The multiplicative Barratt-Priddy-Quillen theorem and beyond

Saul Glasman

MIT

6 April, 2013
Outline

1 Background

The multiplicative Barratt-Priddy-Quillen theorem and beyond

Background

The main statement

\(E_\infty \) ring spaces

Strategy of the proof

Divided powers
Outline

1 Background
2 The main statement
Outline

1. Background
2. The main statement
3. E_∞ ring spaces
Outline

1. Background
2. The main statement
3. E_∞ ring spaces
4. Strategy of the proof
5. Divided powers
Our starting point is the Barratt-Priddy-Quillen theorem, which can be compactly stated as follows:
Our starting point is the Barratt-Priddy-Quillen theorem, which can be compactly stated as follows:

Theorem (Barratt-Priddy-Quillen)

\[\mathcal{K}(\Sigma) \cong \mathbb{S}. \]
Our starting point is the Barratt-Priddy-Quillen theorem, which can be compactly stated as follows:

Theorem (Barratt-Priddy-Quillen)

\[K(\Sigma) \cong S. \]

Here:

- \(\Sigma \) is the category of pointed finite sets and pointed isomorphisms;
Our starting point is the Barratt-Priddy-Quillen theorem, which can be compactly stated as follows:

Theorem (Barratt-Priddy-Quillen)

\[K(\Sigma) \cong \mathbb{S}. \]

Here:

- \(\Sigma \) is the category of pointed finite sets and pointed isomorphisms;
- \(K : \text{SymMonCat} \to \text{Spectra} \) is the algebraic \(K \)-theory of symmetric monoidal categories;
Our starting point is the Barratt-Priddy-Quillen theorem, which can be compactly stated as follows:

Theorem (Barratt-Priddy-Quillen)

\[K(\Sigma) \cong \mathbb{S}. \]

Here:

- \(\Sigma \) is the category of pointed finite sets and pointed isomorphisms;
- \(K : \text{SymMonCat} \to \text{Spectra} \) is the algebraic \(K \)-theory of symmetric monoidal categories;
- \(\mathbb{S} \) is the sphere spectrum.
I like to think of this as the "$e^{\pi i} = -1$" of stable homotopy theory.
I like to think of this as the “$e^\pi i = -1$” of stable homotopy theory.

This result is both unsurprising and surprising.
I like to think of this as the “$e^{\pi i} = -1$” of stable homotopy theory.

This result is both unsurprising and surprising.

It’s unsurprising because Σ is equivalent to the free symmetric monoidal category on one object and S is the free spectrum on one generator.
I like to think of this as the “$e^{\pi i} = -1$” of stable homotopy theory.

This result is both unsurprising and surprising.

It’s unsurprising because Σ is equivalent to the free symmetric monoidal category on one object and \mathbb{S} is the free spectrum on one generator.

It’s surprising because there’s no a priori reason to believe K should preserve these free objects.
I like to think of this as the “$e^{\pi i} = -1$” of stable homotopy theory.

This result is both unsurprising and surprising.

It’s unsurprising because Σ is equivalent to the free symmetric monoidal category on one object and \mathbb{S} is the free spectrum on one generator.

It’s surprising because there’s no a priori reason to believe K should preserve these free objects.

Remark

It’s enough to prove that $N(\Sigma)$ is the free E_∞ space on one generator.
Here’s a natural question: are other free algebraic objects preserved by K?
Here’s a natural question: are other free algebraic objects preserved by K?

If this is a general pattern, then there must be a “free ring category on one object” whose K-theory is the free E_∞ ring spectrum on one generator

$$\mathbb{S}[x] = \Sigma^\infty (\coprod_{n \geq 0} B\Sigma_n).$$
Here’s a natural question: are other free algebraic objects preserved by K?

If this is a general pattern, then there must be a “free ring category on one object” whose K-theory is the free E_∞ ring spectrum on one generator

$$\mathbb{S}[x] = \Sigma^\infty (\coprod_{n \geq 0} B\Sigma_n).$$

My purpose in this talk is to give an easy model for this free ring category, and to prove that its K-theory is indeed $\mathbb{S}[x]$.
What is this free ring category? It’s about as simple as it could be.
What is this free ring category? It’s about as simple as it could be.

Definition

The category of polynomials \(\mathcal{P} \) is obtained by formally adjoining finite coproducts to \(\Sigma \).
What is this free ring category? It’s about as simple as it could be.

