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Recall definitions

I Probability space is triple (Ω,F ,P) where Ω is sample
space, F is set of events (the σ-algebra) and P : F → [0, 1] is
the probability function.

I σ-algebra is collection of subsets closed under
complementation and countable unions. Call (Ω,F) a
measure space.

I Measure is function µ : F → R satisfying µ(A) ≥ µ(∅) = 0
for all A ∈ F and countable additivity: µ(∪iAi ) =

∑
i µ(Ai )

for disjoint Ai .

I Measure µ is probability measure if µ(Ω) = 1.

I The Borel σ-algebra B on a topological space is the smallest
σ-algebra containing all open sets.
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Recall σ-algebra story

I Want, a priori, to define measure of any subsets of [0, 1).

I Find that if we allow the axiom of choice and require
measures to be countably additive (as we do) then we run
into trouble. No valid translation invariant way to assign a
finite measure to all subsets of [0, 1).

I Could toss out the axiom of choice... but we don’t want to.
Instead we only define measure for certain “measurable sets”.
We construct a σ-algebra of measurable sets and let
probability measure be function from σ-algebra to [0, 1].

I Borel σ-algebra is generated by open sets. Sometimes
consider “completion” formed by tossing in measure zero sets.

I Caratheéodory Extension Theorem tells us that if we want to
construct a measure on a σ-algebra, it is enough to construct
the measure on an algebra that generates it.
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Recall construction of measures on R

I Write F (a) = P
(
(−∞, a]

)
.

I Theorem: for each right continuous, non-decreasing function
F , tending to 0 at −∞ and to 1 at ∞, there is a unique
measure defined on the Borel sets of R with
P((a, b]) = F (b)− F (a).

I Proved using Caratheéodory Extension Theorem.
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Characterizing probability measures on Rd

I Want to have F (x) = µ(−∞, x1]× (∞, x2]× . . .× (−∞, xn].

I Given such an F , can compute µ of any finite rectangle of
form

∏
(ai , bi ] by taking differences of F applied to vertices.

I Theorem: Given F , there is a unique measure whose values
on finite rectangles are determined this way (provided that F
is non-decreasing, right continuous, and assigns a
non-negative value to each rectangle).

I Also proved using Caratheéodory Extension Theorem.
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18.175 Lecture 3



Characterizing probability measures on Rd

I Want to have F (x) = µ(−∞, x1]× (∞, x2]× . . .× (−∞, xn].

I Given such an F , can compute µ of any finite rectangle of
form

∏
(ai , bi ] by taking differences of F applied to vertices.

I Theorem: Given F , there is a unique measure whose values
on finite rectangles are determined this way (provided that F
is non-decreasing, right continuous, and assigns a
non-negative value to each rectangle).

I Also proved using Caratheéodory Extension Theorem.

18.175 Lecture 3



Characterizing probability measures on Rd

I Want to have F (x) = µ(−∞, x1]× (∞, x2]× . . .× (−∞, xn].

I Given such an F , can compute µ of any finite rectangle of
form

∏
(ai , bi ] by taking differences of F applied to vertices.

I Theorem: Given F , there is a unique measure whose values
on finite rectangles are determined this way (provided that F
is non-decreasing, right continuous, and assigns a
non-negative value to each rectangle).

I Also proved using Caratheéodory Extension Theorem.
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Defining random variables

I Random variable is a measurable function from (Ω,F) to
(R,B). That is, a function X : Ω→ R such that the preimage
of every set in B is in F . Say X is F-measurable.

I Question: to prove X is measurable, is it enough to show that
the pre-image of every open set is in F?

I Theorem: If X−1(A) ∈ F for all A ∈ A and A generates S,
then X is a measurable map from (Ω,F) to (S ,S).

I Example of random variable: indicator function of a set. Or
sum of finitely many indicator functions of sets.

I Let F (x) = FX (x) = P(X ≤ x) be distribution function for
X . Write f = fX = F ′X for density function of X .

I What functions can be distributions of random variables?

I Non-decreasing, right-continuous, with limx→∞ F (x) = 1 and
limx→−∞ F (x) = 0.
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Examples of possible random variable laws

I Other examples of distribution functions: uniform on [0, 1],
exponential with rate λ, standard normal, Cantor set measure.

I Can also define distribution functions for random variables
that are a.s. integers (like Poisson or geometric or binomial
random variables, say). How about for a ratio of two
independent Poisson random variables? (This is a random
rational with a dense support on [0,∞).)

I Higher dimensional density functions analogously defined.
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Other properties

I Compositions of measurable maps between measure spaces
are measurable.

I If X1, . . . ,Xn are random variables in R, defined on the same
measure space, then (X1, . . . ,Xn) is a random variable in Rn.

I Sums and products of finitely many random variables are
random variables. If Xi is countable sequence of random
variables, then infn Xn is a random variable. Same for lim inf,
sup, lim sup.

I Given infinite sequence of random variables, consider the event
that they converge to a limit. Is this a measurable event?

I Yes. If it has measure one, we say sequence converges almost
surely.
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