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Review what you know about finite state Markov chains
Finite state ergodicity and stationarity

More general setup
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» Consider a sequence of random variables Xp, X1, X, ... each
taking values in the same state space, which for now we take
to be a finite set that we label by {0,1,..., M}.
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> Interpret X, as state of the system at time n.
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» Consider a sequence of random variables Xp, X1, X, ... each
taking values in the same state space, which for now we take
to be a finite set that we label by {0,1,..., M}.

> Interpret X, as state of the system at time n.

» Sequence is called a Markov chain if we have a fixed
collection of numbers Pj; (one for each pair
i,j €{0,1,..., M}) such that whenever the system is in state
i, there is probability Pj; that system will next be in state j.
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» Consider a sequence of random variables Xp, X1, X, ... each
taking values in the same state space, which for now we take
to be a finite set that we label by {0,1,..., M}.

> Interpret X, as state of the system at time n.

» Sequence is called a Markov chain if we have a fixed
collection of numbers Pj; (one for each pair
i,j €{0,1,..., M}) such that whenever the system is in state
i, there is probability Pj; that system will next be in state j.

» Precisely,
P{X,-,+1 :j|Xn = i,Xn_l = in—l; Ce. ,Xl = il,Xo = io} = P,'J'.
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» Consider a sequence of random variables Xp, X1, X, ... each
taking values in the same state space, which for now we take
to be a finite set that we label by {0,1,..., M}.

> Interpret X, as state of the system at time n.

» Sequence is called a Markov chain if we have a fixed
collection of numbers Pj; (one for each pair
i,j €{0,1,..., M}) such that whenever the system is in state
i, there is probability Pj; that system will next be in state j.

» Precisely,

P{X,-,+1 :j|Xn = i,Xn_l = in—l; e ,Xl = il,Xo = io} = P,J

» Kind of an “almost memoryless” property. Probability

distribution for next state depends only on the current state
(and not on the rest of the state history).
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Simple example

» For example, imagine a simple weather model with two states:
rainy and sunny.
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next day, a .5 chance it will be sunny.
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Simple example

» For example, imagine a simple weather model with two states:
rainy and sunny.

> If it's rainy one day, there's a .5 chance it will be rainy the
next day, a .5 chance it will be sunny.

> If it's sunny one day, there's a .8 chance it will be sunny the
next day, a .2 chance it will be rainy.
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Simple example

» For example, imagine a simple weather model with two states:
rainy and sunny.

> If it's rainy one day, there's a .5 chance it will be rainy the
next day, a .5 chance it will be sunny.

> If it's sunny one day, there's a .8 chance it will be sunny the
next day, a .2 chance it will be rainy.

> In this climate, sun tends to last longer than rain.
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Simple example

» For example, imagine a simple weather model with two states:
rainy and sunny.

> If it's rainy one day, there's a .5 chance it will be rainy the
next day, a .5 chance it will be sunny.

> If it's sunny one day, there's a .8 chance it will be sunny the
next day, a .2 chance it will be rainy.

> In this climate, sun tends to last longer than rain.

» Given that it is rainy today, how many days to | expect to
have to wait to see a sunny day?
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Simple example

» For example, imagine a simple weather model with two states:
rainy and sunny.

> If it's rainy one day, there's a .5 chance it will be rainy the
next day, a .5 chance it will be sunny.

> If it's sunny one day, there's a .8 chance it will be sunny the
next day, a .2 chance it will be rainy.

> In this climate, sun tends to last longer than rain.

» Given that it is rainy today, how many days to | expect to
have to wait to see a sunny day?

» Given that it is sunny today, how many days to | expect to
have to wait to see a rainy day?
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Simple example

» For example, imagine a simple weather model with two states:
rainy and sunny.

> If it's rainy one day, there's a .5 chance it will be rainy the
next day, a .5 chance it will be sunny.

> If it's sunny one day, there's a .8 chance it will be sunny the
next day, a .2 chance it will be rainy.

> In this climate, sun tends to last longer than rain.

» Given that it is rainy today, how many days to | expect to
have to wait to see a sunny day?

» Given that it is sunny today, how many days to | expect to
have to wait to see a rainy day?

» Over the long haul, what fraction of days are sunny?
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Matrix representation

» To describe a Markov chain, we need to define Pj; for any
i,je{0,1,..., M}.
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Matrix representation

» To describe a Markov chain, we need to define Pj; for any
i,je{0,1,..., M}.

» It is convenient to represent the collection of transition
probabilities Pj; as a matrix:
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Matrix representation

» To describe a Markov chain, we need to define Pj; for any
i,je{0,1,..., M}.

