18.175: Lecture 39 Last lecture

Scott Sheffield

MIT

Outline

Recollections

Strong Markov property

Outline

Recollections

Strong Markov property

• Write $\mathcal{F}_s^o = \sigma(B_r : r \leq s)$.

- Write $\mathcal{F}_s^o = \sigma(B_r : r \leq s)$.
- lacksquare Write $\mathcal{F}^+_s = \cap_{t>s} \mathcal{F}^o_t$

- Write $\mathcal{F}_s^o = \sigma(B_r : r \leq s)$.
- Write $\mathcal{F}_s^+ = \cap_{t>s} \mathcal{F}_t^o$
- ▶ Note right continuity: $\cap_{t>s} \mathcal{F}_t^+ = \mathcal{F}_s^+$.

- Write $\mathcal{F}_s^o = \sigma(B_r : r \leq s)$.
- Write $\mathcal{F}_s^+ = \cap_{t>s} \mathcal{F}_t^o$
- ▶ Note right continuity: $\cap_{t>s} \mathcal{F}_t^+ = \mathcal{F}_s^+$.
- \triangleright \mathcal{F}_s^+ allows an "infinitesimal peek at future"

Looking ahead

Expectation equivalence theorem If Z is bounded and measurable then for all $s \ge 0$ and $x \in \mathbb{R}^d$ have

$$E_{\mathsf{x}}(Z|\mathcal{F}_{\mathsf{s}}^{+}) = E_{\mathsf{x}}(Z|\mathcal{F}_{\mathsf{s}}^{\mathsf{o}}).$$

Looking ahead

Expectation equivalence theorem If Z is bounded and measurable then for all $s \geq 0$ and $x \in \mathbb{R}^d$ have

$$E_x(Z|\mathcal{F}_s^+) = E_x(Z|\mathcal{F}_s^o).$$

▶ **Proof idea:** Consider case that $Z = \sum_{i=1}^m f_m(B(t_m))$ and the f_m are bounded and measurable. Kind of obvious in this case. Then use same measure theory as in Markov property proof to extend general Z.

Looking ahead

Expectation equivalence theorem If *Z* is bounded and measurable then for all $s \ge 0$ and $x \in \mathbb{R}^d$ have

$$E_x(Z|\mathcal{F}_s^+) = E_x(Z|\mathcal{F}_s^o).$$

- ▶ **Proof idea:** Consider case that $Z = \sum_{i=1}^m f_m(B(t_m))$ and the f_m are bounded and measurable. Kind of obvious in this case. Then use same measure theory as in Markov property proof to extend general Z.
- ▶ **Observe:** If $Z \in \mathcal{F}_s^+$ then $Z = E_x(Z|\mathcal{F}_s^o)$. Conclude that \mathcal{F}_s^+ and \mathcal{F}_s^o agree up to null sets.

Blumenthal's 0-1 law

▶ If $A \in \mathcal{F}_0^+$, then $P(A) \in \{0,1\}$ (if P is probability law for Brownian motion started at fixed value x at time 0).

Blumenthal's 0-1 law

- ▶ If $A \in \mathcal{F}_0^+$, then $P(A) \in \{0,1\}$ (if P is probability law for Brownian motion started at fixed value x at time 0).
- There's nothing you can learn from infinitesimal neighborhood of future.

Blumenthal's 0-1 law

- ▶ If $A \in \mathcal{F}_0^+$, then $P(A) \in \{0,1\}$ (if P is probability law for Brownian motion started at fixed value x at time 0).
- There's nothing you can learn from infinitesimal neighborhood of future.
- ▶ **Proof:** If we have $A \in \mathcal{F}_0^+$, then previous theorem implies

$$1_A = E_x(1_A|\mathcal{F}_0^+) = E_x(1_A|\mathcal{F}_0^o) = P_x(A) \quad P_x \text{a.s.}$$

Markov property

▶ If $s \ge 0$ and Y is bounded and \mathcal{C} -measurable, then for all $x \in \mathbb{R}^d$, we have

$$E_{x}(Y \circ \theta_{s}|\mathcal{F}_{s}^{+}) = E_{B_{s}}Y,$$

where the RHS is function $\phi(x) = E_x Y$ evaluated at $x = B_s$.

