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Infinitely divisible laws

I Say a random variable X is infinitely divisible, for each n,
there is a random variable Y such that X has the same law as
the sum of n i.i.d. copies of Y .

I What random variables are infinitely divisible?

I Poisson, Cauchy, normal, stable, etc.

I Let’s look at the characteristic functions of these objects.
What about compound Poisson random variables (linear
combinations of independent Poisson random variables)?
What are their characteristic functions like?

I What if have a random variable X and then we choose a
Poisson random variable N and add up N independent copies
of X .

I More general constructions are possible via Lévy Khintchine
representation.
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representation.

18.175 Lecture 20



Infinitely divisible laws

I Say a random variable X is infinitely divisible, for each n,
there is a random variable Y such that X has the same law as
the sum of n i.i.d. copies of Y .

I What random variables are infinitely divisible?

I Poisson, Cauchy, normal, stable, etc.

I Let’s look at the characteristic functions of these objects.
What about compound Poisson random variables (linear
combinations of independent Poisson random variables)?
What are their characteristic functions like?

I What if have a random variable X and then we choose a
Poisson random variable N and add up N independent copies
of X .

I More general constructions are possible via Lévy Khintchine
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Higher dimensional limit theorems

I Much of the CLT story generalizes to higher dimensional
random variables.

I For example, given a random vector (X ,Y ,Z ), we can define
φ(a, b, c) = Ee i(aX+bY+cZ).

I This is just a higher dimensional Fourier transform of the
density function.

I The inversion theorems and continuity theorems that apply
here are essentially the same as in the one-dimensional case.

18.175 Lecture 20



Higher dimensional limit theorems

I Much of the CLT story generalizes to higher dimensional
random variables.

I For example, given a random vector (X ,Y ,Z ), we can define
φ(a, b, c) = Ee i(aX+bY+cZ).

I This is just a higher dimensional Fourier transform of the
density function.

I The inversion theorems and continuity theorems that apply
here are essentially the same as in the one-dimensional case.

18.175 Lecture 20



Higher dimensional limit theorems

I Much of the CLT story generalizes to higher dimensional
random variables.

I For example, given a random vector (X ,Y ,Z ), we can define
φ(a, b, c) = Ee i(aX+bY+cZ).

I This is just a higher dimensional Fourier transform of the
density function.

I The inversion theorems and continuity theorems that apply
here are essentially the same as in the one-dimensional case.

18.175 Lecture 20



Higher dimensional limit theorems

I Much of the CLT story generalizes to higher dimensional
random variables.

I For example, given a random vector (X ,Y ,Z ), we can define
φ(a, b, c) = Ee i(aX+bY+cZ).

I This is just a higher dimensional Fourier transform of the
density function.

I The inversion theorems and continuity theorems that apply
here are essentially the same as in the one-dimensional case.

18.175 Lecture 20


	Infinite divisibility
	Higher dimensional CFs and CLTs