Definition

The category of polynomials \mathcal{P} is obtained by formally adjoining finite coproducts to Σ.

More explicitly, it’s the full subcategory of $\text{Psh}(\Sigma)$, the category of symmetric sequences, whose objects are finite coproducts of representables.
What is this free ring category? It’s about as simple as it could be.

Definition

The category of polynomials \mathcal{P} is obtained by formally adjoining finite coproducts to Σ.

More explicitly, it’s the full subcategory of $\text{Psh}(\Sigma)$, the category of symmetric sequences, whose objects are finite coproducts of representables.

This is what’s known as a “symmetric bimonoidal category”. The K-theory of a symmetric bimonoidal category is naturally an E_∞ ring spectrum.
What is this free ring category? It’s about as simple as it could be.

Definition

The category of polynomials \mathcal{P} is obtained by formally adjoining finite coproducts to Σ.

More explicitly, it’s the full subcategory of $\text{Psh}(\Sigma)$, the category of symmetric sequences, whose objects are finite coproducts of representables.

This is what’s known as a “symmetric bimonoidal category”. The K-theory of a symmetric bimonoidal category is naturally an E_{∞} ring spectrum. Addition is the formal coproduct I just introduced, and multiplication is given by induction of $\Sigma_m \times \Sigma_n$-sets to Σ_{m+n}-sets.
With this definition, we can give a precise statement of our main result:

Theorem (G.)

\[K(P) \cong S[x] \]

as \(E_\infty \) ring spectra.
Some remarks:
Some remarks:

- This says that $\mathbb{S}[x]$ is built out of wreath products of symmetric groups in the same way \mathbb{S} is built out of symmetric groups.
Some remarks:

- This says that $\mathbb{S}[x]$ is built out of wreath products of symmetric groups in the same way \mathbb{S} is built out of symmetric groups.

- This gives us a new perspective from which to try to understand $\mathbb{S}[x]$, and thus power operations in an arbitrary homology theory.
The proof will proceed by showing that the nerve of the maximal subgroupoid $\text{iso}(\mathcal{P})$ of \mathcal{P} is the free E_∞ ring space on one generator, so we’d better fix our model for E_∞ ring spaces.
The proof will proceed by showing that the nerve of the maximal subgroupoid $\text{iso}(\mathcal{P})$ of \mathcal{P} is the free E_∞ ring space on one generator, so we’d better fix our model for E_∞ ring spaces.

There are a bunch of these, not all of which are known to be equivalent:
The proof will proceed by showing that the nerve of the maximal subgroupoid \(\text{iso}(\mathcal{P}) \) of \(\mathcal{P} \) is the free \(E_\infty \) ring space on one generator, so we’d better fix our model for \(E_\infty \) ring spaces.

There are a bunch of these, not all of which are known to be equivalent:

- Pairs of operads in distribution (May);

...
The proof will proceed by showing that the nerve of the maximal subgroupoid $\text{iso}(\mathcal{P})$ of \mathcal{P} is the free E_∞ ring space on one generator, so we’d better fix our model for E_∞ ring spaces.

There are a bunch of these, not all of which are known to be equivalent:

- Pairs of operads in distribution (May);
- Special $\mathcal{F} \wr \mathcal{F}$ spaces (May);
The proof will proceed by showing that the nerve of the maximal subgroupoid $\text{iso}(\mathcal{P})$ of \mathcal{P} is the free E_∞ ring space on one generator, so we’d better fix our model for E_∞ ring spaces.

There are a bunch of these, not all of which are known to be equivalent:

- Pairs of operads in distribution (May);
- Special $\mathcal{F} \ltimes \mathcal{F}$ spaces (May);
- Abstract approach using smashing localizations of \textbf{Cat}_∞ (Gepner-Groth-Nikolaus);
The proof will proceed by showing that the nerve of the maximal subgroupoid \(\text{iso}(\mathcal{P}) \) of \(\mathcal{P} \) is the free \(E_\infty \) ring space on one generator, so we’d better fix our model for \(E_\infty \) ring spaces.

There are a bunch of these, not all of which are known to be equivalent:

- Pairs of operads in distribution (May);
- Special \(\mathcal{F} \wr \mathcal{F} \) spaces (May);
- Abstract approach using smashing localizations of \(\textbf{Cat}_\infty \) (Gepner-Groth-Nikolaus);
- Lawvere theory of commutative bimonoids (Cranch).
The proof will proceed by showing that the nerve of the maximal subgroupoid $\text{iso}(\mathcal{P})$ of \mathcal{P} is the free E_∞ ring space on one generator, so we’d better fix our model for E_∞ ring spaces.

