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1. Derived Categories

1.1. Basic Motivation. One starting point for introducing derived categories is the observation that many
naturally occurring functors between abelian categories, for example taking global sections of a sheaf, tensor
and hom constructions, invariants, etc., are only left or right exact. As exact functors have significantly
better properties and are easier to work with, it is desirable to produce from an abelian category A another
category D(A), its derived category, where all these functors become exact, in a sense. Motivating the
definition that we will discuss tonight, consider the case A = A−mod is the category of modules over some
ring A. Then objects M ∈ A admit projective resolutions P • →M → 0. Furthermore, we have the following
important fact:
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Theorem 1. Let A be an abelian category, and let X,Y ∈ Ob(A). Let P • → X and Q• → Y by projective
resolutions and let f : X → Y be a morphism. Then there exists a morphism of resolutions R(f) : P • → Q•

extending f in the sense that the diagram

P 0 > X

Q0

R(f)0

∨
> Y

f

∨

commutes. Furthermore, any two such R(f) are homotopic maps of complexes.

So, we see that when projective resolutions (or similarly injective resolutions) exist, they are unique up to
canonical isomorphism in the homotopy category of chain complexes over A, and that maps between objects
are naturally the same as homotopy classes of maps between their projective resolutions. Thus, the basic idea
is to work with complexes rather than honest objects, and to replace objects by their projective/injective
resolutions. In order to make this work, we will want to identify complexes that are quasi-isomorphic, i.e.
whose cohomology can be identified through some map of complexes. Now let’s turn to details.

1.2. Derived Categories: Definition via Universal Property. Let A be an abelian category. Let
Kom(A) be the category of complexes over A. It is again an abelian category, with images, kernels, quotients,
etc. all realized in the obvious ways. Let Kom+(A) denote the full subcategory of complexes K• such that
Ki = 0 for i << 0, and let Kom−(A) be the full subcategory of complexes K• such that Ki = 0 for i >> 0,
and let Komb(A) be the full subcategory of complexes K• such that Ki = 0 for both i >> 0 and i << 0. Let
Kom0(A) =

∏
i∈ZA be the full subcategory of complexes with zero differential. Then taking cohomology

induces a functor
H : Kom(A)→ Kom0(A).

We say that a map of complexes f : K• → L• is a quasi-isomorphism if H(f) is an isomorphism.

Theorem 2. Let A be an abelian category. Then there exists a pair (D(A), Q) with D(A) a category and
Q : Kom(A)→ D(A) a functor such that

(1) if f : K• → L• is a quasi-isomorphism then Q(f) is an isomorphism
(2) if (D̃(A), Q̃) is any other such pair, then there exists a unique functor G : D(A) → D̃(A) such that

the diagram

Kom(A)
Q
> D(A)

D̃(A)

G∨Q̃ >

commutes.

D(A) is called the derived category of A, and the functor Q should be viewed as a sort of localization.
We can give a nearly identical construction of categories D+(A), D−(A), and Db(A) with functors from
Kom+(A), Kom−(A), and Komb(A) universal for inverting quasi-isomorphisms in those categories.

Before proceeding to properties of D(A), it is worth giving a brief, although perhaps not overly enlight-
ening, proof of the above theorem. In fact, we can prove equally easily the following generalization:

Theorem 3. Let A be an abelian category, and let S be any class of morphisms in A. Then there exists
a universal functor Q : A → A[S−1] transforming elements of S into isomorphisms, in the sense of the
previous theorem.

Proof. Define Ob(A[S−1]) = Ob(A) and Q to be the identity on objects. To define the morphisms, first
introduce a variable xs for every morphism s : X → Y in S. We then construct an oriented graph Γ in
which the vertices are the objects of A and edges are either morphisms f : X → Y , which is oriented from
X to Y , or a variable xs, which is oriented oppositely from s. Then we define a morphism in A[S−1] from
X to Y to be an equivalence class of finite paths in this graph, starting at X and ending at Y , under the
equivalence relation generated by replacing a concatenation of genuine morphisms with their composition and
identifying sxs and xss with the identity morphism on the appropriate object. Composition of morphisms
is given by concatenation of representing paths. It is easy to see, modulo some set theoretic considerations,
e.g. that A is equivalent to a small category, that this gives a category, and that there is a natural morphism
Q : A → A[S−1] sending elements of S to isomorphisms and which is clearly universal for this property. �



DERIVED CATEGORIES, DERIVED FUNCTORS, AND D-MODULE INVERSE AND DIRECT IMAGE 3

1.3. Shift Functors. Let i ∈ Z. Then we have an exact functor •[i] : Kom(A) → Kom(A) defined by
K•[i]j = Ki+j and dK[i] = (−1)idK . This is called the shift by i functor. Clearly •[i] ◦ •[j] = •[i + j]
and •[0] = idKom(A), so these all give autoequivalences of Kom(A). Furthermore they clearly restrict to

autoequivalences of the subcategories Kom+,Kom−,Komb. It is clear that shifts commute with cohomology
and send quasi-isomoprhisms to quasi-isomorphisms. Thus they lift uniquely to autoequivalences of the
derived category D(A), and similarly for its bounded variants.

1.4. Cone and Cylinder. In this section we introduce two fundamental constructions related to morphisms
of complexes and prove some of their basic properties. The main purpose of these constructions is to allow
us to define a notion of distinguished triangle, which will replace the role of short exact sequences in derived
categories, as in general derived categories are not abelian. They also provide convenient tools for various
proofs in homological algebra.

Let A be an abelian category and let f : K• → L• be a morphism in Kom(A). Then we can form the
complex C(f), called the cone of f, by

C(f) = K[1]• ⊕ L•

(at the level of objects) with differential given by

d(ki+1, li) = (−dK(ki+1), f(ki+1) + dL(li)).

This is conveniently expressed by the matrix

dC(f) =

(
dK[1] 0
f [1] dL

)
.

That d2
C(f) = 0 is the statement that f is a morphism of complexes.

