Summary of D-Modules

\[D = \text{sheaf of differential operators on a variety } X, \]
\[D\text{-Module} = \text{sheaf of modules for } D. \]

Assume all varieties are smooth over \(\mathbb{C} \).

Grothendieck's Definition of Differential Operators

\[\text{Def Let } D_0(M,N) = \mathcal{O}_X, \text{ and for } n \geq 0: \]
\[D_n(M,N) = \{ L \in \text{Hom}_X(M,N) : [L,f] \in D_{n-1}(M,N) \text{ \forall } f \in \mathcal{O}_X \}. \]
\[\text{Set } D(M,N) = \bigcup_{n \geq 0} D_n(M,N). \]

Note \(D_i(M,N) \subseteq D_j(M,N) \) for \(i \leq j \), and \(D_*(M,N) \) is naturally an \(\mathcal{O}_X \)-bimodule.

When \(M = N \), it is easy to see that \(D(M) = D(M,M) \) has the structure of an algebra, and in fact
\[D_n(M) \cdot D_m(M) \subseteq D_{n+m}(M), \]
so \(D(M) \) is a filtered algebra, and we can consider the associated graded algebra
\[\text{gr } D(M) = \bigoplus_{n \geq 0} D_n(M)/D_{n+1}(M). \]
For \(M = \mathcal{O}_X \)

Note \([D_n(R), D_m(R)] \subseteq D_{n+m-1}(R) \),
so \(\text{gr } D(R) \) is a graded commutative algebra.

Important special case: \(M = N = \mathcal{O}_X \). \(D(R) \) is called the algebra of differential operators on \(R \).

Example \(D(\mathbb{C}[[x_1, \ldots, x_n]]) = \text{usual alg of poly diff ops } \mathbb{C}[[x_1, \ldots, x_n]] \).

Example \(D^*(\mathbb{R}) = \mathbb{R} \). For \(L \in D^*_1(\mathbb{R}) \), easy to see
\[L = \text{ad } L : \mathbb{R} \rightarrow \mathbb{R} \text{ is a derivation.} \]
and since \(Lf = Lf_1 = \left[L, f_1 \right] + fL(1) = \left(\text{ad}L + L(1) \right)f \), we see \(D_1(R) = R \oplus \text{Der}(R) \).

Note \(D(M, N) \) is a filtered right \(D(M) \)-module and a filtered left \(D(N) \)-module.

Sheaves of Differential Operators:

Let \(X \) be smooth, affine \(G \)-variety.

We want to attach a quasi-coherent sheaf of associative algebras \(D_X \) to \(X \) such that for open affine \(U \subseteq X \), we have \(D_X(U) \equiv D(U) \).

2 Ways to Think of This:

1. Ore conditions. Note for \(f \in \mathcal{O}(X) \), \(f \) is locally ad-nilpotent in \(D(X) \). This means the quasi-coherent sheaf \(D_X \) on \(X \) associated to the left \(\mathcal{O}(X) \)-module \(D(X) \) naturally has the structure of a sheaf of associative algebras. This is a bit unsatisfying, not clear what \(D_X(U) \) is.

2. Define \(D_{\mathcal{O}_U} x_n^i = D_n(\mathcal{O}(X), \mathcal{O}(U)) \) for open affine \(U \subseteq X \).

Lemma: For \(L = D_{\mathcal{O}_U} x_n^i \) and \(f \in M_{n+1}^I \), we have \(Lf = 0 \), and conversely.

So, we get a natural map
\[
D_{\mathcal{O}_U} x_n^i \rightarrow (m_I^I/m_{n+1}^I)^* = (S^n T^*_U)^* = S^n T^*_U.
\]
This is clearly regular in \(\mathbb{Z} \), so get a map
\[
o : D_{\mathcal{O}_U} x_n^i \rightarrow \Gamma(U, S^n T^*_U)
\]
By Lemma again, this is \(0 \) on \(D_{\mathcal{O}_U} x_{n-1}^i \), so get
\[
o : \text{gr}_n D_{\mathcal{O}_U} x_n^i \rightarrow \Gamma(U, S^n T^*_U).
\]
Easy to see \(\sigma : \text{gr } D_{x,u} \rightarrow \Gamma(U, STU) = \sigma(T^*U) \).

This is the symbol map.

Also easy to see for \(\mathcal{L} \in \text{gr } D_{x,u}, \mathcal{L}' \in \text{gr } D_{x,u} \), we have \(\sigma(\mathcal{L} \mathcal{L}') = \sigma(\mathcal{L}) \sigma(\mathcal{L}') \).

