18.175: Lecture 12

DeMoivre-Laplace and weak convergence

Scott Sheffield
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DeMoivre-Laplace limit theorem

» Let X; be i.i.d. random variables. Write S,, = 27:1 Xa.
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DeMoivre-Laplace limit theorem

» Let X; be i.i.d. random variables. Write S,, = Z,'-’:l Xa.
» Suppose each X; is 1 with probability p and 0 with probability
g=1-—p.
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DeMoivre-Laplace limit theorem

» Let X; be i.i.d. random variables. Write S, = 27:1 Xn.

» Suppose each X; is 1 with probability p and 0 with probability
g=1-—p.

» DeMoivre-Laplace limit theorem:

S, —np

lim P{a <

n—o0 \V/npq

< b} — d(b) — d(a).
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DeMoivre-Laplace limit theorem

» Let X; be i.i.d. random variables. Write S, = 27:1 Xn.

» Suppose each X; is 1 with probability p and 0 with probability
g=1-—p.

» DeMoivre-Laplace limit theorem:

) S, —np
Iim P{a< < b} — ®(b) — P(a).
lim Pa < 22 < b} = 0(5) (3

» Here ®(b) — ®(a) = P{a < Z < b} when Z is a standard
normal random variable.
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» Let X; be i.i.d. random variables. Write S, = 27:1 Xn.
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» Let X; be i.i.d. random variables. Write S, = 27:1 Xn.

» Suppose each X; is 1 with probability p and 0 with probability
g=1-—p.

» DeMoivre-Laplace limit theorem:

) S, —np
Iim P{a< < b} — ®(b) — P(a).
Jlim Pla< > < b} = 0(5) — (3

» Here ®(b) — ®(a) = P{a < Z < b} when Z is a standard
normal random variable.
Sp—np

\/npq

above or below its mean”.

describes “number of standard deviations that S, is

» Proof idea: use binomial coefficients and Stirling’s formula.
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» Let X; be i.i.d. random variables. Write S, = 27:1 Xn.

» Suppose each X; is 1 with probability p and 0 with probability
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» Proof idea: use binomial coefficients and Stirling’s formula.

» Question: Does similar statement hold if X; are i.i.d. from
some other law?
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DeMoivre-Laplace limit theorem

» Let X; be i.i.d. random variables. Write S, = >"7 ; X,.

» Suppose each X; is 1 with probability p and 0 with probability
g=1-—p.

» DeMoivre-Laplace limit theorem:

) S, —np
Iim P{a< < b} — ®(b) — P(a).
Jlim Pla< > < b} = 0(5) — (3

» Here ®(b) — ®(a) = P{a < Z < b} when Z is a standard

normal random variable.
Sp—np
\/npq
above or below its mean”.

describes “number of standard deviations that S, is

» Proof idea: use binomial coefficients and Stirling’s formula.

» Question: Does similar statement hold if X; are i.i.d. from
some other law?

» Central limit theorem: Yes, if they have finite variance.
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Local p = 1/2 DeMoivre-Laplace limit theorem

» Stirling: n! ~ n"e™"\/2wn where ~ means ratio tends to one.
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Local p = 1/2 DeMoivre-Laplace limit theorem

» Stirling: n! ~ n"e™"\/2wn where ~ means ratio tends to one.

» Theorem: If 2k/v/2n — x then
P(Sz = 2k) ~ (mn)~1/2e=/2,
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Weak convergence

» Let X be random variable, X, a sequence of random variables.

18 175 Ll ecture 12



Weak convergence

» Let X be random variable, X, a sequence of random variables.

» Say X, converge in distribution or converge in law to X if
limp—oo Fx,(x) = Fx(x) at all x € R at which Fx is
continuous.
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Weak convergence

» Let X be random variable, X, a sequence of random variables.

» Say X, converge in distribution or converge in law to X if
limp—oo Fx,(x) = Fx(x) at all x € R at which Fx is
continuous.

> Also say that the F, = Fx, converge weakly to F = Fx.

» Example: X; chosen from {—1,1} with i.i.d. fair coin tosses:
then n~1/2 >4 X converges in law to a normal random
variable (mean zero, variance one) by Demoivre-Laplace.
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Weak convergence

» Let X be random variable, X, a sequence of random variables.

» Say X, converge in distribution or converge in law to X if
limp—oo Fx,(x) = Fx(x) at all x € R at which Fx is
continuous.