Let us take a moment to see where the name comes from and a connection with algebraic topology. Let
f : X → Y be a simplicial map of simplicial complexes. Then we can form the associated mapping cone
MCf . This is another simplicial complex. Its i-simplices are in bijection with the union of the i-simplices
of Y and the (i − 1)-simplices of X, except we have one extra 0-simplex. This complex is built from the
complex Y by attaching the cone on each (i − 1)-simplex of X, which is then an i-simplex, by identifying
the cone point with the extra 0-simplex and the opposite face with the image in Y under f of the original
(i− 1)-simplex of X. Then one sees immediately that if we take the cone associated to the map of simplicial
chain complexes

f : C•∆(X)→ C•∆(Y )

(put homological degrees negative, unlike usually in topology, so that things are consistent with previous
definitions) we obtain the reduced simplicial chain complex for MCf . So the complex C(f) computes the
reduced homology of the associated mapping cone, hence the name of the construction.

Exercise 4. Let f : K• → L• be an inclusion of a subcomplex. Then C(f) is quasi-isomorphic to L•/K•.

Proof. This basically follows immediately from the definitions. Note that we have a natural map C(f)→ L•

induced by projection K[1]• ⊕L• → L•/K•. For (ki+1, li) ∈ C(f)i we see d(ki+1, li) = (−dki+1, ki+1 + dli).
This is 0 if and only if −ki+1 = dli and dki+1 = 0. The latter condition follows from the first, and so we see
projection to L• is injective on cycles and hence on boundaries. We obtain identifications

Zi(C(f)) = {li ∈ Li : dli ∈ Ki+1}
Bi(C(f)) = Bi(L•) +Ki.

At the same time, we have

Zi(L•/K•) = {li +Ki ∈ Li/Ki : dli ∈ Ki+1}
Bi(L•/K•) = {dli−1 +Ki : li−1 ∈ Li−1}.

The statement then follows immediately. �

In this case of the inclusion of a subcomplex, we also have the associated short exact sequence of chain
complexes

0→ K• → L• → L•/K• → 0

and hence the associated long exact sequence in cohomology

· · · → Hi(K•)→ Hi(L•)→ Hi(L•/K•)→ Hi+1(K•) · · ·
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where the connecting homomorphism Hi(L•/K•)→ Hi+1(K•) is given by lifting a cycle to L• and applying
the differential (see proof of previous exercise to see why this works). Via the previous exercise, we have an
identification Hi(C(f)) ∼= Hi(L•/K•) so we also have a long exact sequence in cohomology

· · · → Hi(K•)→ Hi(L•)→ Hi(C(f))→ Hi+1(K•) · · ·
Considering the connecting homomorphism of the original long exact sequence and the explicit identification
of cohomologies, we see that in this second long exact sequence this connecting homomorphism is induced
by the natural projection

C(f)→ K[1].

While f : K• → L• will not in general be an inclusion of complexes, we nonetheless still have a long exact
sequence in cohomology of the type we just derived:

Theorem 5. Let f : K• → L• be a morphism of complexes. Then we have the associated long exact sequence
in cohomology

· · · → Hi(K•)→ Hi(L•)→ Hi(C(f))→ Hi+1(K•) · · ·
where the connecting homomorphism is again induced by the natural map C(f)→ K[1].

Before proving this theorem, it is useful to introduce another complex depending on f , the cylinder of f,
denoted Cyl(f). We have, at the level of objects,

Cyl(f) = K• ⊕K[1]• ⊕ L•

with differential given by

dCyl(f)(k
i, ki+1, li) = (dKk

i − ki+1,−dKki+1, f(ki+1) + dLl
i).

Again, this is conveniently expressed via the matrix

dCyl(f) =

dK −idK [1] 0
0 dK[1] 0
0 f [1] dL

 .

That this is a complex again follows from the fact that f is a morphism of complexes. Here is the key
interaction between f and its cone and cylinder:

Theorem 6. Let f : K• → L• be a morphism of complexes. Then we have the following commutative
diagram in Kom(A) with exact rows

0 > L•
π
> C(f)

δ
> K[1]• > 0

0 > K•
f
> Cyl(f)

α
∨

π
> C(f)

=
∨

> 0

K•

=
∨

f
> L•

β
∨

This diagram is functorial in f . α and β are quasi-isomorphisms; more specifically, βα = idL and αβ
is homotopic to idCyl(f). In particular, we see that Cyl(f) is canonically isomorphic to L• in the derived
category.

Proof. The proof is by easy diagram chasing, and can be found in Methods of Homological Algebra, III.3
Lemma 3. However, we do need to say what the maps are in the diagram above. They are (note we can use
elements to describe them, thanks to the Freyd-Mitchell theorem):

π(li) = (0, li)

δ(ki+1, li) = ki+1

α(li) = (0, 0, li)

f(ki) = (ki, 0, 0)

π(ki, ki+1, li) = (ki+1, li)

β(ki, ki+1, li) = f(ki) + li.

The only map that is not the obvious map is the map β. �
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Proof. (Of Theorem 5) We have the long exact sequence

0→ K• → Cyl(f)→ C(f)→ 0

which gives rise to a corresponding long exact sequence in cohomology. We have the canonical quasi-
isomorphism between Cyl(f) and L•, so we get a long exact sequence with the cohomology objects we want,
and the only remaining question is the connecting homomorphism. The statement about that again follows
by diagram chasing. �

1.5. Distinguished Triangles and Exact Functors. In the last section we associated to any morphism
of complexes f : K• → L• complexes C(f) and Cyl(f). Recall Cyl(f) was canonically isomorphic to L• in
D(A) and that these objects fit into a natural short exact sequence

0→ K• → Cyl(f)→ C(f)→ 0

which gave rise to a long exact sequence in cohomology. The maps on cohomology in this sequence can be
seen as arising from the triangle

K• → Cyl(f)→ C(f)→ K[1]

where the maps are as in Theorem 5 in the preceding section (all maps are the obvious maps). Out of
deference to the importance of this sequence, we make the following definition:

Definition 7. A triangle in the derived category D(A) is a diagram of the form

K• → L• →M• → K[1]•.