The Lemma implies \(\sigma \) is injective, so only need surjective. For this, it suffices to treat case \(X = \mathcal{U}, \mathcal{L} \in \text{STU } \) is quasi-coherent, \(X \) affine, and \(\sigma \) map of \(\mathcal{O}(U) \)-modules. For this, note \(\Gamma(I(U, STU)) \) is generated in degree 1/degree 0, and \(\sigma \) is iso in degrees \(\leq 1 \), so \(\sigma \) iso.

Cor: \(D(X) \) is generated by \(\mathcal{O}(X) \) and \(\text{Vect}(X) \).

Cor: Restriction \(D_{x,u} \rightarrow D_{x,u} \) is iso for \(\mathcal{U} \subset \mathcal{V} \subset \mathcal{U} \) \((\mathcal{U}, \mathcal{V} \text{ open affine})\). So \(D_{x,u} \equiv D(U) \).

Cor: The natural map \(\mathcal{O}(\mathcal{U}) \otimes D(X) \rightarrow D_{x,u} \equiv D(U) \) is an iso.

Cor: If \(x_1, \ldots, x_n, \xi_1, \ldots, \xi_n \) is an etale coordinate system on \(X \), the natural map

\[
\mathcal{O} \rightarrow \mathcal{O} \otimes \mathbb{R}^n_{x} \\
\mathbb{R} = (x_1, \ldots, x_n)
\]

is an isomorphism.

Any smooth \(X \) has a cover by affine open with etale coordinate systems, so this gives a pretty explicit description of \(D_x \).
The symbol map \(\sigma: \text{gr} D^x \rightarrow \mathcal{O}(T^*X) \)
is an iso of graded Poisson algebras.

\textbf{Pf} Check on stalk coordinate neighborhoods.

\underline{Car} \(D^x \) is generated by \(\partial x \) and \(\mathcal{D}v: v \in \text{Vect}(X) \)
subject to the relations:

1. \([Dv, f] = v(f) \) for \(v \in \text{Vect}(X) \), \(f \in \mathcal{O}(X) \)
2. \([Dv, Dw] = [Dv, w] \cdot v, w \in \text{Vect}(X) \)
3. \(Dv = fDv \).

For \textit{General Non-affine Smooth} \(\mathcal{X} \):

For affine smooth \(X \), the sheaf \(D^x \) is intrinsic, so
one can cover general \(X \) by affines and glue to get
affine sheaf of associative algebras \(D^x \). The
filtrations and symbol maps are compatible too,
so obtain is \(\text{gr} D^x \approx \mathcal{O}(T^*X) \)
as sheaves of graded Poisson algebras.

So now to smooth \(X/\mathbb{C} \) have a canonical sheaf of
affine algebras with a natural filtration. We will
study its modules.

\textbf{Assumption: All \(D^x \)-Modules are \(\mathcal{O} \)-quasi-coherent.}

\(D^x \)-\text{Modules} = \text{Sheaves of} \(\partial x \)-\text{Modules \& Flat Connection}

Given \(M \) a \(D^x \)-module, given a section \(m \in M \) and
a vector field \(v \in \text{Vect}(X) \), get another section \(v \cdot m \in M \).
Clearly have \((f \cdot v) \cdot m = (f \cdot v) \cdot m \), so this defines a map \(\nabla : M \rightarrow M \otimes \mathbb{C}^2 \).

The relations:
\([v, f] = f(v) \iff \nabla \text{ satisfies Liebniz, so is a connection} \)
\[[D_v,D_w] = D_{[v,w]} \iff [\nabla_v,\nabla_w] = 0 \iff \nabla \text{ flat.} \]

Special Case: \(\mathcal{O} \)-coherent \(D \)-modules.

Thus a \(\mathcal{O} \)-coherent \(D \)-module is a vector bundle (finite rank) with a flat connection.

PF: Need to explain why a vector bundle; use \(D_x \)-action to reduce relations among generators \(\implies \) contradiction.

In vector bundles w/ flat connection have monodromy/parallel transport indep of path up to homotopy. So get \(\{ \text{vector bundles w/ flat connection} \} \)

\[\implies \{ \text{local systems} = \text{loc constant sheaves in analytic top.} \} \]

\[\implies \text{reps of } \pi_1. \]

Under reasonable assumptions ("regular singularities"), step 2 is an equivalence too.

Example: let \(X = \mathbb{C}^x \), \(M = D_x \langle z^{-1/2} \rangle = \bigoplus_{n \in \mathbb{Z}} z^{-n - 1/2} \), the \(D_x \)-mod generated by a branch of \(z^{-1/2} \).

