18.175: Lecture 14

Weak convergence and characteristic functions

Scott Sheffield

MIT

Outline

Weak convergence

Outline

Weak convergence

▶ **Theorem:** If $F_n \to F_\infty$, then we can find corresponding random variables Y_n on a common measure space so that $Y_n \to Y_\infty$ almost surely.

- ▶ **Theorem:** If $F_n o F_\infty$, then we can find corresponding random variables Y_n on a common measure space so that $Y_n o Y_\infty$ almost surely.
- ▶ **Proof idea:** Take $\Omega = (0,1)$ and $Y_n = \sup\{y : F_n(y) < x\}$.

- ▶ **Theorem:** If $F_n o F_\infty$, then we can find corresponding random variables Y_n on a common measure space so that $Y_n o Y_\infty$ almost surely.
- ▶ **Proof idea:** Take $\Omega = (0,1)$ and $Y_n = \sup\{y : F_n(y) < x\}$.
- ▶ **Theorem:** $X_n \Longrightarrow X_\infty$ if and only if for every bounded continuous g we have $Eg(X_n) \to Eg(X_\infty)$.

- ▶ **Theorem:** If $F_n \to F_\infty$, then we can find corresponding random variables Y_n on a common measure space so that $Y_n \to Y_\infty$ almost surely.
- ▶ **Proof idea:** Take $\Omega = (0,1)$ and $Y_n = \sup\{y : F_n(y) < x\}$.
- ▶ **Theorem:** $X_n \Longrightarrow X_\infty$ if and only if for every bounded continuous g we have $Eg(X_n) \to Eg(X_\infty)$.
- ▶ **Proof idea:** Define X_n on common sample space so converge a.s., use bounded convergence theorem.

- ▶ **Theorem:** If $F_n o F_\infty$, then we can find corresponding random variables Y_n on a common measure space so that $Y_n o Y_\infty$ almost surely.
- ▶ **Proof idea:** Take $\Omega = (0,1)$ and $Y_n = \sup\{y : F_n(y) < x\}$.
- ▶ **Theorem:** $X_n \Longrightarrow X_\infty$ if and only if for every bounded continuous g we have $Eg(X_n) \to Eg(X_\infty)$.
- ▶ **Proof idea:** Define X_n on common sample space so converge a.s., use bounded convergence theorem.
- ▶ **Theorem:** Suppose g is measurable and its set of discontinuity points has μ_X measure zero. Then $X_n \Longrightarrow X_\infty$ implies $g(X_n) \Longrightarrow g(X)$.

- ▶ **Theorem:** If $F_n o F_\infty$, then we can find corresponding random variables Y_n on a common measure space so that $Y_n o Y_\infty$ almost surely.
- ▶ **Proof idea:** Take $\Omega = (0,1)$ and $Y_n = \sup\{y : F_n(y) < x\}$.
- ▶ **Theorem:** $X_n \Longrightarrow X_\infty$ if and only if for every bounded continuous g we have $Eg(X_n) \to Eg(X_\infty)$.
- ▶ **Proof idea:** Define X_n on common sample space so converge a.s., use bounded convergence theorem.
- ▶ **Theorem:** Suppose g is measurable and its set of discontinuity points has μ_X measure zero. Then $X_n \Longrightarrow X_\infty$ implies $g(X_n) \Longrightarrow g(X)$.
- ▶ **Proof idea:** Define X_n on common sample space so converge a.s., use bounded convergence theorem.

▶ **Theorem:** Every sequence F_n of distribution has subsequence converging to right continuous nondecreasing F so that $\lim F_{n(k)}(y) = F(y)$ at all continuity points of F.

- ▶ **Theorem:** Every sequence F_n of distribution has subsequence converging to right continuous nondecreasing F so that $\lim F_{n(k)}(y) = F(y)$ at all continuity points of F.
- ▶ Limit may not be a distribution function.