A morphism of triangles is the obvious sort of commutative diagram. A triangle is said to be a distinguished
triangle if it is isomorphic to one of the form

K• → Cyl(f)→ C(f)→ K[1].

Distinguished triangles play the role of short exact sequences in derived categories. For example, as
we have seen, to every distinguished triangle there is a long exact sequence in cohomology induced by the
morphisms in the triangle. As some basic examples, we see that for any morphism of complexes f : K• → L•

the triangle
K• → L• → C(f)→ K[1]•

is distinguished - this follows from the canonical isomorphism between Cyl(f) and L• in the derived category.
As another example, this canonical isomorphism, in combination with Exercise 4, shows that for any inclusion
of complexes K• → L• the triangle

K• → L• → L•/K• → K[1]•

is distinguished. So we see in particular that every short exact sequence of complexes gives rise to a dis-
tinguished triangle - in this sense distinguished triangles are generalizations of short exact sequences of
complexes.

The need for introducing the notion of distinguished triangle arises in part from the problem that the
cone of a morphism f : X → Y of objects in the derived category is not canonically defined.

Definition 8. Let A and B be abelian categories. A functor F : D(A)→ D(B) is called exact if it commutes
with the shift functors and maps distinguished triangles to distinguished triangles.

1.6. The Homotopy Category and Ore Conditions. We showed at the very beginning that the derived
category of an abelian category exists using an unsatisfying argument about general localization of categories.
This argument gives essentially no information about what morphisms in D(A) look like, and in fact we
can’t even see that D(A) is an additive category, which turns out to be true. We now give an alternative
construction of the derived category which is a bit more involved and much more involved to prove, but
which makes morphisms much easier to understand and makes additivity clear.

Definition 9. Let A be an abelian category. The homotopy category of A is the category K(A) with objects
that are complexes of objects in A and morphisms that are homotopy classes of morphisms of complexes.

This definition makes sense because if f g then fh gh and hf hg for any morphism of complexes h when
these expressions make sense. Also, cohomology is still defined at the level of the homotopy category, and
so we still have a notion of quasi-isomorphism.
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Lemma 10. The localization functor Q : Kom(A) → D(A) factors through the homotopy category K(A),
i.e. f g =⇒ Q(f) = Q(g).

Proof. Let f, g : K• → L• be homotopic maps of complexes. Then we can write f = g + dh+ hd. Define a
morphism

c(h) : C(f)→ C(g)

by
c(h)(ki+1, li) = (ki+1, li + h(ki+1)).

A simple calculation shows that c(h) is a morphism of complexes. Similarly, we define a morphism of
complexes

cyl(h) : Cyl(f)→ Cyl(g)

by the formula
cyl(h)(ki, ki+1, li) = (ki, ki+1, li + h(ki+1)).

c(h) provides a morphism of complexes

0 > L• > C(f) > K[1]• > 0

0 > L•

=
∨

> C(g)

c(h)
∨

> K[1]•

=
∨

> 0

By the 5-lemma, this implies c(h) is a quasi-isomorphism.
Similarly, we have the morphism of short exact sequences of complexes

0 > K• > Cyl(f) > C(f) > 0

0 > K•

=
∨

> Cyl(g)

cyl(h)
∨

> C(f)

c(h)
∨

> 0

and by the 5-lemma again we conclude cyl(h) is a quasi-isomorphism.
Next, we construct the NONCOMMUTATIVE diagram

L•

K•
f
>

f
>

Cyl(f)

αf

∨

K•

=
∨

g
> Cyl(g)

cyl(h)
∨

L•

βg

∨
g

>

All maps are as in the earlier subsection on the cone and cylinder. The middle square and bottom triangle
DO COMMUTE, but the top triangle in general DOES NOT COMMUTE IN Kom(A). However, we do
have

f = βf ◦ f
in Kom(A). But we’ve seen before that in the derived category Q(βf ) and Q(αf ) are mutually inverse, from
which we get

Q(f) = Q(α) ◦Q(f)

in the derived category. SO IN THE DERIVED CATEGORY THE ABOVE DIAGRAM IS COMMUTA-
TIVE. By direct computation, we have

βg ◦ cyl(f) ◦ αf = idL.

It follows then that
Q(f) = Q(g)

as needed. �

From this we get the following the key result:
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Theorem 11. The localization of K(A) by the class of quasi-isomorphisms is canonically equivalent to the
derived category of A. The same holds for the various bounded versions of these categories.

Proof. Let S denote the class of quasi-isomorphisms in K(A). Then by the universal property of localization
of categories we have the following commutative diagram

Kom(A)
Q

> D(A)

K(A)
∨

Q
>

.....
.....

.....
.....

....>

K(A)[S
−1

]

∃!∨
....... ∃!
∧.......

where the diagonal arrow is the factorization of the previous lemma. It follows that the composition of the

vertical dotted arrows in either order is the identity functor, so that D(A) and K(A)[S
−1

] are canonically
equivalent, as needed. �

The motivation to consider the derived category as this localization of the homotopy category is that this
latter localization is much better behaved. This is reminiscent of a situation in noncommutative algebra - if
we have a ring R and a multiplicative subset S ⊂ R, one can always form the noncommutative localization
R[S−1], defined by the obvious universal property and constructed, for example, by adjoining new variables
to invert elements of S and adding appropriate relations, like in our first proof of the existence of D(A).
However, when S satisfies the Ore condition:

(*Ore*) For any a ∈ R and s ∈ S, there exist b, c ∈ R and t, u ∈ S such that as = tb and sa = cu.

