18.175: Lecture 23

Random walks

Scott Sheffield

MIT

Outline

Random walks

Stopping times

Arcsin law, other SRW stories

Outline

Random walks

Stopping times

Arcsin law, other SRW stories

▶ Start with measure space (S, S, μ) . Let $\Omega = \{(\omega_1, \omega_2, \ldots) : \omega_i \in S\}$, let \mathcal{F} be product σ -algebra and P the product probability measure.

- ▶ Start with measure space (S, S, μ) . Let $\Omega = \{(\omega_1, \omega_2, \ldots) : \omega_i \in S\}$, let \mathcal{F} be product σ -algebra and P the product probability measure.
- ▶ Finite permutation of $\mathbb N$ is one-to-one map from $\mathbb N$ to itself that fixes all but finitely many points.

- ▶ Start with measure space (S, S, μ) . Let $\Omega = \{(\omega_1, \omega_2, \ldots) : \omega_i \in S\}$, let \mathcal{F} be product σ -algebra and P the product probability measure.
- ▶ Finite permutation of \mathbb{N} is one-to-one map from \mathbb{N} to itself that fixes all but finitely many points.
- ▶ Event $A \in \mathcal{F}$ is permutable if it is invariant under any finite permutation of the ω_i .

- ▶ Start with measure space (S, S, μ) . Let $\Omega = \{(\omega_1, \omega_2, \ldots) : \omega_i \in S\}$, let \mathcal{F} be product σ -algebra and P the product probability measure.
- ▶ Finite permutation of \mathbb{N} is one-to-one map from \mathbb{N} to itself that fixes all but finitely many points.
- ▶ Event $A \in \mathcal{F}$ is permutable if it is invariant under any finite permutation of the ω_i .
- ▶ Let \mathcal{E} be the σ -field of permutable events.

- ▶ Start with measure space (S, S, μ) . Let $\Omega = \{(\omega_1, \omega_2, \ldots) : \omega_i \in S\}$, let \mathcal{F} be product σ -algebra and P the product probability measure.
- ▶ Finite permutation of \mathbb{N} is one-to-one map from \mathbb{N} to itself that fixes all but finitely many points.
- ▶ Event $A \in \mathcal{F}$ is permutable if it is invariant under any finite permutation of the ω_i .
- ▶ Let \mathcal{E} be the σ -field of permutable events.
- ▶ This is related to the tail σ -algebra we introduced earlier in the course. Bigger or smaller?

Hewitt-Savage 0-1 law

▶ If X_1, X_2, \ldots are i.i.d. and $A \in \mathcal{A}$ then $P(A) \in \{0, 1\}$.

Hewitt-Savage 0-1 law

- ▶ If X_1, X_2, \ldots are i.i.d. and $A \in \mathcal{A}$ then $P(A) \in \{0, 1\}$.
- ▶ Idea of proof: Try to show A is independent of itself, i.e., that $P(A) = P(A \cap A) = P(A)P(A)$. Start with measure theoretic fact that we can approximate A by a set A_n in σ -algebra generated by $X_1, \ldots X_n$, so that symmetric difference of A and A_n has very small probability. Note that A_n is independent of event A'_n that A_n holds when X_1, \ldots, X_n and X_{n_1}, \ldots, X_{2n} are swapped. Symmetric difference between A and A'_n is also small, so A is independent of itself up to this small error. Then make error arbitrarily small.

▶ If X_i are i.i.d. in \mathbb{R}^n then $S_n = \sum_{i=1}^n X_i$ is a **random walk** on \mathbb{R}^n .

- ▶ If X_i are i.i.d. in \mathbb{R}^n then $S_n = \sum_{i=1}^n X_i$ is a **random walk** on \mathbb{R}^n .
- ▶ **Theorem:** if S_n is a random walk on \mathbb{R} then one of the following occurs with probability one:

- ▶ If X_i are i.i.d. in \mathbb{R}^n then $S_n = \sum_{i=1}^n X_i$ is a **random walk** on \mathbb{R}^n .
- ▶ **Theorem:** if S_n is a random walk on \mathbb{R} then one of the following occurs with probability one:
 - $S_n = 0$ for all n

