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Recall: conditional expectation

I Say we’re given a probability space (Ω,F0,P) and a σ-field
F ⊂ F0 and a random variable X measurable w.r.t. F0, with
E |X | <∞. The conditional expectation of X given F is a
new random variable, which we can denote by Y = E (X |F).

I We require that Y is F measurable and that for all A in F ,
we have

∫
A XdP =

∫
A YdP.

I Any Y satisfying these properties is called a version of
E (X |F).

I Theorem: Up to redefinition on a measure zero set, the
random variable E (X |F) exists and is unique.

I This follows from Radon-Nikodym theorem.

I Theorem: E (X |Fi ) is a martingale if Fi is an increasing
sequence of σ-algebras and E (|X |) <∞.
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Martingales

I Let Fn be increasing sequence of σ-fields (called a filtration).

I A sequence Xn is adapted to Fn if Xn ∈ Fn for all n. If Xn is
an adapted sequence (with E |Xn| <∞) then it is called a
martingale if

E (Xn+1|Fn) = Xn

for all n. It’s a supermartingale (resp., submartingale) if
same thing holds with = replaced by ≤ (resp., ≥).
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Two big results

I Optional stopping theorem: Can’t make money in
expectation by timing sale of asset whose price is non-negative
martingale.

I Proof: Just a special case of statement about (H · X ) if
stopping time is bounded.

I Martingale convergence: A non-negative martingale almost
surely has a limit.

I Idea of proof: Count upcrossings (times martingale crosses a
fixed interval) and devise gambling strategy that makes lots of
money if the number of these is not a.s. finite. Basically, you
buy every time price gets below the interval, sell each time it
gets above.
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Problems

I Assume Intrade prices are continuous martingales. (Forget
about bid-ask spreads, possible longshot bias, this year’s
bizarre arbitrage opportunities, discontinuities brought about
by sudden spurts of information, etc.)

I How many primary candidates does one expect to ever exceed
20 percent on Intrade primary nomination market? (Asked by
Aldous.)

I Compute probability of having a martingale price reach a
before b if martingale prices vary continuously.

I Polya’s urn: r red and g green balls. Repeatedly sample
randomly and add extra ball of sampled color. Ratio of red to
green is martingale, hence a.s. converges to limit.

18.175 Lecture 28



Problems

I Assume Intrade prices are continuous martingales. (Forget
about bid-ask spreads, possible longshot bias, this year’s
bizarre arbitrage opportunities, discontinuities brought about
by sudden spurts of information, etc.)

I How many primary candidates does one expect to ever exceed
20 percent on Intrade primary nomination market? (Asked by
Aldous.)

I Compute probability of having a martingale price reach a
before b if martingale prices vary continuously.

I Polya’s urn: r red and g green balls. Repeatedly sample
randomly and add extra ball of sampled color. Ratio of red to
green is martingale, hence a.s. converges to limit.

18.175 Lecture 28



Problems

I Assume Intrade prices are continuous martingales. (Forget
about bid-ask spreads, possible longshot bias, this year’s
bizarre arbitrage opportunities, discontinuities brought about
by sudden spurts of information, etc.)

I How many primary candidates does one expect to ever exceed
20 percent on Intrade primary nomination market? (Asked by
Aldous.)

I Compute probability of having a martingale price reach a
before b if martingale prices vary continuously.

I Polya’s urn: r red and g green balls. Repeatedly sample
randomly and add extra ball of sampled color. Ratio of red to
green is martingale, hence a.s. converges to limit.

18.175 Lecture 28



Problems

I Assume Intrade prices are continuous martingales. (Forget
about bid-ask spreads, possible longshot bias, this year’s
bizarre arbitrage opportunities, discontinuities brought about
by sudden spurts of information, etc.)

I How many primary candidates does one expect to ever exceed
20 percent on Intrade primary nomination market? (Asked by
Aldous.)

I Compute probability of having a martingale price reach a
before b if martingale prices vary continuously.

I Polya’s urn: r red and g green balls. Repeatedly sample
randomly and add extra ball of sampled color. Ratio of red to
green is martingale, hence a.s. converges to limit.

18.175 Lecture 28



Outline

Recollections

More martingale theorems

18.175 Lecture 28



Outline

Recollections

More martingale theorems

18.175 Lecture 28



Lp convergence theorem

I Theorem: If Xn is a martingale with supE |Xn|p <∞ where
p > 1 then Xn → X a.s. and in Lp.