This condition allows us to just invert elements of S on one side, so that the localization looks like it does
in the noncommutative case. Note in particular that if f ∈ R is locally ad-nilpotent then the set {fn}n≥0

satisfies the Ore condition. We can consider the noncommutative localization R[f−1], OR we can view R as
a Z[x]-module where x acts by left (or right) multiplication by f , and can consider the localization R[f−1]
in the usual sense of commutative algebra. The Ore condition guarantees that these localizations are the
same. This, in a sense, is what allows us to sheafify the algebra of differential operators on a smooth variety,
as by Grothendieck’s definition functions are locally nilpotent in the algebra of differential operators.

The same game works for categories. We need some condition to replace the Ore conditions. This is the
notion of a localizing class of morphisms:

Definition 12. Let C be a category, and let S be a class of morphisms in C. We say S is localizing if:

(1) S contains all identity morphisms and all compositions of morphisms in S when defined.

(2) For any f ∈Mor(C), s ∈ S such that the following diagrams make sense, there exist g ∈Mor(C), t ∈ S
such that the following commute

W ..........
g

> Z W <..........
g

Z

X

t

∨

.........
f
> Y

s

∨
X

t

∧.........
<
f

Y

s

∧

(3) For morphisms f, g : X → Y , the existence of s ∈ S with sf = sg is equivalent to the existence of
t ∈ S with ft = gt.

In this setting, the localization C[S−1] becomes much better, in the sense that we only need “right
fractions.” In other words, we have the following construction. Again, let the objects be just the objects of
C. Now define morphisms X → Y to be equivalence classes of diagrams (s, f) of the following form (called
“roofs”):

X ′

X

s

<
Y

f

>
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(for s ∈ S and f and morphism) under the equivalence relation (s, f) (t, g) if and only if there exists a third
roof forming the following commutative diagram:

X ′′′

X ′

r

<
X ′′

h

>

X

f

<

s

<
Y

g

>

t

>

The composition of equivalence classes of roofs is defined using concatenation and the first square in (2) in

the definition of a localizing class. This is a category, call it C̃[S−1], and we have a natural functor

Q : C → C̃[S−1]

inverting all morphisms in S. Moreover, we have

Theorem 13. The unique induced functor

C[S−1]→ C̃[S−1]

is an equivalence of categories.

This is relevant for us because:

Theorem 14. Let A be an abelian category. The class S of quasi-isomorphisms in the homotopy category
K(A) is localizing.

This gives us a more manageable description of morphisms in D(A) as roofs of homotopy classes of maps
of complexes. Note that we may as well have taken “left roofs” rather than “right roofs” as in the above
construction.

In particular, since now all localizing can be done on one side and since we can find “common denomina-
tors.” More concretely, suppose (s, f) and (s′, f ′) are roofs from X to Y in the homotopy category K(A),
say with “chimneys” Z and Z ′. Then we have two quasi-isomorphisms s : Z → X and s′ : Z ′ → X. Using
the fact that the class of quasi-isomorphisms in the homotopy category is localizing, we can find morphisms
r : U → Z (with r ∈ S a quasi-isomorphism) and r′ : U → Z ′ for some object U such that sr = r′s′. It
follows that r′ is also a quasi-isomorphism. Then

(s, f) (sr, fr) (s′, f ′) (sr, f ′r′).

Then we can define addition of morphisms by

(s, f) + (s′, f ′) = (sr, fr + f ′r′).

It is not hard to check that we get:

Proposition 15. With the above addition of morphisms D(A) is an additive category.

1.7. Canonical Equivalence Between A and H0-complexes in D(A).

Definition 16. Let A be an abelian category and D(A) its derived category. An object X ∈ D(A) is called
an H0-complex if Hi(X) = 0 for i 6= 0.

We can now see formally how our original category appears inside its derived category:

Theorem 17. The composition A → Kom(A)→ D(A) where the first map sends objects to the associated
0-complexes in Kom(A) induces an equivalence between A and the full subcategory of H0-complexes.

Proof. The inverse functor is given by zeroth cohomology H0. It is clear that the composition on A is
naturally isomorphic to the identity functor, so we must consider the reverse composition. We will use the
realization of D(A) as the localization of the homotopy category as in the previous section. We note that the
functor in question lands in the full subcategory of 0-complexes. So first consider a morphism X[0]→ Y [0]
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in D(A) of 0-complexes. By our construction, this is represented by a roof

Z

X[0]

s

<
Y [0]

f

>

where s is a quasi-isomorphism. In particular, Z is an H0-complex. Under our composition of functors this
is sent to the roof

X

X[0]

id

<
Y [0]

g

>

where g = H0(f) ◦H0(s)−1. To show that our functor is fully faithful we need to show that the two roofs
above are equivalent.

Consider the truncation V of Z defined by

V i = Zi for i < 0,

V 0 = ker(dZ : Z0 → Z1),

and
V i = 0 for i > 0.

Then the natural inclusion map r : V → Z is a quasi-isomorphism (it is always an isomorphism on nonpositive
cohomology, and in particular is a quasi-isomorphism because Z and V are H0-complexes). We also have
the morphism

h : V → X[0]

which in degree 0 is given by the composition

V 0 → Z0 → X.

These maps then fit into the commutative diagram

V

Z

r

<
X

h

>

X

id

<

s

<
Y

g

>

f

>

and in particular we see that the two roofs above are equivalent and the functor

A → D(A)

is an equivalence of A with its image, the full subcategory of 0-complexes in D(A).

To finish the proof, we need to check that every H0-complex is isomorphic to a 0-complex in D(A). But
we basically already know this, because for Z any H0-complex and with the same notations as above, the
roof

V

Z

r

<
H0(Z)[0]

h

>

gives an isomorphism of Z with H0(Z)[0] because both r and h are quasi-isomorphisms. �

1.8. Ext as Hom in the Derived Category. Derived categories also give a convenient framework to
define Ext objects. We have seen that the original category A embeds as H0-complexes (or 0-complexes) in
D(A). By applying shift functors, this works just as well for any fixed homological degree. By embedding
different objects of A in different in different homological degrees and studying their interaction, we discover
additional structure. In particular, we have the following definition:
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Definition 18. Let X,Y ∈ A. Then we define

ExtiA(X,Y ) := HomD(A)(X,Y [i]).