There are a bunch of these, not all of which are known to be equivalent:

- Pairs of operads in distribution (May);
- Special $\mathcal{F} \wr \mathcal{F}$ spaces (May);
- Abstract approach using smashing localizations of Cat_∞ (Gepner-Groth-Nikolaus);
- Lawvere theory of commutative bimonoids (Cranch).

Our approach is very close to May’s approach with $\mathcal{F} \wr \mathcal{F}$ spaces, although we’ll denote it \mathcal{F}^\wedge instead.
The theory of \mathcal{F}^\wedge-spaces is a multiplicative analog of the theory of Γ-spaces.
The theory of \mathcal{F}^\wedge-spaces is a multiplicative analog of the theory of Γ-spaces.

Recall that a (special) Γ-space is a “weak functor” $X : \mathcal{F} \to \text{Top}$ such that the n inert maps $\langle n \rangle \to \langle 1 \rangle$ give a homotopy product decomposition $X(\langle n \rangle) \cong X(\langle 1 \rangle)^{\times n}$.

(A morphism in \mathcal{F} is inert if it’s an isomorphism mod throwing some points away to the basepoint).
Definition

\mathcal{F}^\wedge is the category where

- an object, denoted $[T, (U_t)_{t \in T^o}]$, is a finite pointed set T together with a finite pointed set U_t for each $t \in T^o$;
Definition

\mathcal{F}^\wedge is the category where

- an object, denoted $[T, (U_t)_{t \in T^o}]$, is a finite pointed set T together with a finite pointed set U_t for each $t \in T^o$;

- a morphism from $[T, (U_t)_{t \in T^o}]$ to $[V, (W_v)_{v \in V^o}]$ is a map $f : T \to V$ and, for each $v \in V^o$, a map

\[
f_v : \bigwedge_{t \in f^{-1}(v)} U_t \to W_v.
\]
Definition

\(\mathcal{F}^\wedge \) is the category where

- an object, denoted \([T, (U_t)_{t \in T^o}]\), is a finite pointed set \(T \) together with a finite pointed set \(U_t \) for each \(t \in T^o \);
- a morphism from \([T, (U_t)_{t \in T^o}]\) to \([V, (W_v)_{v \in V^o}]\) is a map \(f : T \to V \) and, for each \(v \in V^o \), a map

\[
 f_v : \bigwedge_{t \in f^{-1}(v)} U_t \to W_v.
\]

We have the object \(e = [\langle 1 \rangle, (\langle 1 \rangle)] \), and a natural bijection

\[
 \text{Inert}([T, (U_t)_{t \in T^o}], e) \cong \left(\coprod_{t \in T^o} U_t^o \right).
\]
An E_∞ ring space is a “weak functor”

$$M : \mathcal{F}^\wedge \to \text{Top}$$

satisfying a Segal condition:
Definition

An E_∞ ring space is a “weak functor”

\[M : \mathcal{F}^\wedge \to \text{Top} \]

satisfying a Segal condition:

\[M([T,(U_t)]) \overset{\sim}{\to} \prod_{t \in T^o} U_t^o \]
An E_∞ ring space is a “weak functor”

$$M : \mathcal{F}^\wedge \to \text{Top}$$

satisfying a Segal condition:

$$M([T, (U_t)]) \sim \prod_{t \in T^o} M(e).$$

We think of $M(e)$ as the underlying space of M.

"Segal condition"
Definition

An E_∞ ring space is a “weak functor”

$$M : \mathcal{F}^\wedge \to \text{Top}$$

satisfying a Segal condition:

$$M([T, (U_t)]) \sim \prod_{t \in T^o} U_t^o \cup M(e).$$

We think of $M(e)$ as the underlying space of M.