As \(\mathcal{O} \)-module, \(M \cong \mathcal{O}, \quad f z^{-1/2} \iff f \). Since

\[z (f z^{-1/2}) = f' z^{1/2} - \frac{f z^{1/2}}{2z} = (f' - \frac{f}{2}) z^{-1/2} \]

we see \(M \) corresponds to trivial vector bundle w/ fiber \(\mathbb{C} \) w/ nontrivial connection \(\nabla = d - \frac{dz}{2z} \).

Differential equation for flat sections is

\[\frac{df}{dz} = \frac{f}{z} \iff f = cz^{1/2} \]

Get \(\pi_1 \)-rep given by \(n \mapsto (-1)^n \).
So O-coherent D-mods \iff local systems.

Question: So \iff constructible sheaves?

Answer: Nothing, but can make equivalence at the derived level using holonomic D-modules. Need notion of singular support first.

Good Filtrations on Dx-Modules

- **Def** A filtration of a Dx-module M is good if $\text{gr} \ M$ is finitely generated/graded.

 Fact M fin gen \iff exists good filtration for M.

- **Def** Two filtrations are equivalent if each embeds in a shift of the other.

 Fact Any two good filtrations on M are equivalent.

- **Car** For F^*M a good filtration of M, the homogeneous ideal $\sqrt{\text{Ann} \ gr_{F^*}M} \subset gr_{D} = D(\mathcal{T}^* X)$

 is independent of the filtration F.

 Thus, we can define singular support:

 $\text{ss}(M) = V(\sqrt{\text{Ann} \ gr_{F^*}M}) \subset T^*X$, a (set theoretic) closed, C^*-stable subvariety of T^*X.

 Example O-coherent \iff D-fin gen, $+ \text{ sing supp is } \subset O$-section of T^*X.
Def. Let A be a Poisson algebra. Then an ideal IA of A is called coisotropic if $I, I^2 \subset IA/I$. Geometrically, if $A = \mathcal{O}(X)$, X a Poisson affine alg var, a closed subvariety $Z \subset X$ is called coisotropic if $I(Z)$ is coisotropic.

Lemma. Z coisotropic $\iff \forall z \in Z$ smooth point, and for $\eta \in \Lambda^2 T_x X$ the Poisson bi-vector, $\eta(T_{z,Z}^{-1}) \subset T_{z,Z}$.

Cor. If X symplectic, $Z \subset X$ coisotropic, then every irreducible component of Z has dimension $\geq \frac{1}{2} \dim X$.

Thm. (Gabber) Let A be a filtered associative algebra such that grA is finitely generated commutative. Let M be a finitely generated A-module. Then we have the ideal $J := \sqrt{Ann grM} \subset grA$, indep of good filtration F. J is coisotropic.

Applying Gabber, prev corollary to finitely generated D_x-modules, using the fact $T^* X$ is symplectic, we see

Thm. For M a f.g. D_x-mod, every irreducible component of $ss(M)$ has \(\dim \geq \dim X = \frac{1}{2} \dim T^* X \).

So, now we define holonomic D_x-modules as those with the smallest possible support.
Def. A D_X-module M is called holonomic if it is finitely generated and either:
- $M = 0$
- $\dim ss(M) = n' = \dim X$.

Easy. Holonomic D_X-modules form a Serre subcategory (i.e., closed under sums, quotients, extensions) of full sets of D_X-mols.

Let's play with filtrations.

Example. Θ-coherent \Rightarrow holonomic.
If Θ-coherent, D-flat gen + $ss = 0$ section of T^*X.

Actually, also have

Prop. Holonomic \Rightarrow generically Θ-coherent
If H_j must have
- $\dim x \in X \colon \dim ss(M)_x \geq i_j \leq n - i_j$
or else $\dim ss(M) > n$. So $ss(M)_x = \emptyset$ for $x \in X$ outside a closed lower-dimensional subvariety, and M Θ-coherent on this open set.

Can squeeze even more info out of singular support:

Characteristic Cycles:

Corollary of the Jantzen Filtration: Let A be a filtered algebra, and let F, F' be two equivalent filtrations on an A-module M. Then the modules gr^FM and $gr^F'M$ admit finite filtrations with subquotients occurring in the opposite order.
A Piece of Commutative Algebra (Hartshorne, I Prop 7.4):

Let S be a Noetherian graded commutative ring, M a finitely generated graded S-module. Then M admits a finite filtration with subquotients of the form $(S/p)^I I^L$ with $I^L = R$ and $p \in S$ a homogeneous prime ideal. Furthermore:

1. The minimal p appearing in these subquotients are the minimal primes containing $\text{Ann} M$.
2. For each such minimal prime, the # times S/p appears $= \text{length}_{S/p} M_p$. So # times S/p appears is indep of filtration.