- ▶ **Theorem:** Every sequence F_n of distribution has subsequence converging to right continuous nondecreasing F so that $\lim F_{n(k)}(y) = F(y)$ at all continuity points of F.
- Limit may not be a distribution function.
- Need a "tightness" assumption to make that the case. Say μ_n are **tight** if for every ϵ we can find an M so that $\mu_n[-M,M] < \epsilon$ for all n. Define tightness analogously for corresponding real random variables or distributions functions.

- ▶ **Theorem:** Every sequence F_n of distribution has subsequence converging to right continuous nondecreasing F so that $\lim F_{n(k)}(y) = F(y)$ at all continuity points of F.
- Limit may not be a distribution function.
- Need a "tightness" assumption to make that the case. Say μ_n are **tight** if for every ϵ we can find an M so that $\mu_n[-M,M] < \epsilon$ for all n. Define tightness analogously for corresponding real random variables or distributions functions.
- ▶ **Theorem:** Every subsequential limit of the *F_n* above is the distribution function of a probability measure if and only if the *F_n* are tight.

If we have two probability measures μ and ν we define the **total variation distance** between them is $||\mu - \nu|| := \sup_{B} |\mu(B) - \nu(B)|$.

If we have two probability measures μ and ν we define the **total variation distance** between them is $||\mu - \nu|| := \sup_{B} |\mu(B) - \nu(B)|$.

Intuitively, it two measures are close in the total variation sense, then (most of the time) a sample from one measure looks like a sample from the other.

If we have two probability measures μ and ν we define the **total variation distance** between them is $||\mu - \nu|| := \sup_{B} |\mu(B) - \nu(B)|$.

- Intuitively, it two measures are close in the total variation sense, then (most of the time) a sample from one measure looks like a sample from the other.
- ► Corresponds to *L*₁ distance between density functions when these exist.

- If we have two probability measures μ and ν we define the **total variation distance** between them is $||\mu \nu|| := \sup_{B} |\mu(B) \nu(B)|.$
- Intuitively, it two measures are close in the total variation sense, then (most of the time) a sample from one measure looks like a sample from the other.
- ► Corresponds to *L*₁ distance between density functions when these exist.
- Convergence in total variation norm is much stronger than weak convergence. Discrete uniform random variable U_n on $(1/n, 2/n, 3/n, \ldots, n/n)$ converges weakly to uniform random variable U on [0,1]. But total variation distance between U_n and U is 1 for all n.

18.175 Lecture 14

Outline

Weak convergence

Outline

Weak convergence

▶ Let *X* be a random variable.

- Let X be a random variable.
- ► The **characteristic function** of X is defined by $\phi(t) = \phi_X(t) := E[e^{itX}].$

- Let X be a random variable.
- ► The **characteristic function** of X is defined by $\phi(t) = \phi_X(t) := E[e^{itX}].$
- ▶ Recall that by definition $e^{it} = \cos(t) + i\sin(t)$.

- Let X be a random variable.
- ► The **characteristic function** of X is defined by $\phi(t) = \phi_X(t) := E[e^{itX}].$
- ▶ Recall that by definition $e^{it} = \cos(t) + i\sin(t)$.
- ▶ Characteristic function ϕ_X similar to moment generating function M_X .

- Let X be a random variable.
- ► The **characteristic function** of X is defined by $\phi(t) = \phi_X(t) := E[e^{itX}].$
- ▶ Recall that by definition $e^{it} = \cos(t) + i\sin(t)$.
- ▶ Characteristic function ϕ_X similar to moment generating function M_X .
- $\phi_{X+Y} = \phi_X \phi_Y$, just as $M_{X+Y} = M_X M_Y$, if X and Y are independent.