When A has enough injectives or projectives, this definition of Ext coincides with the usual definition.
This definition has the additional pleasant property of making obvious the existence of the multiplication
maps

ExtiA(X,Y )× ExtjA(Y,Z)→ Exti+jA (X,Z).

In this setting these maps are just given by composition of morphisms!

1.9. Splitting of the Exact Sequence 0→ L• → C(f)→ K[1]• → 0.

Proposition 19. Let f : K• → L• be a morphism of complexes. Then the natural short exact sequence

0→ L• → C(f)→ K[1]• → 0

of complexes is split if and only if f is homotopic to 0. Furthermore, the naive map on objects

K[1]• ⊕ L• → C(f)

is a splitting of C(f) as a complex if and only if f = 0.

Proof. This is an exercise in definitions. Let us consider the naive map

K[1]• ⊕ L• → C(f).

This is a map of complexes if and only if

(−dKki+1, dli) =: dK[1]•⊕L•(ki+1, li) = dC(f)(k
i+1, li) := (dKk

i+1, f(ki+1) + dli)

for all ki+1 ∈ Ki and li ∈ Li. Clearly this is true if and only if f = 0.
Now let us consider when the exact sequence is split. To give a splitting is to give a map of complexes

h : K[1]• → L• such that the resulting map

(id, h) : K[1]• → C(f)

is a map of complexes. This holds exactly when

(−dKki+1, h(−dKki+1)) = (id, h)(d(ki+1)) = d((id, h)ki+1) = (−dKki+1, f(ki+1) + dLhk
i+1)

for all ki+1 and li. This just says f = −(hdK + dLh), i.e. −h gives a homotopy f 0, as needed. �

2. Derived Functors

2.1. Basic Motivation. Let A,B be abelian categories, and let F : A → B be a functor. Then we see
immediately that F induces functors

Kom∗(F ) : Kom∗(A)→ Kom∗(B)

between the associated categories of complexes and functors

K∗(F ) : K∗(A)→ K∗(B)

between the associated homotopy categories, where ∗ denotes any of our boundedness conditions. But in
general these functors DO NOT send quasi-isomorphisms to quasi-isomorphisms, and in particular do not,
at least in this naive way, give rise to corresponding functors at the level of the derived categories. An
exception to this is the following:

Proposition 20. Suppose F is exact. Then F in particular commutes with taking cohomology, and so sends
quasi-isomorphisms to quasi-isomorphisms. Thus F gives rise to a functors

D∗(F ) : D(A)→ D(B)

between the derived category with any boundedness condition. The functor D∗(F ) is exact.

The purpose of this section is to make some similar construction work for functors that are only left or
right exact. The basic idea is that we cannot apply the functor term-wise to just any complex - we must first
take a quasi-isomorphic complex whose objects are “adapted” to our functor, and then apply term-wise. We
now make this precise.
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2.2. Universal Property of Derived Functors. Let A and B be abelian categories. The following is a
definition of derived functors via a universal property:

Definition 21. Let F : A → B be a left exact functor. The derived functor of F , if it exists, is a pair
(RF, εF ) of an exact functor

RF : D+(A)→ D+(B)

and a morphism of functors
εF : QB ◦K+(F )→ RF ◦QA

as in the following diagram
D+(A)

K+(A)

QA >~ww D+(B)

RF

>

K+(B)

QB

>

K+(F ) >

satisfying the following universality property: for any other such pair (G, ε), these exists a unique morphism
of functors

η : RF → G

such that the diagram
QB ◦K+(F )

RF ◦QA
η◦QA

>

εF

<
G ◦QA

ε

>

commutes.

It follows immediately that if RF exists it is unique up to a unique isomorphism of functors.

Similarly, we have a definition for the left derived functor of a right exact functor, where now some arrows
are reversed and the derived functor is between the bounded above derived categories:

Definition 22. Let F : A → B be a right exact functor. The derived functor of F , if it exists, is a pair
(LF, εF ) of an exact functor

RF : D−(A)→ D−(B)

and a morphism of functors
εF : LF ◦QA → QB ◦K−(F )

as in the following diagram
D−(A)

K−(A)

QA >ww� D−(B)

LF

>

K−(B)

QB

>

K−(F ) >

satisfying the following universality property: for any other such pair (G, ε), these exists a unique morphism
of functors

η : G→ LF

such that the diagram
QB ◦K−(F )

RF ◦QA
η◦QA

>

εF
>

G ◦QA

ε
<

commutes.



12 SETH SHELLEY-ABRAHAMSON

Again, the functor LF is clearly unique up to a unique isomorphism of functors if it exists. It is nontrivial
to show that the derived functor exists. However, we will see that under mild hypotheses it does indeed
exist. For this we need the notion of an adapted class of objects.

2.3. Adapted Classes of Objects.

Definition 23. Let F : A → B be a left exact functor. We say that a class of objects

R ⊂ Ob(A)

is adapted to F if
(1) R is closed under finite direct sums
(2) F maps any acyclic complex in Kom+(R) to an acyclic complex
(3) Any object in A is a subobject of an object in R.

Similarly, for a right exact functor we have:

Definition 24. Let F : A → B be a right exact functor. We say that a class of objects

R ⊂ Ob(A)

is adapted to F if
(1) R is closed under finite direct sums
(2) F maps any acyclic complex in Kom−(R) to an acyclic complex
(3) Any object in A is a quotient of an object in R.

Here is an important and commonly applicable example:

Example 25.

Suppose A has enough injectives and let F : A → B be a left exact functor. Then the class of injective
objects in A is adapted to F . The only thing to check is that left exact functors send exact complexes 0→ I•

to exact complexes, and this follows by an easy induction using the fact that a complement of an injective
object in an injective object is an injective object.

Similarly, for right exact functors one may always take the class of projective objects, when there are
enough projectives.