Markov property

▶ If $s \ge 0$ and Y is bounded and \mathcal{C} -measurable, then for all $x \in \mathbb{R}^d$, we have

$$E_{\mathsf{X}}(\mathsf{Y} \circ \theta_{\mathsf{S}} | \mathcal{F}_{\mathsf{S}}^{+}) = E_{\mathsf{B}_{\mathsf{S}}} \mathsf{Y},$$

where the RHS is function $\phi(x) = E_x Y$ evaluated at $x = B_s$.

▶ **Proof idea:** First establish this for some simple functions *Y* (depending on finitely many time values) and then use measure theory (monotone class theorem) to extend to general case.

18.175 Lecture 39

More observations

• If $\tau = \inf\{t \ge 0 : B_t > 0\}$ then $P_0(\tau = 0) = 1$.

More observations

- If $\tau = \inf\{t \ge 0 : B_t > 0\}$ then $P_0(\tau = 0) = 1$.
- ▶ If $T_0 = \inf\{t > 0 : B_t = 0\}$ then $P_0(T_0 = 0) = 1$.

More observations

- ▶ If $\tau = \inf\{t \ge 0 : B_t > 0\}$ then $P_0(\tau = 0) = 1$.
- ▶ If $T_0 = \inf\{t > 0 : B_t = 0\}$ then $P_0(T_0 = 0) = 1$.
- ▶ If B_t is Brownian motion started at 0, then so is process defined by $X_0 = 0$ and $X_t = tB(1/t)$. (Proved by checking $E(X_sX_t) = stE(B(1/s)B(1/t)) = s$ when s < t. Then check continuity at zero.)

Outline

Recollections

Strong Markov property

Outline

Recollections

Strong Markov property

Stopping time

▶ A random variable S taking values in $[0, \infty]$ is a **stopping** time if for all $t \ge 0$, we have $\{S > t\} \in \mathcal{F}_t$.

Stopping time

- ▶ A random variable S taking values in $[0, \infty]$ is a **stopping** time if for all $t \ge 0$, we have $\{S > t\} \in \mathcal{F}_t$.
- ▶ Distinction between $\{S < t\}$ and $\{S \le t\}$ doesn't make a difference for a right continuous filtration.

Stopping time

- ▶ A random variable S taking values in $[0, \infty]$ is a **stopping time** if for all $t \ge 0$, we have $\{S > t\} \in \mathcal{F}_t$.
- ▶ Distinction between $\{S < t\}$ and $\{S \le t\}$ doesn't make a difference for a right continuous filtration.
- ▶ Example: let $S = \inf\{t : B_t \in A\}$ for some open (or closed) set A.

▶ Let $(s,\omega) \to Y_s(\omega)$ be bounded and $\mathcal{R} \times \mathcal{C}$ -measurable. If S is a stopping time, then for all $x \in \mathbb{R}^d$

$$E_x(Y_S\circ\theta_S|\mathcal{F}_S)=E_{B(S)}Y_S \text{ on } \{S<\infty\},$$

where RHS means function $\phi(x, t) = E_x Y_t$ evaluated at x = B(S), and t = S.

▶ Let $(s,\omega) \to Y_s(\omega)$ be bounded and $\mathcal{R} \times \mathcal{C}$ -measurable. If S is a stopping time, then for all $x \in \mathbb{R}^d$

$$E_x(Y_S\circ\theta_S|\mathcal{F}_S)=E_{B(S)}Y_S \text{ on } \{S<\infty\},$$

where RHS means function $\phi(x, t) = E_x Y_t$ evaluated at x = B(S), and t = S.