> Also say that the F, = Fx, converge weakly to F = Fx.

» Example: X; chosen from {—1,1} with i.i.d. fair coin tosses:
then n~1/2 >4 X converges in law to a normal random
variable (mean zero, variance one) by Demoivre-Laplace.

» Example: If X, is equal to 1/n a.s. then X, converge weakly
to an X equal to 0 a.s. Note that lim,_ Fn(0) # F(0) in
this case.

18 175 Ll ecture 12



Weak convergence

» Let X be random variable, X, a sequence of random variables.

» Say X, converge in distribution or converge in law to X if
limp—oo Fx,(x) = Fx(x) at all x € R at which Fx is
continuous.

> Also say that the F, = Fx, converge weakly to F = Fx.

» Example: X; chosen from {—1,1} with i.i.d. fair coin tosses:
then n~1/2 >4 X converges in law to a normal random
variable (mean zero, variance one) by Demoivre-Laplace.

» Example: If X, is equal to 1/n a.s. then X, converge weakly
to an X equal to 0 a.s. Note that lim,_o Fn(0) # F(0) in
this case.

» Example: If X; are i.i.d. then the empirical distributions
converge a.s. to law of Xj (Glivenko-Cantelli).
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Weak convergence

» Let X be random variable, X, a sequence of random variables.

» Say X, converge in distribution or converge in law to X if
limp—oo Fx,(x) = Fx(x) at all x € R at which Fx is
continuous.

> Also say that the F, = Fx, converge weakly to F = Fx.

» Example: X; chosen from {—1,1} with i.i.d. fair coin tosses:
then n~1/2 >4 X converges in law to a normal random
variable (mean zero, variance one) by Demoivre-Laplace.

» Example: If X, is equal to 1/n a.s. then X, converge weakly
to an X equal to 0 a.s. Note that lim,_o Fn(0) # F(0) in
this case.

» Example: If X; are i.i.d. then the empirical distributions
converge a.s. to law of Xj (Glivenko-Cantelli).

» Example: Let X, be the nth largest of 2n 4+ 1 points chosen
i.i.d. from fixed law.
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Convergence results

» Theorem: If F, — F,, then we can find corresponding
random variables Y}, on a common measure space so that
Y, — Yo almost surely.
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Convergence results

» Theorem: If F, — F,, then we can find corresponding

random variables Y}, on a common measure space so that
Y, — Yo almost surely.

» Proof idea: Take Q =(0,1) and Y, = sup{y : Fa(y) < x}.
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continuous g we have Eg(X,) — Eg(Xs)-
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» Theorem: X;, — X, if and only if for every bounded
continuous g we have Eg(X,) — Eg(Xs)-

» Proof idea: Define X, on common sample space so converge
a.s., use bounded convergence theorem.

» Theorem: Suppose g is measurable and its set of
discontinuity points has px measure zero. Then X, — X
implies g(X,) = g(X).
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Convergence results

» Theorem: If F, — F,, then we can find corresponding
random variables Y}, on a common measure space so that
Y, — Yo almost surely.

» Proof idea: Take Q =(0,1) and Y, = sup{y : Fa(y) < x}.

» Theorem: X;, — X, if and only if for every bounded
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a.s., use bounded convergence theorem.
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» Theorem: Every sequence F, of distribution has subsequence
converging to right continuous nondecreasing F so that
lim Fp)(y) = F(y) at all continuity points of F.
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» Theorem: Every sequence F, of distribution has subsequence
converging to right continuous nondecreasing F so that
lim Fp)(y) = F(y) at all continuity points of F.

» Limit may not be a distribution function.
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» Theorem: Every sequence F, of distribution has subsequence
converging to right continuous nondecreasing F so that
lim Fp)(y) = F(y) at all continuity points of F.

» Limit may not be a distribution function.

> Need a “tightness” assumption to make that the case. Say u,
are tight if for every € we can find an M so that
tn[—M, M] < e for all n. Define tightness analogously for
corresponding real random variables or distributions functions.
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» Theorem: Every sequence F, of distribution has subsequence
converging to right continuous nondecreasing F so that
lim Foy(y) = F(y) at all continuity points of F.

» Limit may not be a distribution function.

> Need a “tightness” assumption to make that the case. Say u,
are tight if for every € we can find an M so that

tn[—M, M] < e for all n. Define tightness analogously for
corresponding real random variables or distributions functions.