The following fact about adapted-to-F classes will be crucial to the construction of derived functors:

Proposition 26. Let R be a class of objects adapted to a left exact functor F : A → B, and let SR be the
class of quasi-isomorphisms in the homotopy category K+(R). Then SR is a localizing class of morphisms
in K+(R) and the canonical functor

K+(R)[S−1
R ]→ D+(A)

is an equivalence of categories.
A similar statement holds for right exact functors F , with the bounded below categories replaced by the

bounded above categories.

Proof. Proof can be found in [GM] III.6 Proposition 4. �

2.4. Construction of the Derived Functor. Let F : A → B be a left exact functor, and let R be a class
of objects adapted to F . Then we saw that the class SR of quasi-isomorphisms in K+(R) is localizing and
that the canonical functor

K+(R)[S−1
R ]→ D+(A)

is an equivalence of categories. Our strategy for defining the derived functor RF of F will be to define RF
on K+(R)[S−1

R ] and then to transport the definition to D+(A) via an inverse equivalence.
Consider the functor

RF : K+(R)→ K+(B)

be defined by term by term application of F - this is the restriction of the functor K+(F ) to the full
subcategory of complexes of objects in our adapted class R. Here is the significance:

Proposition 27. RF sends quasi-isomorphisms to quasi-isomorphisms, so we have a unique induced functor

RF : K+(R)[S−1
R ]→ D+(B).
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Proof. Let
f : K• → L•

be any morphism of complexes. We then have the associated distinguished triangle

K• → L• → C(f)→ K[1]•.

It follows from the corresponding long exact sequence in cohomology that f is a quasi-isomorphism if and
only if C(f) is acyclic. But then if f is a quasi-isomorphism and K•, L• are complexes of objects from R,
then C(f) is an acyclic complex with objects from R, and hence as R is adapted to F we have that F (C(f))
is acyclic as well. But there is a canonical isomorphism

F (C(f)) ∼= C(F (f))

of complexes, so C(F (f)) is acyclic too, and hence F (f) is a quasi-isomorphism, as needed. �

So let
Φ : D+(A)→ K+(R)[S−1

R ]

be a quasi-inverse to the canonical equivalence

K+(R)[S−1
R ]→ D+(A).

We can now define RF at the level of the bounded below derived categories

RF : D+(A)→ D+(B)

by the composition

D+(A)
Φ
> K+(R)[S−1

R ]
RF
> D+(B)

where the second map RF is (by abuse of notation) the functor constructed in the previous proposition.
We note that there are some non-canonical choices in this definition of RF , namely we needed to choose

an adapted class R and the quasi-inverse Φ. However, these choices turn out to be unimportant, as we see
in the following theorem:

Theorem 28. The functor
RF : D+(A)→ D+(B)

satisfies the universal property of the right derived functor for R (so in particular there exists such a functor
morphism ε). A similar construction works for right exact functors. If F is exact, then both RF and LF
are obtained by term by term application of F to complexes.

Proof. Proof can be found in sections III6.8-III6.11 of [GM]. �

2.5. First Properties and Examples. Under certain circumstances, the derived functor of the composition
of left (or right) exact functors is simply described:

Proposition 29. Let A,B, C be abelian categories, and let F : A → B and G : B → C be left exact functors.
Suppose there exist classes of objects RA in A and RB in B which are adapted to F and G, respectively.
Then RA is adapted to G ◦ F , all three right derived functors RF,RG, and R(G ◦ F ) exist, and the natural
morphism of functors

R(G ◦ F )→ RG ◦RF
given by the universality property of R(G ◦ F ) is an isomorphism.

A similar statement holds for right exact functors.

The following proposition relates the cohomology of the derived functor of a complex with the cohomology
of the derived functors of the cohomology of that complex:

Proposition 30. Let F be a left exact functor between abelian categories. Then

Hn(RF (K•))

is a subquotient of ⊕
p+q=n

RpF (Hq(K•)).

Example 31.
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Let A be a commutative ring, M a fixed A-module, and consider the right exact functor

F : A−mod→ A−mod F (N) = M ⊗A N.
Then we can take either the class of projective objects or the class of flat objects as an adapted class for F ,
so the left derived functor

LF = ⊗LAN : D−(A−mod)→ D−(A−mod)

exists, and we write
LF (M) = M ⊗LA N.

It can be shown that this functor does not depend on which argument we derive. Its cohomology gives the
familiar Tor functors.

Example 32.

For any abelian category A we have the Hom functor

Hom : A×Aop → Ab

to the abelian category of abelian groups. Fixing either slot gives a left exact functor, one defined on A
(fixing the first slot) and the other defined on Aop (fixing the second slot). When fixing the first slot can
take as an adapted class the injective objects of A when A has enough injectives, and when fixing the second
slot we can take as an adapted class the injective objects of Aop, i.e. the projective objects of A, when A
has enough projectives. When A has both enough injectives and enough projectives, it can be shown, like
for ⊗LA, that it doesn’t matter which argument we fix and which we derive.

3. D-Module Inverse and Direct Image

3.1. Reminder About Categories of D-Modules. We now turn to D-modules. Let X be a smooth
variety, and let DX denote the sheaf of differential operators on X. Following Hotta, we define a DX -module
M to be a sheaf for the quasicoherent sheaf of algebras DX , and we say such a module is coherent if:

(1) M is locally finitely generated
(2) For any open subset U , and locally finitely generated submodule of M |U is locally finitely presented.
This is recast as in our class via the following proposition, also found in Hotta’s book (Proposition 1.4.9):

Proposition 33. (1) DX is coherent over itself.
(2) A DX-module M is coherent if and only if it is quasicoherent over O and locally finitely generated

over DX .

We denote the category of such left coherent DX -modules by Ml(DX), and similarly for the category of
coherent right DX -modules.