» It is convenient to represent the collection of transition
probabilities Pj; as a matrix:

POO P()]_ POM

P]_o P]_]_ P]_M
A= '

PMO PMl P[\/[/\/]

» For this to make sense, we require P; > 0 for all i, and

Zj:o Pjj = 1 for each /. That is, the rows sum to one.
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Transitions via matrices

» Suppose that p; is the probability that system is in state / at
time zero.
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Transitions via matrices

» Suppose that p; is the probability that system is in state / at
time zero.

» What does the following product represent?

POO PO]_ “ e POM
P]_O P]_]_ “ .. P]_M
(po pr - Pm )|
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Transitions via matrices

» Suppose that p; is the probability that system is in state / at
time zero.

» What does the following product represent?

POO PO]_ “ e POM

P]_O P]_]_ “ .. P]_M
(po pr - Pm )|

PMO PM]_ “ e PMM

> Answer: the probability distribution at time one.
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Transitions via matrices

» Suppose that p; is the probability that system is in state / at
time zero.

» What does the following product represent?

POO PO]_ “ e POM

P]_O P]_]_ “ .. P]_M
(po pr - Pm )|

PMO PM]_ “ e PMM

> Answer: the probability distribution at time one.
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Transitions via matrices

» Suppose that p; is the probability that system is in state / at
time zero.

» What does the following product represent?

POO PO]_ “ e POM

P]_O P]_]_ “ .. P]_M
(po pr - Pm )|

PMO PM]_ “ e PMM

> Answer: the probability distribution at time one.

» How about the following product?

(pPo 1 - pm )A”

> Answer: the probability distribution at time n.
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Powers of transition matrix

> We write P,.(j") for the probability to go from state i to state j

over n steps.

18 175 L ecture 30



Powers of transition matrix

> We write P,.(j") for the probability to go from state i to state j

over n steps.

» From the matrix point of view

O e Poo  Poz Pom '\ "
P{g) P Pm, Pro  Pu Pim
pmpl) o pm Pvo Pmr - Pum
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Powers of transition matrix

> We write P,.(J.") for the probability to go from state i to state j

over n steps.

» From the matrix point of view

O e Po Por ... Pom \"
P{g) P Pm, Po P ... Pim
pmpl) o pm Pvo Pmr - Pum

> If Ais the one-step transition matrix, then A" is the n-step
transition matrix.
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» What does it mean if all of the rows are identical?
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» What does it mean if all of the rows are identical?

» Answer: state sequence X; consists of i.i.d. random variables.
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> What does it mean if all of the rows are identical?
» Answer: state sequence X; consists of i.i.d. random variables.
» What if matrix is the identity?
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> What does it mean if all of the rows are identical?
» Answer: state sequence X; consists of i.i.d. random variables.
» What if matrix is the identity?

» Answer: states never change.
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> What does it mean if all of the rows are identical?
» Answer: state sequence X; consists of i.i.d. random variables.
» What if matrix is the identity?

» Answer: states never change.

v

What if each Pj; is either one or zero?
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> What does it mean if all of the rows are identical?
» Answer: state sequence X; consists of i.i.d. random variables.
» What if matrix is the identity?

» Answer: states never change.

v

What if each Pj; is either one or zero?

» Answer: state evolution is deterministic.
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Simple example

» Consider the simple weather example: If it's rainy one day,
there's a .5 chance it will be rainy the next day, a .5 chance it
will be sunny. If it’s sunny one day, there's a .8 chance it will
be sunny the next day, a .2 chance it will be rainy.
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Simple example

» Consider the simple weather example: If it's rainy one day,
there's a .5 chance it will be rainy the next day, a .5 chance it
will be sunny. If it’s sunny one day, there's a .8 chance it will
be sunny the next day, a .2 chance it will be rainy.

> Let rainy be state zero, sunny state one, and write the

transition matrix by
b5 5
a=(33)
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Simple example

» Consider the simple weather example: If it's rainy one day,
there's a .5 chance it will be rainy the next day, a .5 chance it
will be sunny. If it’s sunny one day, there's a .8 chance it will
be sunny the next day, a .2 chance it will be rainy.

> Let rainy be state zero, sunny state one, and write the

transition matrix by
b5 5
a=(33)

» [ 64 .35
A= < 26 .74

» Note that
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Simple example

» Consider the simple weather example: If it's rainy one day,
there's a .5 chance it will be rainy the next day, a .5 chance it
will be sunny. If it’s sunny one day, there's a .8 chance it will
be sunny the next day, a .2 chance it will be rainy.