» Theorem: Every subsequential limit of the F, above is the
distribution function of a probability measure if and only if the
Fp, are tight.
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Total variation norm

> If we have two probability measures p and v we define the
total variation distance between them is

i = v == supg [u(B) — v(B)].
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Total variation norm

> If we have two probability measures p and v we define the
total variation distance between them is
10— ]| = supg |u(B) — (B)|.

> Intuitively, it two measures are close in the total variation
sense, then (most of the time) a sample from one measure
looks like a sample from the other.
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Total variation norm

> If we have two probability measures p and v we define the
total variation distance between them is
|l = vl| == supg |(B) — v(B)].

> Intuitively, it two measures are close in the total variation
sense, then (most of the time) a sample from one measure
looks like a sample from the other.

» Convergence in total variation norm is much stronger than
weak convergence.
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Characteristic functions

» Let X be a random variable.
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Characteristic functions

» Let X be a random variable.

» The characteristic function of X is defined by
B(t) = ¢x(t) := E[e™X]. Like M(t) except with i thrown in.
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Characteristic functions

» Let X be a random variable.

» The characteristic function of X is defined by
B(t) = ¢x(t) := E[e™X]. Like M(t) except with i thrown in.
» Recall that by definition et = cos(t) + isin(t).
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Characteristic functions

Let X be a random variable.

v

v

The characteristic function of X is defined by

B(t) = ¢x(t) := E[e™X]. Like M(t) except with i thrown in.
Recall that by definition et = cos(t) + isin(t).
Characteristic functions are similar to moment generating
functions in some ways.

v

v
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Characteristic functions

> Let X be a random variable.
» The characteristic function of X is defined by
#(t) = dx(t) := E[e™X]. Like M(t) except with i thrown in.
» Recall that by definition e’ = cos(t) + isin(t).
» Characteristic functions are similar to moment generating
functions in some ways.

> For example, ¢px+y = ¢xdy, just as Mxy = MxMy, if X
and Y are independent.
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Characteristic functions

> Let X be a random variable.
» The characteristic function of X is defined by
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» Recall that by definition e’ = cos(t) + isin(t).
» Characteristic functions are similar to moment generating
functions in some ways.
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Characteristic functions

> Let X be a random variable.
» The characteristic function of X is defined by
#(t) = dx(t) := E[e™X]. Like M(t) except with i thrown in.
» Recall that by definition e’ = cos(t) + isin(t).
» Characteristic functions are similar to moment generating
functions in some ways.

> For example, ¢px+y = ¢xdy, just as Mxy = MxMy, if X
and Y are independent.

> And ¢.x(t) = ¢x(at) just as Max(t) = Mx(at).
» And if X has an mth moment then E[X™]| = i’"gbg(m)(O).
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Characteristic functions

> Let X be a random variable.
» The characteristic function of X is defined by
#(t) = dx(t) := E[e™X]. Like M(t) except with i thrown in.
» Recall that by definition e’ = cos(t) + isin(t).
» Characteristic functions are similar to moment generating
functions in some ways.

> For example, ¢px+y = ¢xdy, just as Mxy = MxMy, if X
and Y are independent.

> And ¢.x(t) = ¢x(at) just as Max(t) = Mx(at).
» And if X has an mth moment then E[X™]| = i’"gbg(m)(O).

» But characteristic functions have an advantage: they are well
defined at all t for all random variables X.
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Continuity theorems

» Lévy’s continuity theorem: if
lim ¢x,(t) = ¢x(t)
n—oo

for all t, then X, converge in law to X.
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Continuity theorems

» Lévy’s continuity theorem: if
lim ¢x,(t) = ¢x(t)
n—oo

for all t, then X, converge in law to X.

» By this theorem, we can prove the weak law of large numbers
by showing limp_,oo da,(t) = ¢,(t) = €™ for all t. In the
special case that p = 0, this amounts to showing
limp—soo @4, (t) =1 for all ¢.
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Continuity theorems

» Lévy’s continuity theorem: if
lim ¢x,(t) = ¢x(t)
n—oo

for all t, then X, converge in law to X.

» By this theorem, we can prove the weak law of large numbers
by showing limp_,oo da,(t) = ¢,(t) = €™ for all t. In the
special case that p = 0, this amounts to showing
limp—soo @4, (t) =1 for all ¢.

» Moment generating analog: if moment generating
functions My (t) are defined for all t and n and

limp—0o Mx, (t) = Mx(t) for all t, then X, converge in law to
X.
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