We will also want to know Hotta’s Corollary 1.4.20:

Proposition 34. Let M ∈Ml(DX) be a coherent DX-module. Then M has a resolution

P • →M → 0

by locally free DX-modules of finite rank. Furthermore, there exists a finite resolution

0→ Pm → · · · → P0 →M → 0

by locally projective DX-modules of finite rank.
If we take a DX-module M which is quasicoherent over O but perhaps not coherent over DX , we still have

resolutions as above, where we drop the condition that the Pi be of finite rank.

We also have the following general fact about sheaves of rings on topological spaces (Hotta’s Lemma
1.5.2):

Proposition 35. Let R be a sheaf of rings on a topological space X, and let Mod(R) denote the category of
sheaves of R-modules. Then Mod(R) has enough injective objects and enough flat objects.

In particular, one can always talk about RHom(M, ·) and ⊗LR. Note that Mod(R) may not have enough
projectives - indeed this happens already for Mod(OX) for non-affine varieties X.

We also have (Hotta’s Proposition 1.5.6 and Theorem 1.5.7):
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Proposition 36. Let X be a smooth variety. Let Db(DX) denote the bounded derived category of all DX-
modules, let Db

qcoh(DX) and Db
coh(DX) denote the full subcategories of those objects with O-quasicoherent

and D-coherent cohomology, respectively. Let also Mqcoh(DX) and Mcoh(DX) denote the categories of O-
quasicoherent and D-coherent DX-modules, respectively.

(1) Any object of Db(DX) is represented by a bounded complex of flat DX-modules. Any object of
Db
qcoh(DX) is represented by a bounded complex of locally projective DX-modules belonging to Mqcoh(DX).

(2) The natural functors
Db(Mqcoh(DX))→ Db

qcoh(DX)

and
Db(Mcoh(DX))→ Db

coh(D)

are equivalences of categories.

3.2. Bounded Derived Category of Holonomic D-Modules.

Theorem 37. The natural embedding

Ml
hol(DX)→Ml(DX)

of the category of holonomic left DX-modules into the category of all quasicoherent DX-modules induces an
equivalence

Db(Mhol(DX))→ Db
hol(DX)

where the later category is the full subcategory of Db(M(DX)) consisting of objects with holonomic cohomol-
ogy.

In particular, if M,N are holonomic DX-modules, we have

ExtiM(DX)(M,N) ∼= ExtiMhol(DX)(M,N)

Proof. We omit the proof of the first statement. The second statement follows from the first because we can
compute Ext as a Hom between shifted objects in the derived category. �

We remark that this is a fact about D-modules, and not a general fact about Ext’s. More specifically,
suppose A ⊂ B is a Serre subcategory. Then for M,N ∈ A one can consider both ExtiA(M,N) and
ExtiB(M,N). In general these are NOT the same. A counterexample can be seen by taking A to be the
category of finite dimensional sl2-modules and B the category of all sl2-modules. Then

Ext3
A(C,C) = 0

while
Ext3

B(C,C) = C.

3.3. Upgraded Duality Functor. Again let X be a smooth variety, and DX its sheaf of differential
operators. Denote by Dl(DX) the bounded derived category of the category of quasicoherent left DX -
modules, and by Dr(DX) the bounded derived category of the category of quasicoherent right DX -modules.

In this setting, we will define a (contravariant) duality functor

D : Dl(DX)→ Dr(DX)

by
M 7→ RHom(M,DX)

for any coherent left DX -module. Here

Hom(·,DX) :Ml(DX)→Mr(DX)

is the left exact functor defined by

Γ(U,Hom(M,DX)) = HomDU
(Γ(U,M),DU )

on affine open sets U . The right DX -action is given through right multiplication on DX . Note that this is
actually just the sheaf hom, over DX , from M to DX (affine spaces are D-affine). That Hom sends coherent
DX -modules to coherent DX -modules follows from the fact that D(U) is Noetherian for any open affine
U . We have seen that quasicoherent DX -modules have finite resolutions by locally projective DX -modules
and that coherent DX -modules have finite resolutions by locally projective DX -modules of finite rank, and
therefore we can take these classes of adapted objects to define the right derived functor RHom on either
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the bounded or bounded-above derived category of quasicoherent or coherent DX -modules. It is my belief
that the embedding of the category of coherent DX -modules into the category of quasicoherent DX -modules
should induce a fully faithful embedding at the level of the derived categories, although I haven’t checked this
(update: I just realized this follows from the fact that both of these categories embed as full subcategories of
Db(DX) with the corresponding cohomology conditions, so the embedding I just mentioned is fully faithful).
At any rate, the duality functor is defined at the level of the bounded derived categories of either coherent
or quasi-coherent DX -modules.

We would like to realize the duality functor on the category Dl(DX) itself. This is just degree-bookkeeping
and side-changing. Recall that we have the side-changing equivalence

· ⊗OX
K−1
X :Mr(DX)→Ml(DX).

This is an exact equivalence of abelian categories (on either the categories of coherent or quasicoherent DX -
modules), so induces equivalences at the level of the derived categories, with any boundedness assumptions.
So we can twist by this equivalence to get a functor just on Dl(DX). Recall also that for holonomic DX -
modules we’ve already constructed a duality functor

D :Ml
hol(DX)→Mr

hol(DX)

for holonomic left DX -modules on affine X given by

M 7→ ExtdimX
DX

(M,DX).

We would like that our upgraded duality functor “restrict” to this one we’ve already built, where we view
honest DX -modules as 0-complexes in the derived category. But the above formula starts with a holonomic
left DX -module in cohomological degree 0 and gives a holonomic right DX -module in cohomological degree
dimX. Now that we are dealing with complexes we’d like to keep careful track of these degrees. So, we
define the (contravariant) duality functor

D : Dl(DX)→ Dl(DX)

by the formula
D(M) = RHom(M,DX)[n]⊗K−1

X

where n = dimX.

We will not expect D2 = Id in the non-coherent case - after all D is built from Hom and this has no chance
of being related to anything involutive for not-locally-finitely-generated modules. However, we can now see
that this is a genuine duality functor for bounded derived categories of coherent DX -modules:

Theorem 38. (1) D2 = Id on Db(Ml
coh(DX)).