> Let rainy be state zero, sunny state one, and write the

transition matrix by
b5 5
a=(33)

, ([ .64 35

A= < 26 .74
285719 714281

285713 .714287

» Note that

» Can compute A0 = <
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Does relationship status have the Markov property?

r

In a relationship

N

> It’s comphcated

Slngle

NN

Marrled “— Engaged
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Does relationship status have the Markov property?

r

In a relationship

N

> It’s comphcated

Single

NN

Marrled “— Engaged

» Can we assign a probability to each arrow?
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Does relationship status have the Markov property?

r

In a relationship

N5

> It’s comphcated

Single

NN

Marrled “— Engaged

» Can we assign a probability to each arrow?

» Markov model implies time spent in any state (e.g., a
marriage) before leaving is a geometric random variable.
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Does relationship status have the Markov property?

r

In a relationship

N5

> It’s comphcated

Single

NN

Marrled “— Engaged

» Can we assign a probability to each arrow?

» Markov model implies time spent in any state (e.g., a
marriage) before leaving is a geometric random variable.

» Not true... Can we make a better model with more states?
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Review what you know about finite state Markov chains
Finite state ergodicity and stationarity

More general setup
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Finite state ergodicity and stationarity
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Ergodic Markov chains

» Say Markov chain is ergodic if some power of the transition
matrix has all non-zero entries.
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Ergodic Markov chains

» Say Markov chain is ergodic if some power of the transition
matrix has all non-zero entries.

» Turns out that if chain has this property, then
= limp oo Pi(j") exists and the 7; are the unique

non-negative solutions of m; = Zyzo 7k Pyj that sum to one.
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Ergodic Markov chains

» Say Markov chain is ergodic if some power of the transition

matrix has all non-zero entries.
» Turns out that if chain has this property, then
= limp oo Pi(j") exists and the 7; are the unique

non-negative solutions of m; = Zyzo 7k Pyj that sum to one.
» This means that the row vector

7r:(7r0 T ... 7le)

is a left eigenvector of A with eigenvalue 1, i.e., TA = 7.

18 175 L ecture 30



Ergodic Markov chains

» Say Markov chain is ergodic if some power of the transition
matrix has all non-zero entries.

» Turns out that if chain has this property, then
= limp oo P,.(j") exists and the 7; are the unique

non-negative solutions of m; = Zyzo 7k Pyj that sum to one.
» This means that the row vector

7r:(7r0 T ... 7le)

is a left eigenvector of A with eigenvalue 1, i.e., TA = 7.
» We call 7 the stationary distribution of the Markov chain.
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Ergodic Markov chains

» Say Markov chain is ergodic if some power of the transition

matrix has all non-zero entries.

» Turns out that if chain has this property, then
= limp oo P,.(j") exists and the 7; are the unique
non-negative solutions of m; = Zyzo 7k Pyj that sum to one.

» This means that the row vector

7r:(7r0 T ... 7le)

is a left eigenvector of A with eigenvalue 1, i.e., TA = 7.
» We call 7 the stationary distribution of the Markov chain.
» One can solve the system of linear equations

T = Zyzo 7k Pyj to compute the values 7;. Equivalent to

considering A fixed and solving wA = 7. Or solving

(A—I)m =0. This determines 7 up to a multiplicative

constant, and fact that ) m; = 1 determines the constant.
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Simple example

b5 5
> If A= < P .8),thenwe know

mA = ( 7o 7r1)<g :g>=(7ro m ) =
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Simple example

b5 5
> If A= < P .8),thenwe know

mA = ( 7o 7r1)<g :g>=(7ro m ) =

» This means that .5mg + .27 = 7 and .5mg + .87, = w1 and

we also know that 71 4+ 72 = 1. Solving these equations gives
mo=2/Tand m =5/7,som=(2/7T 5/7).
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Simple example
b5 5
> I1‘A—<.2 .8>,thenweknow

mA = ( 7o 7r1)<g :g>=(7ro m ) =

This means that .57 + .2m = 7 and .57mp + .81 = 71 and

we also know that 71 4+ 72 = 1. Solving these equations gives
mo=2/Tand m =5/7,som=(2/7T 5/7).
» |ndeed,

TA=(2/7 5/7)<:g :Z):(zﬁ 5/7)=m.
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Simple example

b5 5
> If A= < P .8),thenwe know

mA = ( 7o 7r1)<g :g>=(7ro m ) =

» This means that .5mg + .27 = 7 and .5mg + .87, = w1 and
we also know that 71 4+ 72 = 1. Solving these equations gives
mo=2/Tand m =5/7,som=(2/7T 5/7).

» |ndeed,

TA=(2/7 5/7)<:g :g>=(2/7 5/7)=m.

