18.175: Lecture 13
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Legendre transform

» Define Legendre transform (or Legendre dual) of a function
A:RY - R by

N*(x) = sup {(\, x) — A(N)}.
pYan
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Legendre transform

» Define Legendre transform (or Legendre dual) of a function

A:RY - R by
N*(x) = sup {(A, x) = A(A)}.
AERY

» Let's describe the Legendre dual geometrically if d = 1: A*(x)
is where tangent line to A of slope x intersects the real axis.
We can “roll” this tangent line around the convex hull of the
graph of A, to get all A* values.
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Legendre transform

» Define Legendre transform (or Legendre dual) of a function
A:RY - R by
N*(x) = sup {(A, x) = A(A)}.
AERY
» Let's describe the Legendre dual geometrically if d = 1: A*(x)

is where tangent line to A of slope x intersects the real axis.
We can “roll” this tangent line around the convex hull of the

graph of A, to get all A* values.
> |s the Legendre dual always convex?
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Legendre transform

» Define Legendre transform (or Legendre dual) of a function

A:RY - R by
N*(x) = sup {(\, x) — A(N)}.
AERY

» Let's describe the Legendre dual geometrically if d = 1: A*(x)
is where tangent line to A of slope x intersects the real axis.
We can “roll” this tangent line around the convex hull of the
graph of A, to get all A* values.

> |s the Legendre dual always convex?

» What is the Legendre dual of x?? Of the function equal to 0
at 0 and oo everywhere else?
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Legendre transform

» Define Legendre transform (or Legendre dual) of a function

A:RY - R by
N*(x) = sup {(\, x) — A(N)}.
AERY

» Let's describe the Legendre dual geometrically if d = 1: A*(x)
is where tangent line to A of slope x intersects the real axis.
We can “roll” this tangent line around the convex hull of the
graph of A, to get all A* values.

> |s the Legendre dual always convex?

» What is the Legendre dual of x?? Of the function equal to 0
at 0 and oo everywhere else?

» How are derivatives of A and A* related?
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Legendre transform

» Define Legendre transform (or Legendre dual) of a function

A:RY - R by
N*(x) = sup {(\, x) — A(N)}.
AERY

» Let's describe the Legendre dual geometrically if d = 1: A*(x)
is where tangent line to A of slope x intersects the real axis.
We can “roll” this tangent line around the convex hull of the
graph of A, to get all A* values.

> |s the Legendre dual always convex?

» What is the Legendre dual of x?? Of the function equal to 0
at 0 and oo everywhere else?

» How are derivatives of A and A* related?

» What is the Legendre dual of the Legendre dual of a convex
function?
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Legendre transform

» Define Legendre transform (or Legendre dual) of a function

A:RY - R by
N*(x) = sup {(\, x) — A(N)}.
AERA

» Let's describe the Legendre dual geometrically if d = 1: A*(x)
is where tangent line to A of slope x intersects the real axis.
We can “roll” this tangent line around the convex hull of the
graph of A, to get all A* values.

> |s the Legendre dual always convex?

» What is the Legendre dual of x?? Of the function equal to 0
at 0 and oo everywhere else?

» How are derivatives of A and A* related?

» What is the Legendre dual of the Legendre dual of a convex
function?

» What's the higher dimensional analog of rolling the tangent
line?
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Recall: moment generating functions

» Let X be a random variable.
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Recall: moment generating functions

» Let X be a random variable.

» The moment generating function of X is defined by
M(t) = Mx(t) := E[e¥].
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Recall: moment generating functions

> Let X be a random variable.

» The moment generating function of X is defined by
M(t) = Mx(t) := E[e¥].

» When X is discrete, can write M(t) = >, e™px(x). So M(t)
is a weighted average of countably many exponential
functions.
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Recall: moment generating functions

> Let X be a random variable.

» The moment generating function of X is defined by
M(t) = Mx(t) := E[e¥].

» When X is discrete, can write M(t) = >, e™px(x). So M(t)
is a weighted average of countably many exponential
functions.

» When X is continuous, can write M(t) = [*_e™f(x)dx. So
M(t) is a weighted average of a continuum of exponential
functions.
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: moment generating functions

> Let X be a random variable.

» The moment generating function of X is defined by
M(t) = Mx(t) := E[e¥].

» When X is discrete, can write M(t) = >, e™px(x). So M(t)
is a weighted average of countably many exponential

functions.

» When X is continuous, can write M(t) = [*_e™f(x)dx. So
M(t) is a weighted average of a continuum of exponential
functions.

» We always have M(0) = 1.
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: moment generating functions

> Let X be a random variable.