► In fact, similar result holds for more general Markov processes (Feller processes).

▶ Let $(s,\omega) \to Y_s(\omega)$ be bounded and $\mathcal{R} \times \mathcal{C}$ -measurable. If S is a stopping time, then for all $x \in \mathbb{R}^d$

$$E_x(Y_S \circ \theta_S | \mathcal{F}_S) = E_{B(S)} Y_S \text{ on } \{S < \infty\},$$

where RHS means function $\phi(x, t) = E_x Y_t$ evaluated at x = B(S), and t = S.

- ▶ In fact, similar result holds for more general Markov processes (Feller processes).
- ▶ Proof idea: First consider the case that S a.s. belongs to an increasing countable sequence (e.g., S is a.s. a multiple of 2⁻ⁿ). Then this essentially reduces to discrete Markov property proof. Then approximate a general stopping time by a discrete time by rounding down to multiple of 2⁻ⁿ. Use some continuity estimates, bounded convergence, monotone class theorem to conclude.

18.175 Lecture 39

▶ Let $(s,\omega) \to Y_s(\omega)$ be bounded and $\mathcal{R} \times \mathcal{C}$ -measurable. If S is a stopping time, then for all $x \in \mathbb{R}^d$

$$E_x(Y_S\circ\theta_S|\mathcal{F}_S)=E_{B(S)}Y_S \text{ on } \{S<\infty\},$$

where RHS means function $\phi(x, t) = E_x Y_t$ evaluated at x = B(S), and t = S.

- ▶ In fact, similar result holds for more general Markov processes (Feller processes).
- ▶ Proof idea: First consider the case that S a.s. belongs to an increasing countable sequence (e.g., S is a.s. a multiple of 2⁻ⁿ). Then this essentially reduces to discrete Markov property proof. Then approximate a general stopping time by a discrete time by rounding down to multiple of 2⁻ⁿ. Use some continuity estimates, bounded convergence, monotone class theorem to conclude.
- Extend optional stopping to continuous martingales similarly.

▶ **Question:** If B_t is a Brownian motion, then is $B_t^2 - t$ a martingale?

- ▶ **Question:** If B_t is a Brownian motion, then is $B_t^2 t$ a martingale?
- ▶ **Question:** If B_t and \tilde{B}_t are independent Brownian motions, then is $B_t\tilde{B}_t$ a martingale?

- ▶ **Question:** If B_t is a Brownian motion, then is $B_t^2 t$ a martingale?
- ▶ **Question:** If B_t and \tilde{B}_t are independent Brownian motions, then is $B_t\tilde{B}_t$ a martingale?
- ▶ Question: If B_t is a martingale, then is $e^{B_t t/2}$ a martingale?

- ▶ **Question:** If B_t is a Brownian motion, then is $B_t^2 t$ a martingale?
- ▶ **Question:** If B_t and \tilde{B}_t are independent Brownian motions, then is $B_t\tilde{B}_t$ a martingale?
- ▶ **Question:** If B_t is a martingale, then is $e^{B_t t/2}$ a martingale?
- ▶ Question: If B_t is a Brownian motion in \mathbb{C} (i.e., real and imaginary parts are independent Brownian motions) and f is an analytic function on \mathbb{C} , is $f(B_t)$ a complex martingale?

- ▶ **Question:** If B_t is a Brownian motion, then is $B_t^2 t$ a martingale?
- ▶ **Question:** If B_t and \tilde{B}_t are independent Brownian motions, then is $B_t\tilde{B}_t$ a martingale?
- ▶ **Question:** If B_t is a martingale, then is $e^{B_t t/2}$ a martingale?
- ▶ Question: If B_t is a Brownian motion in \mathbb{C} (i.e., real and imaginary parts are independent Brownian motions) and f is an analytic function on \mathbb{C} , is $f(B_t)$ a complex martingale?
- ▶ Question: If B_t is a Brownian motion on \mathbb{R}^d and f is a harmonic function on \mathbb{R}^d , is $f(B_t)$ a martingale?