- Let X be a random variable.
- ► The **characteristic function** of X is defined by $\phi(t) = \phi_X(t) := E[e^{itX}].$
- ▶ Recall that by definition $e^{it} = \cos(t) + i\sin(t)$.
- ▶ Characteristic function ϕ_X similar to moment generating function M_X .
- $\phi_{X+Y} = \phi_X \phi_Y$, just as $M_{X+Y} = M_X M_Y$, if X and Y are independent.
- ▶ And $\phi_{aX}(t) = \phi_X(at)$ just as $M_{aX}(t) = M_X(at)$.

- Let X be a random variable.
- ► The **characteristic function** of X is defined by $\phi(t) = \phi_X(t) := E[e^{itX}].$
- ▶ Recall that by definition $e^{it} = \cos(t) + i\sin(t)$.
- ▶ Characteristic function ϕ_X similar to moment generating function M_X .
- $\phi_{X+Y} = \phi_X \phi_Y$, just as $M_{X+Y} = M_X M_Y$, if X and Y are independent.
- And $\phi_{aX}(t) = \phi_X(at)$ just as $M_{aX}(t) = M_X(at)$.
- ▶ And if X has an mth moment then $E[X^m] = i^m \phi_X^{(m)}(0)$.

- Let X be a random variable.
- ► The **characteristic function** of X is defined by $\phi(t) = \phi_X(t) := E[e^{itX}].$
- ▶ Recall that by definition $e^{it} = \cos(t) + i\sin(t)$.
- ▶ Characteristic function ϕ_X similar to moment generating function M_X .
- $\phi_{X+Y} = \phi_X \phi_Y$, just as $M_{X+Y} = M_X M_Y$, if X and Y are independent.
- And $\phi_{aX}(t) = \phi_X(at)$ just as $M_{aX}(t) = M_X(at)$.
- ▶ And if X has an mth moment then $E[X^m] = i^m \phi_X^{(m)}(0)$.
- Characteristic functions are well defined at all t for all random variables X.

$$\phi(0) = 1$$

$$\phi(0) = 1$$

$$\phi(0) = 1$$

$$\phi(-t) = \overline{\phi(t)}$$

- $\phi(0) = 1$
- $\qquad \phi(-t) = \overline{\phi(t)}$
- $|\phi(t)| = |Ee^{itX}| \le E|e^{itX}| = 1.$

- $\phi(0) = 1$
- $\phi(-t) = \overline{\phi(t)}$
- $|\phi(t)| = |Ee^{itX}| \le E|e^{itX}| = 1.$
- ▶ $|\phi(t+h) \phi(t)| \le E|e^{ihX} 1|$, so $\phi(t)$ uniformly continuous on $(-\infty, \infty)$

- $\phi(0) = 1$
- $\phi(-t) = \overline{\phi(t)}$
- $|\phi(t)| = |Ee^{itX}| \le E|e^{itX}| = 1.$
- ▶ $|\phi(t+h) \phi(t)| \le E|e^{ihX} 1|$, so $\phi(t)$ uniformly continuous on $(-\infty, \infty)$
- $ightharpoonup Ee^{it(aX+b)} = e^{itb}\phi(at)$

► Coin: If P(X = 1) = P(X = -1) = 1/2 then $\phi_X(t) = (e^{it} + e^{-it})/2 = \cos t$.

- ► Coin: If P(X = 1) = P(X = -1) = 1/2 then $\phi_X(t) = (e^{it} + e^{-it})/2 = \cos t$.
- ► That's periodic. Do we always have periodicity if *X* is a random integer?

- ► Coin: If P(X = 1) = P(X = -1) = 1/2 then $\phi_X(t) = (e^{it} + e^{-it})/2 = \cos t$.
- ► That's periodic. Do we always have periodicity if *X* is a random integer?
- ▶ **Poisson:** If X is Poisson with parameter λ then $\phi_X(t) = \sum_{k=0}^{\infty} e^{-\lambda} \frac{\lambda^k e^{itk}}{k!} = \exp(\lambda(e^{it} 1)).$

- ▶ Coin: If P(X = 1) = P(X = -1) = 1/2 then $\phi_X(t) = (e^{it} + e^{-it})/2 = \cos t$.
- ► That's periodic. Do we always have periodicity if *X* is a random integer?
- ▶ **Poisson:** If X is Poisson with parameter λ then $\phi_X(t) = \sum_{k=0}^{\infty} e^{-\lambda} \frac{\lambda^k e^{itk}}{k!} = \exp(\lambda(e^{it} 1)).$
- ▶ Why does doubling λ amount to squaring ϕ_X ?