» Recall that
AL0 _ 285719 .714281 ~ 2/7 5/7 _(
285713 .714287 2/7 5/7 T
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Review what you know about finite state Markov chains
Finite state ergodicity and stationarity

More general setup
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Markov chains: general definition

» Consider a measurable space (S,S).
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Markov chains: general definition

» Consider a measurable space (S, S).
» A function p: S x § — R is a transition probability if
» For each x € S, A — p(x, A) is a probability measure on S, S).
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Markov chains: general definition

» Consider a measurable space (S,S).
» A function p: S x § — R is a transition probability if

» For each x € S, A — p(x, A) is a probability measure on S, S).
» For each A € S, the map x — p(x, A) is a measurable function.
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Markov chains: general definition

» Consider a measurable space (S, S).
» A function p: S x § — R is a transition probability if
» For each x € S, A — p(x, A) is a probability measure on S, S).
» For each A € S, the map x — p(x, A) is a measurable function.
» Say that X, is a Markov chain w.r.t. F, with transition
probability p if P(Xn+1 € B|F,) = p(Xn, B).
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Markov chains: general definition

>

Consider a measurable space (S, S).
A function p: S x § — R is a transition probability if

» For each x € S, A — p(x, A) is a probability measure on S, S).
» For each A € S, the map x — p(x, A) is a measurable function.

v

v

Say that X, is a Markov chain w.r.t. F,, with transition
probability p if P(Xn+1 € B|F,) = p(Xn, B).

How do we construct an infinite Markov chain? Choose p and
initial distribution u on (S,S). For each n < oo write

v

POGeB0<j<m= [
B

/ p(anlvan)'
By

Extend to n = oo by Kolmogorov's extension theorem.

wu(dxp) /B p(xo, dxy) - - -
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» Definition, again: Say X, is a Markov chain w.r.t. 7, with
transition probability p if P(Xp41 € B|F,) = p(Xn, B).
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» Definition, again: Say X, is a Markov chain w.r.t. 7, with
transition probability p if P(Xp41 € B|F,) = p(Xn, B).

» Construction, again: Fix initial distribution x4 on (S, S). For
each n < oo write

P(&esj,osj'sm:/

(o) / p(x0, dx1) -
By B:

/ p(Xn—1, dxp).

n

Extend to n = co by Kolmogorov's extension theorem.
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» Definition, again: Say X, is a Markov chain w.r.t. 7, with
transition probability p if P(Xp41 € B|F,) = p(Xn, B).

» Construction, again: Fix initial distribution x4 on (S, S). For
each n < oo write

P(&esj,osj'sm:/

(o) / p(x0, dx1) -
By B:

/ p(Xn—1, dxp).

n

Extend to n = co by Kolmogorov's extension theorem.

> Notation: Extension produces probability measure P, on
sequence space (S%1- SOL-).
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» Definition, again: Say X, is a Markov chain w.r.t. 7, with
transition probability p if P(Xp41 € B|F,) = p(Xn, B).

» Construction, again: Fix initial distribution x4 on (S, S). For
each n < oo write

P(&esj,osj'sm:/

(o) / p(x0, dx1) -
By B:

/ p(Xn—1, dxp).

n

Extend to n = co by Kolmogorov's extension theorem.

> Notation: Extension produces probability measure P, on
sequence space (S%1- SOL-).
» Theorem: (Xp, Xy,...) chosen from P, is Markov chain.
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» Definition, again: Say X, is a Markov chain w.r.t. 7, with
transition probability p if P(Xp41 € B|F,) = p(Xn, B).

» Construction, again: Fix initial distribution x4 on (S, S). For
each n < oo write

P(&esj,osj'sm:/

(o) / p(x0, dx1) -
By B:

/ p(Xn—1, dxp).

n

Extend to n = co by Kolmogorov's extension theorem.

> Notation: Extension produces probability measure P, on
sequence space (S%1- SOL-).

» Theorem: (Xp, Xy,...) chosen from P, is Markov chain.

» Theorem: If X, is any Markov chain with initial distribution
1 and transition p, then finite dim. probabilities are as above.
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» Random walks on RY.
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» Random walks on RY.

» Branching processes: p(i,j) = P(Zin:l &m =j) where &; are
i.i.d. non-negative integer-valued random variables.
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» Random walks on RY.

» Branching processes: p(i,j) = P(Zin:l &m =j) where &; are
i.i.d. non-negative integer-valued random variables.

» Renewal chain.
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Random walks on R¥.

v

v

Branching processes: p(i,j) = P(Zin:l &m =j) where &; are
i.i.d. non-negative integer-valued random variables.

v

Renewal chain.
Card shuffling.

v
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Random walks on R¥.

v

v

Branching processes: p(i,j) = P(Zin:l &m =j) where &; are
i.i.d. non-negative integer-valued random variables.

v

Renewal chain.
Card shuffling.

Ehrenfest chain.

v

v
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