- ▶ **Question:** If B_t is a Brownian motion, then is $B_t^2 t$ a martingale?
- ▶ **Question:** If B_t and \tilde{B}_t are independent Brownian motions, then is $B_t\tilde{B}_t$ a martingale?
- ▶ **Question:** If B_t is a martingale, then is $e^{B_t t/2}$ a martingale?
- ▶ Question: If B_t is a Brownian motion in \mathbb{C} (i.e., real and imaginary parts are independent Brownian motions) and f is an analytic function on \mathbb{C} , is $f(B_t)$ a complex martingale?
- ▶ Question: If B_t is a Brownian motion on \mathbb{R}^d and f is a harmonic function on \mathbb{R}^d , is $f(B_t)$ a martingale?
- ▶ **Question:** Suppose B_t is a one dimensional Brownian motion, and $g_t : \mathbb{C} \to \mathbb{C}$ is determined by solving the ODE

$$\frac{\partial}{\partial t}g_t(z) = \frac{2}{g_t(z) - 2B_t}, \quad g_0(z) = z.$$

Is $arg(g_t(z) - W_t)$ a martingale?

► Course has reached finite stopping time. Process goes on.

- ► Course has reached finite stopping time. Process goes on.
- ▶ Future probability graduate courses include

- ▶ Course has reached finite stopping time. Process goes on.
- ► Future probability graduate courses include
 - ▶ 18.177: fall 2014 (Jason Miller)

- ▶ Course has reached finite stopping time. Process goes on.
- Future probability graduate courses include
 - ▶ 18.177: fall 2014 (Jason Miller)
 - ▶ 18.177: spring 2015 (Alice Giuonnet)

- ▶ Course has reached finite stopping time. Process goes on.
- Future probability graduate courses include
 - ▶ 18.177: fall 2014 (Jason Miller)
 - ▶ 18.177: spring 2015 (Alice Giuonnet)
 - ▶ 18.176: fall or spring 2015-16

- ▶ Course has reached finite stopping time. Process goes on.
- Future probability graduate courses include
 - ▶ 18.177: fall 2014 (Jason Miller)
 - ▶ 18.177: spring 2015 (Alice Giuonnet)
 - ▶ 18.176: fall or spring 2015-16
- Probability seminar: Mondays at 4:15.

- ▶ Course has reached finite stopping time. Process goes on.
- Future probability graduate courses include
 - ▶ 18.177: fall 2014 (Jason Miller)
 - ▶ 18.177: spring 2015 (Alice Giuonnet)
 - ▶ 18.176: fall or spring 2015-16
- Probability seminar: Mondays at 4:15.
- I am happy to help with quals and reading.

- ▶ Course has reached finite stopping time. Process goes on.
- Future probability graduate courses include
 - ▶ 18.177: fall 2014 (Jason Miller)
 - ▶ 18.177: spring 2015 (Alice Giuonnet)
 - ▶ 18.176: fall or spring 2015-16
- ▶ Probability seminar: Mondays at 4:15.
- I am happy to help with quals and reading.
- Talk to friendly postdocs: Vadim Gorin, Jason Miller, Jonathon Novak, Charlie Smart, Nike Sun, Hao Wu.

- ▶ Course has reached finite stopping time. Process goes on.
- Future probability graduate courses include
 - ▶ 18.177: fall 2014 (Jason Miller)
 - ▶ 18.177: spring 2015 (Alice Giuonnet)
 - ▶ 18.176: fall or spring 2015-16
- ▶ Probability seminar: Mondays at 4:15.
- ▶ I am happy to help with quals and reading.
- ► Talk to friendly postdocs: Vadim Gorin, Jason Miller, Jonathon Novak, Charlie Smart, Nike Sun, Hao Wu.
- ▶ Thanks for taking the class!