- ▶ If X_i are i.i.d. in \mathbb{R}^n then $S_n = \sum_{i=1}^n X_i$ is a **random walk** on \mathbb{R}^n .
- ▶ **Theorem:** if S_n is a random walk on \mathbb{R} then one of the following occurs with probability one:
 - $ightharpoonup S_n = 0$ for all n
 - $ightharpoonup S_n o \infty$

- ▶ If X_i are i.i.d. in \mathbb{R}^n then $S_n = \sum_{i=1}^n X_i$ is a **random walk** on \mathbb{R}^n .
- ▶ **Theorem:** if S_n is a random walk on \mathbb{R} then one of the following occurs with probability one:
 - $S_n = 0$ for all n
 - $S_n \to \infty$
 - $ightharpoonup S_n o -\infty$

- ▶ If X_i are i.i.d. in \mathbb{R}^n then $S_n = \sum_{i=1}^n X_i$ is a **random walk** on \mathbb{R}^n .
- ▶ **Theorem:** if S_n is a random walk on \mathbb{R} then one of the following occurs with probability one:
 - $S_n = 0$ for all n
 - $ightharpoonup S_n o \infty$
 - $ightharpoonup S_n o -\infty$
 - ▶ $-\infty = \liminf S_n < \limsup S_n = \infty$

- ▶ If X_i are i.i.d. in \mathbb{R}^n then $S_n = \sum_{i=1}^n X_i$ is a **random walk** on \mathbb{R}^n .
- ▶ **Theorem:** if S_n is a random walk on \mathbb{R} then one of the following occurs with probability one:
 - $ightharpoonup S_n = 0$ for all n
 - $ightharpoonup S_n o \infty$
 - $S_n \to -\infty$
 - ▶ $-\infty = \liminf S_n < \limsup S_n = \infty$
- ▶ Idea of proof: Hewitt-Savage implies the lim sup S_n and lim inf S_n are almost sure constants in $[-\infty, \infty]$. Note that if X_1 is not a.s. constant, then both values would depend on X_1 if they were not in $\pm \infty$

Outline

Random walks

Stopping times

Arcsin law, other SRW stories

Outline

Random walks

Stopping times

Arcsin law, other SRW stories

Stopping time definition

▶ Say that T is a **stopping time** if the event that T = n is in \mathcal{F}_n for $i \leq n$.

Stopping time definition

- ▶ Say that T is a **stopping time** if the event that T = n is in \mathcal{F}_n for $i \leq n$.
- ▶ In finance applications, *T* might be the time one sells a stock. Then this states that the decision to sell at time *n* depends only on prices up to time *n*, not on (as yet unknown) future prices.

▶ Let $A_1,...$ be i.i.d. random variables equal to -1 with probability .5 and 1 with probability .5 and let $X_0 = 0$ and $X_n = \sum_{i=1}^n A_i$ for $n \ge 0$.

- ▶ Let $A_1,...$ be i.i.d. random variables equal to -1 with probability .5 and 1 with probability .5 and let $X_0 = 0$ and $X_n = \sum_{i=1}^n A_i$ for $n \ge 0$.
- ▶ Which of the following is a stopping time?
 - 1. The smallest T for which $|X_T| = 50$
 - 2. The smallest T for which $X_T \in \{-10, 100\}$
 - 3. The smallest T for which $X_T = 0$.
 - 4. The T at which the X_n sequence achieves the value 17 for the 9th time.
 - 5. The value of $T \in \{0, 1, 2, ..., 100\}$ for which X_T is largest.
 - 6. The largest $T \in \{0, 1, 2, ..., 100\}$ for which $X_T = 0$.

- ▶ Let $A_1,...$ be i.i.d. random variables equal to -1 with probability .5 and 1 with probability .5 and let $X_0 = 0$ and $X_n = \sum_{i=1}^n A_i$ for $n \ge 0$.
- ▶ Which of the following is a stopping time?
 - 1. The smallest T for which $|X_T| = 50$
 - 2. The smallest T for which $X_T \in \{-10, 100\}$
 - 3. The smallest T for which $X_T = 0$.
 - 4. The T at which the X_n sequence achieves the value 17 for the 9th time.
 - 5. The value of $T \in \{0, 1, 2, ..., 100\}$ for which X_T is largest.
 - 6. The largest $T \in \{0, 1, 2, ..., 100\}$ for which $X_T = 0$.