So, in this setting have a well-defined "multiplicity" of a minimal prime, i.e., irreducible component of $\text{Supp} M$.

These all over short exact sequences, so together with the Car of saturated we have a well-defined characteristic cycle:

$$\chi(M) = \sum_{z \in \text{SS}(M)} \text{mult}(z) z$$

Car Holonomic D-modules have finite length.

Fact If X is irreducible (= connected, b/c smooth), D_X is simple, of infinite length.

Fact If A a simple algebra of ∞ length, any A-mod of finite length is cyclic.

Car Holonomic D-modules are cyclic.
Left vs Right D^x-Modules

In general, D^x and D_x^{op} are not isomorphic, but nonetheless they are Morita equivalent, i.e.
we have a canonical equivalence

$$M^L(D_x) \cong M^R(D_x).$$

This is via the side-changing sheaf, the canonical sheaf $K(x) = \Sigma^{top}(X)$.

Prop $\Sigma^{top}(X)$ is a right D^x-module via the action:

$$v \cdot w = -L_v w \quad v \in \Sigma^{top}(X), \quad w \in \text{Vect}(X).$$

Constructions Can do the following things to left/right D^x-mods:

left \otimes left = left

right \otimes left = right

Hom_{D^x}(left, left) = left

Hom_{D^x}(right, right) = left

Hom_{D^x}(left, right) = right

in natural ways.

$$\begin{align*}
\text{Car} & : M^L(D_x) \to M^R(D_x), \quad M \mapsto M \otimes_{D^x} K(x) \\
\text{Car} & : M^R(D_x) \to M^L(D_x), \quad M \mapsto \text{Hom}_{D^x}(K(X), M)
\end{align*}$$

define quasi-inverse equivalences of cats of left and right D^x-modules.
Functors:
We bothered to talk about right vs left because some of the important functors for D-modules are defined more naturally for right (or left) D-modules.

Let $\pi : X \to Y$ be a morphism of affine smooth C-varieties.

Pullback. Want a functor $\pi^{\ast} : \mathcal{M}^e(D_Y) \to \mathcal{M}^e(D_X)$.
This is $\pi^{\ast} \mathcal{M} := \mathcal{O}_X \otimes_{\pi^\ast \mathcal{O}_Y} \pi^{-1} \mathcal{M}$.

Clearly it is \mathcal{O}_X-mod, as usual. But how a \mathcal{O}_Y-mod?
Need to define action of $\text{Vect}(Y)$.
Problem: Can't push forward vector fields!
Solution: In AG, can push forward vector fields on X to vector fields on Y with coefficients in \mathcal{O}_X.

- Have natural map $\text{Vect}(X) \to \mathcal{O}_X \otimes_{\pi^\ast \mathcal{O}_Y} \text{Vect}(Y)$, to define, for example, choose \mathcal{O}_X-basis v_1, \ldots, v_n on Y, say y_1, \ldots, y_n, $\partial_1, \ldots, \partial_n$, and send $\text{Vect}(X) \ni v \to \sum_{i=1}^n v(\pi x_i, y_i) \partial_i$.

Easy to check is independent of choice of vectors (and comes from dualizing $\pi^{\ast} \Omega_Y^1 \to \Omega_X^1$).

Fact: This map defines \mathcal{O}_Y-mod structure on $\pi^{\ast} \mathcal{M}$.

Clearly $\pi^{\ast} \mathcal{M}$ is local on source + target, so can remove the assumption that X, Y affine. Clearly right exact.

Notation $D_X \to Y := \pi^{\ast} \mathcal{O}_Y = \mathcal{O}_X \otimes_{\pi^\ast \mathcal{O}_Y} \pi^{-1} \mathcal{O}_Y$

This is a $D_X - \pi^{-1} \mathcal{O}_Y$ bimodule.

Fact: $\pi^{\ast} \mathcal{M} = D_X \to Y \otimes_{\pi^{-1} \mathcal{O}_Y} \pi^{-1} \mathcal{M}$.
Pushforward: Assume $\pi: X \to Y$ is an affine map.