» The moment generating function of X is defined by
M(t) = Mx(t) := E[e¥].

» When X is discrete, can write M(t) = >, e™px(x). So M(t)
is a weighted average of countably many exponential

functions.

» When X is continuous, can write M(t) = [*_e™f(x)dx. So
M(t) is a weighted average of a continuum of exponential
functions.

» We always have M(0) = 1.

» If b>0and t > 0 then
E[etX] > E[etmin{X,b}] > P{X > b}etb_
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: moment generating functions

> Let X be a random variable.

» The moment generating function of X is defined by
M(t) = Mx(t) := E[e¥].

» When X is discrete, can write M(t) = >, e™px(x). So M(t)
is a weighted average of countably many exponential

functions.

» When X is continuous, can write M(t) = [*_e™f(x)dx. So
M(t) is a weighted average of a continuum of exponential
functions.

» We always have M(0) = 1.

» If b>0and t > 0 then
E[etX] > E[etmin{X,b}] > P{X > b}etb_

» If X takes both positive and negative values with positive
probability then M(t) grows at least exponentially fast in ||
as [t] = 0.
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Recall: moment generating functions for i.i.d. sums

» We showed that if Z =X+ Y and X and Y are independent,
then /\/Iz(t) = Mx(t)/\/ly(t)
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Recall: moment generating functions for i.i.d. sums

» We showed that if Z =X+ Y and X and Y are independent,
then /\/Iz(t) = Mx(t)/\/ly(t)

> If X1...X, are i.i.d. copies of X and Z = X1 + ...+ X, then
what is Mz?
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Recall: moment generating functions for i.i.d. sums

» We showed that if Z =X+ Y and X and Y are independent,
then /\/Iz(t) = Mx(t)/\/ly(t)

> If X1...X, are i.i.d. copies of X and Z = X1 + ...+ X, then
what is Mz?

> Answer: Mg.
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Large deviations

» Consider i.i.d. random variables X;. Can we show that
P(S, > na) — 0 exponentially fast when a > E[X;]?
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Large deviations

» Consider i.i.d. random variables X;. Can we show that
P(Sn > na) — 0 exponentially fast when a > E[X]?

» Kind of a quantitative form of the weak law of large numbers.
The empirical average A, is very unlikely to € away from its
expected value (where “very” means with probability less than
some exponentially decaying function of n).
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General large deviation principle

» More general framework: a large deviation principle describes
limiting behavior as n — oo of family {u,} of measures on
measure space (X, B) in terms of a rate function I.
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General large deviation principle

» More general framework: a large deviation principle describes
limiting behavior as n — oo of family {u,} of measures on
measure space (X, B) in terms of a rate function I.

» The rate function is a lower-semicontinuous map
l: X —[0,00]. (The sets {x : /(x) < a} are closed — rate
function called “good” if these sets are compact.)
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General large deviation principle

» More general framework: a large deviation principle describes
limiting behavior as n — oo of family {u,} of measures on
measure space (X, B) in terms of a rate function I.

» The rate function is a lower-semicontinuous map
l: X —[0,00]. (The sets {x : /(x) < a} are closed — rate
function called “good” if these sets are compact.)

» DEFINITION: {y,} satisfy LDP with rate function / and
speed nif for all T € B,

- mﬁ I(x) < I|m mf— log pn(T) < I|m sup Iog,u,,(r) < —inf I(x).
x€ xel
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General large deviation principle

» More general framework: a large deviation principle describes
limiting behavior as n — oo of family {u,} of measures on
measure space (X, B) in terms of a rate function I.

» The rate function is a lower-semicontinuous map
l: X —[0,00]. (The sets {x : /(x) < a} are closed — rate
function called “good” if these sets are compact.)

» DEFINITION: {y,} satisfy LDP with rate function / and
speed nif for all T € B,

- mﬁ I(x) < I|m mf— log pn(T) < I|m sup Iog,u,,(r) < —inf I(x).
x€ xel

» INTUITION: when “near x" the probability density function
for up is tending to zero like /()" as n — .
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General large deviation principle

» More general framework: a large deviation principle describes
limiting behavior as n — oo of family {u,} of measures on
measure space (X, B) in terms of a rate function I.

» The rate function is a lower-semicontinuous map
l: X —[0,00]. (The sets {x : /(x) < a} are closed — rate
function called “good” if these sets are compact.)
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» INTUITION: when “near x" the probability density function
for up is tending to zero like /()" as n — .
» Simple case: / is continuous, I is closure of its interior.
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General large deviation principle

» More general framework: a large deviation principle describes
limiting behavior as n — oo of family {u,} of measures on
measure space (X, B) in terms of a rate function I.