I Proof idea: Have (EX+
n )p ≤ (E |Xn|)p ≤ E |Xn|p for

martingale convergence theorem Xn → X a.s. Use Lp maximal
inequality to get Lp convergence.
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Orthogonality of martingale increments

I Theorem: Let Xn be a martingale with EX 2
n <∞ for all n. If

m ≤ n and Y ∈ Fm with EY 2 <∞, then
E
(
(Xn − Xm)Y

)
= 0.

I Proof idea: E
(
(Xn − Xm)Y

)
= E

[
E
(
(Xn − Xm)Y |Fm

)]
=

E
[
YE
(
(Xn − Xm)|Fm

)]
= 0

I Conditional variance theorem: If Xn is a martingale with
EX 2

n <∞ for all n then
E
(
(Xn − Xm)2|Fm

)
= E (X 2

n |Fm)− X 2
m.
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Square integrable martingales

I Suppose we have a martingale Xn with EX 2
n <∞ for all n.

I We know X 2
n is a submartingale. By Doob’s decomposition,

an write X 2
n = Mn + An where Mn is a martingale, and

An =
n∑

m=1

E (X 2
m|Fm−1)−X 2

m−1 =
n∑

m=1

E
(
(Xm−Xm−1)2|Fm−1

)
.

I An in some sense measures total accumulated variance by
time n.

I Theorem: E (supm |Xm|2) ≤ 4EA∞
I Proof idea: L2 maximal equality gives

E (sup0≤m≤n |Xm|2) ≤ 4EX 2
n = 4EAn. Use monotone

convergence.
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Square integrable martingales

I Suppose we have a martingale Xn with EX 2
n <∞ for all n.

I Theorem: limn→∞ Xn exists and is finite a.s. on {A∞ <∞}.
I Proof idea: Try fixing a and truncating at time

N = inf{n : An+1 > a2}, use L2 convergence theorem.
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Uniform integrability

I Say Xi , i ∈ I , are uniform integrable if

lim
M→∞

(
sup
i∈I

E (|Xi |; |Xi | > M)
)

= 0.

I Example: Given (Ω,F0,P) and X ∈ L1, then a uniformly
integral family is given by {E (X |F)} (where F ranges over all
σ-algebras contained in F0).

I Theorem: If Xn → X in probability then the following are
equivalent:

I Xn are uniformly integrable
I Xn → X in L1

I E |Xn| → E |X | <∞
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Submartingale convergence

I Following are equivalent for a submartingale:

I It’s uniformly integrable.
I It converges a.s. and in L1.
I It converges in L1.
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Backwards martingales

I Suppose E (Xn+1|Fn) = X with n ≤ 0 (and Fn increasing as n
increases).

I Theorem: X−∞ = limn→−∞ Xn exists a.s. and in L1.

I Proof idea: Use upcrosing inequality to show expected
number of upcrossings of any interval is finite. Since
Xn = E (X0|Fn) the Xn are uniformly integrable, and we can
deduce convergence in L1.

18.175 Lecture 28



Backwards martingales

I Suppose E (Xn+1|Fn) = X with n ≤ 0 (and Fn increasing as n
increases).

I Theorem: X−∞ = limn→−∞ Xn exists a.s. and in L1.

I Proof idea: Use upcrosing inequality to show expected
number of upcrossings of any interval is finite. Since
Xn = E (X0|Fn) the Xn are uniformly integrable, and we can
deduce convergence in L1.

18.175 Lecture 28



Backwards martingales

I Suppose E (Xn+1|Fn) = X with n ≤ 0 (and Fn increasing as n
increases).

I Theorem: X−∞ = limn→−∞ Xn exists a.s. and in L1.

I Proof idea: Use upcrosing inequality to show expected
number of upcrossings of any interval is finite. Since
Xn = E (X0|Fn) the Xn are uniformly integrable, and we can
deduce convergence in L1.

18.175 Lecture 28



General optional stopping theorem

I Let Xn be a uniformly integrable submartingale.

I Theorem: For any stopping time N, XN∧n is uniformly
integrable.

I Theorem: If E |Xn| <∞ and Xn1(N>n) is uniformly
integrable, then XN∧n is uniformly integrable.

I Theorem: For any stopping time N ≤ ∞, we have
EX0 ≤ EXN ≤ EX∞ where X∞ = limXn.

I Fairly general form of optional stopping theorem: If
L ≤ M are stopping times and YM∧n is a uniformly integrable
submartingale, then EYL ≤ EYM and YL ≤ E (YM |FL).
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