It’ll be important to unpack what I mean by “weak functor”, so let’s do that.
Proposition (Lurie)

Let I be a small category. There’s an equivalence of homotopy theories

$$
\phi : \text{Fun}(N(I), \mathcal{T}op) \sim \{\text{Left fibrations } Y \to N(I)\},
$$

where N is the nerve functor and $\mathcal{T}op$ is the ∞-category of spaces, such that
Proposition (Lurie)

Let I be a small category. There’s an equivalence of homotopy theories

$$\phi : \text{Fun}(N(I), \mathcal{T}op) \sim \{\text{Left fibrations } Y \to N(I)\},$$

where N is the nerve functor and $\mathcal{T}op$ is the ∞-category of spaces, such that

$$\phi(F)^{-1}(i) \cong F(i).$$
Proposition (Lurie)

Let I be a small category. There’s an equivalence of homotopy theories

$$\phi : \text{Fun}(N(I), \mathcal{T}op) \overset{\sim}{\to} \{\text{Left fibrations } Y \to N(I)\},$$

where N is the nerve functor and $\mathcal{T}op$ is the ∞-category of spaces, such that

$$\phi(F)^{-1}(i) \cong F(i).$$

This is extremely useful for us, because unlike weak functors, left fibrations can frequently be constructed at the level of 1-categories.
The first step is to model the E_∞ ring structure on $N(\text{iso}(\mathcal{P}))$.

Saul Glasman

The multiplicative Barratt-Priddy-Quillen theorem and beyond
The first step is to model the E_∞ ring structure on $N(\text{iso}(\mathcal{P}))$.

We do this by giving an explicit left fibration

$$\Sigma[x] \to \mathcal{F}^\wedge$$

such that the fiber over $\Sigma[x]_e$ over e is $\text{iso}(\mathcal{P})$.
Definition

An object of $\Sigma[x]$ is an object $[T, (U_t)]$ of \mathcal{F}^\wedge together with

- for each $t \in T^o$, a morphism $\phi_U : U^+_t \to U_t$ in \mathcal{F};
- a morphism $\psi_U : U^+ \to \bigvee_t U^+_t$ in \mathcal{F}.

A morphism from $[T, (U_t), (U^+_t), U^+]$ to $[V, (W_v), (W^+_v), W^+]$ consists of

- A morphism $[f, (f_v)] : [T, (U_t)] \to [V, (W_v)]$ in \mathcal{F}^\wedge;
- for each $v \in V$ and $w \in W_v$, an isomorphism

$$f_w^+ : \left(\bigvee_{u_1 \wedge u_2 \wedge \cdots \wedge u_k \in f_v^{-1}(w)} \bigwedge_{i=1}^k \phi_U^{-1}(u_i) \right) \xrightarrow{\sim} \phi_W^{-1}(w);$$

- and for each $w^+ \in W^+_v$, an isomorphism

$$f_w^+ : \psi_V^{-1}(w^+) \xrightarrow{\sim} \bigvee_{i=1}^k \psi_U^{-1}(u_i^+),$$

where the u_i^+ are uniquely chosen so that $f_w^+(u_1^+ \wedge u_2^+ \wedge \cdots \wedge u_k^+) = w^+$.
If \(N(\Sigma[x]) \) is to be thought of as the free \(E_\infty \) ring space on one generator, it ought to corepresent the underlying space functor on the category of \(E_\infty \) ring spaces.
If \(N(\Sigma[x]) \) is to be thought of as the free \(E_\infty \) ring space on one generator, it ought to corepresent the underlying space functor on the category of \(E_\infty \) ring spaces.

But \(\bullet_e \), the inclusion of the object \(e \), corepresents the underlying space functor on the category of *simplicial sets over \(F^\wedge \).*
If \(N(\Sigma[x]) \) is to be thought of as the free \(E_\infty \) ring space on one generator, it ought to corepresent the underlying space functor on the category of \(E_\infty \) ring spaces.

But \(\bullet_e \), the inclusion of the object \(e \), corepresents the underlying space functor on the category of \textit{simplicial sets over} \(\mathcal{F}^\wedge \).

Let \(i : \bullet_e \to \Sigma[x] \) be the inclusion of the object \(\langle 1 \rangle \in \mathcal{P} \cong \Sigma[x]_e \).
If $N(\Sigma[x])$ is to be thought of as the free E_∞ ring space on one generator, it ought to corepresent the underlying space functor on the category of E_∞ ring spaces.

But \bullet_e, the inclusion of the object e, corepresents the underlying space functor on the category of *simplicial sets over \mathcal{F}^\wedge*.

Let $i: \bullet_e \to \Sigma[x]$ be the inclusion of the object $\langle 1 \rangle \in \mathcal{P} \cong \Sigma[x]_e$.