» The rate function is a lower-semicontinuous map
l: X —[0,00]. (The sets {x : /(x) < a} are closed — rate
function called “good” if these sets are compact.)

» DEFINITION: {y,} satisfy LDP with rate function / and
speed nif for all T € B,

1
— inf I(x) <liminf = log un(l") < I|m sup Iog,u,,(r) < —inf I(x).
Xero n—oo N XEF

» INTUITION: when “near x" the probability density function
for up is tending to zero like /()" as n — .

» Simple case: / is continuous, I is closure of its interior.

» Question: How would / change if we replaced the measures
fin by weighted measures e(A™) ;2
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General large deviation principle

» More general framework: a large deviation principle describes
limiting behavior as n — oo of family {u,} of measures on
measure space (X, B) in terms of a rate function I.

» The rate function is a lower-semicontinuous map
l: X —[0,00]. (The sets {x : /(x) < a} are closed — rate
function called “good” if these sets are compact.)

» DEFINITION: {y,} satisfy LDP with rate function / and
speed nif for all T € B,

_Xig() I(x) < Iim)i()rlf%logun( ) < I|m sup Iog,u,,(r) < —;r;frl(x).
» INTUITION: when “near x" the probability density function
for up is tending to zero like /()" as n — .
» Simple case: / is continuous, I is closure of its interior.
» Question: How would / change if we replaced the measures
fin by weighted measures e(A™) ;2
» Replace I(x) by I(x) — (A, x)? What is inf, /(x) — (A, x)?
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Cramer’s theorem

» Let i, be law of empirical mean A, = %ZJ’-’ZI X; for i.i.d.
vectors X1, Xa, ..., X, in RY with same law as X.
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Cramer’s theorem

» Let i, be law of empirical mean A, = %ZJ’-’ZI X; for i.i.d.
vectors X1, Xa, ..., X, in RY with same law as X.

» Define log moment generating function of X by
/\()\) = Ax()\) = log MX()\) — |Og]Ee()\,X)’

where (-, -) is inner product on RY.
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Cramer’s theorem

» Let i, be law of empirical mean A, = %Z}’Zl X; for i.i.d.
vectors X1, Xa, ..., X, in RY with same law as X.

» Define log moment generating function of X by
/\()\) = Ax()\) = log MX()\) — |Og]Ee()\,X)’

where (-, -) is inner product on RY.
» Define Legendre transform of A by

N(x) = sup {(0) = A}
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Cramer’s theorem

» Let i, be law of empirical mean A, = %Z}’Zl X; for i.i.d.
vectors X1, Xa, ..., X, in RY with same law as X.

» Define log moment generating function of X by
/\()\) = Ax()\) = log MX()\) — |Og]Ee()\,X)’

where (-, -) is inner product on RY.

» Define Legendre transform of A by

N(x) = sup {(0) = A}

» CRAMER’S THEOREM: p, satisfy LDP with convex rate
function A*.
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Thinking about Cramer's theorem

» Let u, be law of empirical mean A, = %ZJ":IXJ
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Thinking about Cramer's theorem

» Let u, be law of empirical mean A, = %ZJ"ZIXJ
» CRAMER’S THEOREM: 4, satisfy LDP with convex rate
function

I(x) = N'(x) = ASEUB;{(/\,X) - AN}

where A(\) = log M()\) = Ee(X1),
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Thinking about Cramer's theorem

» Let u, be law of empirical mean A, = %ZJ'-’ZI X;.
» CRAMER’S THEOREM: 4, satisfy LDP with convex rate
function

I(x) = N'(x) = Aseu]gd{(/\,X) - AN}

where A(\) = log M()\) = Ee(X1),
» This means that for all ' € B we have this asymptotic lower
bound on probabilities 1i,(I)
1
— inf I(x) < liminf = log un(I),
o8, 160 < mnf 7 tog n(T)

so (up to sub-exponential error) p,() > e~ "Mfxero /()
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Thinking about Cramer’s theorem

» Let u, be law of empirical mean A, = %ZJ'-’ZI X;.
» CRAMER’S THEOREM: 4, satisfy LDP with convex rate
function
I(x) = N*(x) = sup {(A, x) = A(A)},
AERY
where A(\) = log M()\) = Ee(X1),
» This means that for all ' € B we have this asymptotic lower
bound on probabilities 1i,(I)
1
— inf I(x) < liminf = log un(I),
o8, 160 < mnf 7 tog n(T)
so (up to sub-exponential error) p,() > e~ "Mfxero /()
» and this asymptotic upper bound on the probabilities 1,(I")
limsup — L Iog,u,,(r) — inf /(x),
xelr

n—o0

which says (up to subexponential error) p,(IN) < e —ninfer 104,
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Proving Cramer upper bound

» Recall that /(x) = A*(x) = supycre{(A, x) — A(A)}.
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Proving Cramer upper bound

» Recall that /(x) = A*(x) = supycre{(A, x) — A(A)}.

