- Say that A is **invariant** if the symmetric difference between $\phi(A)$ and A has measure zero.
- ▶ Observe: class \mathcal{I} of invariant events is a σ -field.
- ▶ Measure preserving transformation is called **ergodic** if \mathcal{I} is trivial, i.e., every set $A \in \mathcal{I}$ satisfies $P(A) \in \{0,1\}$.
- ▶ **Example:** If $\Omega = \mathbb{R}^{\{0,1,\ldots\}}$ and A is invariant, then A is necessarily in tail σ -field \mathcal{T} , hence has probability zero or one by Kolmogorov's 0-1 law. So sequence is ergodic (the shift on sequence space $\mathbb{R}^{\{0,1,2,\ldots\}}$ is ergodic..

Outline

Setup

Birkhoff's ergodic theorem

Outline

Setup

Birkhoff's ergodic theorem

Ergodic theorem

Let ϕ be a measure preserving transformation of (Ω, \mathcal{F}, P) . Then for any $X \in L^1$ we have

$$\frac{1}{n}\sum_{m=0}^{n-1}X(\phi^m\omega)\to E(X|\mathcal{I})$$

a.s. and in L^1 .

Ergodic theorem

Let ϕ be a measure preserving transformation of (Ω, \mathcal{F}, P) . Then for any $X \in L^1$ we have

$$\frac{1}{n}\sum_{m=0}^{n-1}X(\phi^m\omega)\to E(X|\mathcal{I})$$

a.s. and in L^1 .

Note: if sequence is ergodic, then $E(X|\mathcal{I}) = E(X)$, so the limit is just the mean.

Ergodic theorem

Let ϕ be a measure preserving transformation of (Ω, \mathcal{F}, P) . Then for any $X \in L^1$ we have

$$\frac{1}{n}\sum_{m=0}^{n-1}X(\phi^m\omega)\to E(X|\mathcal{I})$$

a.s. and in L^1 .

- Note: if sequence is ergodic, then $E(X|\mathcal{I}) = E(X)$, so the limit is just the mean.
- Proof takes a couple of pages. Shall we work through it?