(2) For M,N ∈ Db(Ml
coh(DX)) we have

Hom(M,D(N)) ∼= Hom(N,D(M)).

Proof. (1)We take as our adapted-to-Hom class the class R of locally projective DX -modules of locally finite
rank. By the contravariance of Hom, we see that the shift in the definition of D does not enter this picture,
and we need to establish an isomorphism of functors

Id ∼= D2 = RHom(RHom(•,DX)[n]⊗K−1
X ,DX)[n]⊗K−1

X

Note that the equivalence • ⊗ K−1
X sends our adapted class to itself (well, strictly speaking sends locally

projective DX -modules of locally finite rank to the same type of right modules), and similarly for Hom. For
R• a bounded complex of objects from R, we have

Hom(R•,DX)[n] ∼= Hom(R•[−n],DX)

naturally by contravariance, from which one sees easily that

D2 ∼= RHom(RHom(•,DX)⊗K−1
X ,DX)⊗K−1

X

naturally, i.e. we can ignore the shifts. But also

Hom(Hom(R•,DX)⊗K−1
X ,DX)⊗K−1

X

∼= Hom(Hom(R•,DX),KX ⊗DX)⊗K−1
X

∼= Hom(Hom(R•,DX),DX)
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naturally in R•, i.e. we can ignore the twists (recall the derived functor can be constructed by applying the
functor term by term to complexes of adapted objects in the homotopy category, and then transferring to
the derived category by an equivalence, so this all makes sense and is functorial), so we see actually

D2 ∼= RHom(RHom(•,DX),DX).

This is a composition of derived functors, and they have compatible adapted classes of objects, so we obtain

D2 ∼= R(Hom(•,DX) ◦Hom(•,DX)).

But it is clear that we have an isomorphism of functors

Hom(•,DX) ◦Hom(•,DX) ∼= Id

on objects in R (certainly works for projective modules of finite rank - that we can take finite rank is where
coherence mattered from the start), so we get

D2 ∼= R(Id) ∼= Id

as needed.
(2) For the second statement, we note that it follows from the natural isomorphism

HomDX
(M,HomDX

(N,DX)) ∼= HomDX−bimod(M �N,DX)

and the fact that that we can exchange the roles of M and N in the second object above. Naturality means
this same statement will hold when we take M and N to be complexes of adapted objects, so is upgraded
to the derived functors. �

We also have:

Theorem 39.
RHom(M,N) = RHom(D(N),D(M))

for any M,N ∈ Db(Ml
coh(DX)) (note this is derived usual Hom, not derived sheaf Hom).

Proof. Actually its totally not clear to me why this statement even makes sense. Does the category of
coherent DX -modules have enough projectives or injectives? �

3.4. Inverse Image. Let π : X → Y be a morphism of smooth irreducible varieties. Let π−1 denote the
sheaf theoretic inverse image. Recall that we have the DX − π−1(DY )-bimodule

DX→Y := OX ⊗π−1OY
π−1DY .

We define the inverse image functor

π! : Db(Ml(DY ))→ Db(Ml(DX))

(note we are NOT taking coherent/locally finitely generated D-modules here) by

π!(M•) = DX→Y ⊗Lπ−1DY
π−1M•[dimX − dimY ].

Note that at the level of O-modules we have also

DX→Y ⊗Lπ−1DY
π−1M•

= (OX ⊗π−1OY
π−1DY )⊗Lπ−1DY

M•

= (OX ⊗Lπ−1OY
π−1DY )⊗Lπ−1DY

M•

= OX ⊗Lπ−1OY
M•

because DY is locally free over OY and hence any module which is flat for π−1DY is flat for π−1OY .
We remark (Proposition 1.5.9 from Hotta) that the functor

OX ⊗Lπ−1OY
π−1(•) : D−(OY )→ D−(OX)

sends
D−qcoh(OY )→ D−qcoh(OX).

It follows from the computation above that π! sends O-quasicoherent D-modules to O-quasicoherent D-
modules. We remark that π! will NOT in general send complexes with D-coherent cohomology to complexes
with D-coherent cohomology, as one sees easily by considering DX→Y for X → Y a closed embedding with
dimX < dimY .
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We remark that identifying 0-complexes with their 0th-cohomology, we have

DX→Y = π!DY [dimY − dimX].

3.5. Direct Image. Let π : X → Y again be a morphism of smooth algebraic varieties. Let M ∈ Db(DX).
We define the D-module direct image π∗ as the composition of two functors between bounded derived
categories. The first is

• ⊗LDX
DX→Y : Db(DX)→ Db(π−1DY )

(here we are using right modules, as we’d expect). To compute this one takes a DX -flat resolution in the
category of DX -modules, which exists as we mentioned earlier. The second is the functor

Rπ∗sheaf : Db(π−1DY )→ Db(DY ).

We note that the sheaf theoretic pushforward π∗sheaf is a left exact functor, and the category of sheaves of
(right) π−1DY -modules has enough injectives, as we mentioned earlier, so this all makes sense. In summary,
we have

π∗ : Db(DX)→ Db(DY )

defined by
π∗M

• = Rπ∗sheaf (M ⊗LDX
DX→Y ).

We note that since at one point we have to take injective resolutions of π−1DY -modules, our resolutions
involved will be enormous and not quasicoherent. So it is totally unclear why π∗ should sent O-quasicoherent
D-modules to O-quasicoherent D-modules. We will see this later.

We close with an example. Let Y be a point, X a smooth variety, and consider the morphism π : X → Y .
As we’ve seen before, DX→Y = OX , and so we have for a DX -module M its direct image

π∗M = RΓ(M ⊗LDX
OX)

is the hypercohomology of the de Rham complex of M . In particular, in the complex case, by a famous result
of Grothendieck for M = OX (well really taking M = KX for us since we want to be dealing with right
DX -modules) this gives the usual cohomology of the variety X, seen as a complex manifold, living between
homological degrees −dimX and dimX.
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