» For simplicity, assume that A is defined for all x (which
implies that X has moments of all orders and A and A* are
strictly convex, and the derivatives of A and A’ are inverses of
each other). It is also enough to consider the case X has
mean zero, which implies that A(0) = 0 is a minimum of A,
and A*(0) = 0 is a minimum of A*.
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Proving Cramer upper bound

» Recall that /(x) = A*(x) = supycre{(A, x) — A(A)}.

» For simplicity, assume that A is defined for all x (which
implies that X has moments of all orders and A and A* are
strictly convex, and the derivatives of A and A’ are inverses of
each other). It is also enough to consider the case X has
mean zero, which implies that A(0) = 0 is a minimum of A,
and A*(0) = 0 is a minimum of A*.

» We aim to show (up to subexponential error) that
Hn(r) < efninfxerl(x).
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Proving Cramer upper bound

» Recall that /(x) = A*(x) = supycre{(A, x) — A(A)}.

» For simplicity, assume that A is defined for all x (which
implies that X has moments of all orders and A and A* are
strictly convex, and the derivatives of A and A’ are inverses of
each other). It is also enough to consider the case X has
mean zero, which implies that A(0) = 0 is a minimum of A,
and A*(0) = 0 is a minimum of A*.

» We aim to show (up to subexponential error) that
Hn(r) < efninfxerl(x).

» If I were singleton set {x} we could find the A corresponding
to x, so A*(x) = (x,A) — A(A). Note then that

Ee(mAn) — EeltSn) — M3 (\) = e”A(’\),

and also Ee(mAn) > en(Ax), £x1 . Taking logs and dividing
by n gives A(A) > Llog pun + (X, x), so that

1 * :

+log () < —A*(x), as desired.
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Proving Cramer upper bound

» Recall that /(x) = A*(x) = supycre{(A, x) — A(A)}.

» For simplicity, assume that A is defined for all x (which
implies that X has moments of all orders and A and A* are
strictly convex, and the derivatives of A and A’ are inverses of
each other). It is also enough to consider the case X has
mean zero, which implies that A(0) = 0 is a minimum of A,
and A*(0) = 0 is a minimum of A*.

» We aim to show (up to subexponential error) that
Hn(r) < efninfxerl(x).

» If I were singleton set {x} we could find the A corresponding
to x, so A*(x) = (x,A) — A(A). Note then that

Ee(mAn) — EeltSn) — M3 (\) = e”A(’\),

and also Ee(mAn) > en(Ax), £x1 . Taking logs and dividing
by n gives A(A) > Llog pun + (X, x), so that
L log pn(l) < —A*(x), as desired.

» General I': cut into finitely many pieces, bound each piece?
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Proving Cramer lower bound

» Recall that /(x) = A*(x) = supycre{(A, x) — A(A)}.
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Proving Cramer lower bound

» Recall that /(x) = A*(x) = supycre{(A, x) — A(A)}.
» We aim to show that asymptotically p,(I) > e~ ""xero /(x),
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Proving Cramer lower bound

» Recall that /(x) = A*(x) = supycre{(A, x) — A(A)}.
» We aim to show that asymptotically p,(I) > e~ ""xero /(x),

> It's enough to show that for each given x € I we have that
asymptotically y,(I') > e ""fxero I(x)
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Proving Cramer lower bound

» Recall that /(x) = A*(x) = supycre{(A, x) — A(A)}.
» We aim to show that asymptotically p,(I) > e~ ""xero /(x),

» It's enough to show that for each given x € %, we have that
asymptotically pn(I) > e "infrero 1(x)

» Idea is to weight the law of X by e®**) for some X and
normalize to get a new measure whose expectation is this
point x. In this new measure, A, is “typically” in [ for large
I, so the probability is of order 1.
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Proving Cramer lower bound

» Recall that /(x) = A*(x) = supycre{(A, x) — A(A)}.
» We aim to show that asymptotically p,(I) > e~ ""xero /(x),

» It's enough to show that for each given x € %, we have that
asymptotically pn(I) > e "infrero 1(x)

» Idea is to weight the law of X by e®**) for some X and
normalize to get a new measure whose expectation is this
point x. In this new measure, A, is “typically” in [ for large
I, so the probability is of order 1.

» But by how much did we have to modify the measure to make
this typical? Not more than by factor e~ ""fxero /()
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