- ► Coin: If P(X = 1) = P(X = -1) = 1/2 then $\phi_X(t) = (e^{it} + e^{-it})/2 = \cos t$.
- ► That's periodic. Do we always have periodicity if *X* is a random integer?
- ▶ **Poisson:** If X is Poisson with parameter λ then $\phi_X(t) = \sum_{k=0}^{\infty} e^{-\lambda} \frac{\lambda^k e^{itk}}{k!} = \exp(\lambda(e^{it} 1)).$
- Why does doubling λ amount to squaring ϕ_X ?
- ▶ **Normal:** If X is standard normal, then $\phi_X(t) = e^{-t^2/2}$.

- ► Coin: If P(X = 1) = P(X = -1) = 1/2 then $\phi_X(t) = (e^{it} + e^{-it})/2 = \cos t$.
- ► That's periodic. Do we always have periodicity if *X* is a random integer?
- ▶ **Poisson:** If X is Poisson with parameter λ then $\phi_X(t) = \sum_{k=0}^{\infty} e^{-\lambda} \frac{\lambda^k e^{itk}}{k!} = \exp(\lambda(e^{it} 1)).$
- ▶ Why does doubling λ amount to squaring ϕ_X ?
- ▶ **Normal:** If X is standard normal, then $\phi_X(t) = e^{-t^2/2}$.
- ▶ Is ϕ_X always real when the law of X is symmetric about zero?

- ► Coin: If P(X = 1) = P(X = -1) = 1/2 then $\phi_X(t) = (e^{it} + e^{-it})/2 = \cos t$.
- ► That's periodic. Do we always have periodicity if *X* is a random integer?
- ▶ **Poisson:** If X is Poisson with parameter λ then $\phi_X(t) = \sum_{k=0}^{\infty} e^{-\lambda} \frac{\lambda^k e^{itk}}{k!} = \exp(\lambda(e^{it} 1)).$
- ▶ Why does doubling λ amount to squaring ϕ_X ?
- ▶ **Normal:** If *X* is standard normal, then $\phi_X(t) = e^{-t^2/2}$.
- ▶ Is ϕ_X always real when the law of X is symmetric about zero?
- **Exponential:** If X is standard exponential (density e^{-x} on $(0,\infty)$) then $\phi_X(t)=1/(1-it)$.

- ► Coin: If P(X = 1) = P(X = -1) = 1/2 then $\phi_X(t) = (e^{it} + e^{-it})/2 = \cos t$.
- ► That's periodic. Do we always have periodicity if *X* is a random integer?
- ▶ **Poisson:** If X is Poisson with parameter λ then $\phi_X(t) = \sum_{k=0}^{\infty} e^{-\lambda} \frac{\lambda^k e^{itk}}{k!} = \exp(\lambda(e^{it} 1)).$
- Why does doubling λ amount to squaring ϕ_X ?
- ▶ **Normal:** If X is standard normal, then $\phi_X(t) = e^{-t^2/2}$.
- ▶ Is ϕ_X always real when the law of X is symmetric about zero?
- **Exponential:** If X is standard exponential (density e^{-x} on $(0,\infty)$) then $\phi_X(t)=1/(1-it)$.
- ▶ Bilateral exponential: if $f_X(t) = e^{-|x|}/2$ on \mathbb{R} then $\phi_X(t) = 1/(1+t^2)$. Use linearity of $f_X \to \phi_X$.