- Let A_1, \ldots be i.i.d. random variables equal to -1 with probability .5 and 1 with probability .5 and let $X_0 = 0$ and $X_n = \sum_{i=1}^n A_i$ for $n \ge 0$.
- Which of the following is a stopping time?
 - 1. The smallest T for which $|X_T| = 50$
 - 2. The smallest T for which $X_T \in \{-10, 100\}$
 - 3. The smallest T for which $X_T = 0$.
 - 4. The T at which the X_n sequence achieves the value 17 for the 9th time.
 - 5. The value of $T \in \{0, 1, 2, ..., 100\}$ for which X_T is largest.
 - 6. The largest $T \in \{0, 1, 2, ..., 100\}$ for which $X_T = 0$.
- Answer: first four, not last two.

▶ **Theorem:** Let $X_1, X_2, ...$ be i.i.d. and N a stopping time with $N < \infty$.

- ▶ **Theorem:** Let $X_1, X_2, ...$ be i.i.d. and N a stopping time with $N < \infty$.
- ▶ Conditioned on stopping time $N < \infty$, conditional law of $\{X_{N+n}, n \ge 1\}$ is independent of \mathcal{F}_n and has same law as original sequence.

- ▶ **Theorem:** Let $X_1, X_2, ...$ be i.i.d. and N a stopping time with $N < \infty$.
- ▶ Conditioned on stopping time $N < \infty$, conditional law of $\{X_{N+n}, n \ge 1\}$ is independent of \mathcal{F}_n and has same law as original sequence.
- ▶ Wald's equation: Let X_i be i.i.d. with $E|X_i| < \infty$. If N is a stopping time with $EN < \infty$ then $ES_N = EX_1EN$.

- ▶ **Theorem:** Let $X_1, X_2, ...$ be i.i.d. and N a stopping time with $N < \infty$.
- ▶ Conditioned on stopping time $N < \infty$, conditional law of $\{X_{N+n}, n \ge 1\}$ is independent of \mathcal{F}_n and has same law as original sequence.
- ▶ Wald's equation: Let X_i be i.i.d. with $E|X_i| < \infty$. If N is a stopping time with $EN < \infty$ then $ES_N = EX_1EN$.
- ▶ Wald's second equation: Let X_i be i.i.d. with $E|X_i|=0$ and $EX_i^2=\sigma^2<\infty$. If N is a stopping time with $EN<\infty$ then $ES_N=\sigma^2EN$.

Wald applications to SRW

▶ $S_0 = a \in \mathbb{Z}$ and at each time step S_j independently changes by ± 1 according to a fair coin toss. Fix $A \in \mathbb{Z}$ and let $N = \inf\{k : S_k \in \{0, A\}.$ What is $\mathbb{E}S_N$?

Wald applications to SRW

- ▶ $S_0 = a \in \mathbb{Z}$ and at each time step S_j independently changes by ± 1 according to a fair coin toss. Fix $A \in \mathbb{Z}$ and let $N = \inf\{k : S_k \in \{0, A\}.$ What is $\mathbb{E}S_N$?
- ▶ What is EN?

Outline

Random walks

Stopping times

Arcsin law, other SRW stories

Outline

Random walks

Stopping times

Arcsin law, other SRW stories

Reflection principle

► How many walks from (0, x) to (n, y) that don't cross the horizontal axis?

Reflection principle

- ▶ How many walks from (0, x) to (n, y) that don't cross the horizontal axis?
- ► Try counting walks that *do* cross by giving bijection to walks from (0, -x) to (n, y).

Ballot Theorem

▶ Suppose that in election candidate A gets α votes and B gets $\beta < \alpha$ votes. What's probability that A is a head throughout the counting?

Ballot Theorem

- ▶ Suppose that in election candidate A gets α votes and B gets $\beta < \alpha$ votes. What's probability that A is a head throughout the counting?
- ▶ Answer: $(\alpha \beta)/(\alpha + \beta)$. Can be proved using reflection principle.

Arcsin theorem

► Theorem for last hitting time.

Arcsin theorem

- ▶ Theorem for last hitting time.
- ▶ Theorem for amount of positive positive time.