Our game is to show that i induces a bijection

$$\text{ho}(\text{sSet}_{/\mathcal{F}^\wedge})[\Sigma[x], M] \sim \text{ho}(\text{sSet}_{/\mathcal{F}^\wedge})[\bullet_e, M].$$
If $N(\Sigma[x])$ is to be thought of as the free E_∞ ring space on one generator, it ought to corepresent the underlying space functor on the category of E_∞ ring spaces.

But \bullet_e, the inclusion of the object e, corepresents the underlying space functor on the category of simplicial sets over \mathcal{F}^\wedge.

Let $i : \bullet_e \to \Sigma[x]$ be the inclusion of the object $\langle 1 \rangle \in \mathcal{P} \cong \Sigma[x]_e$.

Our game is to show that i induces a bijection

$$\text{ho}(s\text{Set}_{/\mathcal{F}^\wedge})[\Sigma[x], M] \xrightarrow{\sim} \text{ho}(s\text{Set}_{/\mathcal{F}^\wedge})[\bullet_e, M].$$

whenever M is an E_∞ ring space.
If $N(\Sigma[x])$ is to be thought of as the free E_∞ ring space on one generator, it ought to corepresent the underlying space functor on the category of E_∞ ring spaces.

But \bullet_e, the inclusion of the object e, corepresents the underlying space functor on the category of simplicial sets over \mathcal{F}^\wedge.

Let $i : \bullet_e \rightarrow \Sigma[x]$ be the inclusion of the object $\langle 1 \rangle \in \mathcal{P} \cong \Sigma[x]_e$.

Our game is to show that i induces a bijection

$$\text{ho}(\text{sSet}/\mathcal{F}^\wedge)[\Sigma[x], M] \xrightarrow{\sim} \text{ho}(\text{sSet}/\mathcal{F}^\wedge)[\bullet_e, M].$$

whenever M is an E_∞ ring space.

The hard part is extending a map $\bullet_e \rightarrow M$ over $\Sigma[x]$.

The multiplicative Barratt-Priddy-Quillen theorem and beyond
So let M be an E_∞ ring space with a map $i : \bullet_e \to M$. Here's what we do:
So let M be an E_∞ ring space with a map $i : \bullet_e \to M$. Here’s what we do:

1. Use i to define a new simplicial set Z over \mathcal{F}^\wedge. A simplex of Z is a simplex of M with some decorations making it look like a simplex of $\Sigma[x]$.
So let M be an E_∞ ring space with a map $i : \bullet_e \to M$. Here’s what we do:

1. Use i to define a new simplicial set Z over \mathcal{F}^\wedge. A simplex of Z is a simplex of M with some decorations making it look like a simplex of $\Sigma[x]$.

2. We have maps $\Sigma[x] \leftarrow Z \to M$, and the inclusion of \bullet_e factors through Z.
So let M be an E_∞ ring space with a map $i : \bullet_e \to M$. Here’s what we do:

1. Use i to define a new simplicial set Z over \mathcal{F}^\wedge. A simplex of Z is a simplex of M with some decorations making it look like a simplex of $\Sigma[x]$.

2. We have maps $\Sigma[x] \leftarrow Z \to M$, and the inclusion of \bullet_e factors through Z.

3. The decorations are rigid enough that $Z \to \Sigma[x]$ is a trivial fibration.
In order to better understand homotopy coherent algebraic structures, we might want to prove similar results for increasingly elaborate kinds of algebras. The next case where we have some results is that of divided power algebras.
In order to better understand homotopy coherent algebraic structures, we might want to prove similar results for increasingly elaborate kinds of algebras. The next case where we have some results is that of divided power algebras.

Let \mathcal{Sh} be the shuffle operad (multicategory): its objects are finite ordered sets and to give a morphism

$$(S_1, S_2, \cdots, S_n) \to T$$

is to express T as a shuffle of S_1, \cdots, S_n.
Proposition

- $\text{Fun}(\mathcal{S}h, \mathcal{F})$ is a symmetric bimonoidal category under Day convolution and objectwise coproduct.
Proposition

- $\text{Fun}(\text{Sh}, \mathcal{F})$ is a symmetric bimonoidal category under Day convolution and objectwise coproduct.

- $K(\text{Fun}(\text{Sh}, \mathcal{F}))$ is equivalent, as an E_∞ ring spectrum, to the free connective divided power spectrum on one generator.
Thanks for listening!