Bimodules \to Functors, so $D_x \to y$

defines a functor $\pi_{\to}: M^\pi(D_x) \to M^\pi(D_y)$ by

$$M \mapsto M \otimes_{D_x} D_y \to \pi_\# \text{sheaf } (M \otimes_{D_x} D_y \to y).$$

(Latter is naturally a $\text{sheaf } \pi^{-1}(D_y)$-mod (right), but have adjunction map $D_y \to \pi^\# \text{sheaf } \pi^{-1}(D_y)$.

Note π_{\to} is local on target but not on source.

Example Thinking of $K(X) = \Sigma^\text{top}_x$ as a right D_x-module, we see pushforward of D_x-modules is a generalization of "integration over fibers."

Using side-changing, can view as a functor

$$\pi_{\to}: M^\pi(D_x) \to M^\pi(D_y).$$

Note Homologically speaking, π_{\to} is an ugly functor, it is the composition of a right exact functor (tensor $w/ D_x \to y$) and a left exact functor ($\pi_\# \text{sheaf}$). But recall from AG that for affine maps π, $\pi_{\#} \text{sheaf}$ is exact on D_x-quasicoherent modules, so actually π_{\to} is right exact.

Thus For $\pi: X \to Y$ an affine map of smooth C-varieties, the functors $\pi_{\#0}$ and $\pi_{\to0}$ and their higher derived functors $L_i \pi_{\#0}, L_i \pi_{\to0}$ preserve the categories of holonomic D-modules.

Also, $(\pi_{\#0})_{\#0} = \pi_{\#0} \circ \pi_{\#0}$, $(\pi_{\to0})_{\to0} = \pi_{\to0} \circ \pi_{\to0}$.
Let \(\pi : X \hookrightarrow Y \) be a closed embedding. Then we can define a functor
\[
\pi^!_0 \colon \mathcal{M}^r(\mathcal{O}_Y) \to \mathcal{M}^r(\mathcal{O}_X)
\]
\[
\pi^!_0(M) = \text{Hom}_{\mathcal{O}_Y}(\mathcal{O}_X, M) = \mathfrak{S}_{m \mathcal{O}_X} = \mathcal{O}_X
\]
where \(\mathfrak{S} \) is the defining ideal of \(X \) (so \(\pi^!_0 \)
takes these sections scheme-theoretically supported on \(X \)).

\(\pi^!_0 \) is a \(\mathcal{O}_X \)-module by defining the action of
vector fields on \(X \) by
1. lifting \(\text{vf}(\mathcal{O}_X) \) to \(\mathcal{O}_Y \text{vf}(\mathcal{O}_Y) \) preserving \(\mathfrak{S} \)
2. using action of \(\text{vf}(\mathcal{O}_Y) \) on \(M \).

Thm (Kashiwara)

1. \(\pi^!_0 \) is right adjoint to \(\pi^\circledast_0 \)
2. If we restrict \(\pi^!_0 \) to \(\mathcal{M}^r(\mathcal{O}_Y) \), i.e., the full
 subcat of \(\mathcal{M}^r(\mathcal{O}_Y) \) of modules set-theoretically supported
 on \(X \), then \(\pi^!_0, \pi^\circledast_0 \) are mutually quasi-inverse equivalences.

Det/Ch can define the category of \(D \)-modules on a
singular space by embedding in a smooth space
and considering cat of \(D \)-mods supported on the
image of the embedding. Can check this cat is
indep of choice of embedding.

Derived Cat of \(D \)-Modules, Formalism of 6 Functors:
The theory discussed so far becomes richer at the
level of the derived category.

Let \(X \) be a smooth \(\mathbb{C} \)-variety, \(\mathcal{D}_X \) the sheaf of
differential operators on \(X \).
We now collect some technical facts/definitions needed for the derived machinery to work.

Def. A D_x-module M is coherent if:
1. M is locally finitely generated over D_x.
2. For any open $U \subset X$, any locally finitely generated submodule of $M|_U$ is locally finitely presented.

Prop. Let $M \in \text{Mod}(D_x)$ be a coherent D_x-module. Then M has a resolution

$$\cdots \rightarrow P_1 \rightarrow P_0 \rightarrow M \rightarrow 0$$

by locally free D_x-modules of finite rank.

Furthermore, there exist a finite resolution

$$0 \rightarrow P_1 \rightarrow P_0 \rightarrow M \rightarrow 0$$

by locally projective D_x-modules of finite rank.

Prop. If R is a sheaf of rings on a topological space X, then $\text{Mod}(R)$ has enough injectives and flashts.

Let $D^b(D_x)$ denote the bounded derived category of all D_x-modules, let $D^{\geq 0}(D_x)$ and $D^{\leq 0}(D_x)$ denote the full subcategories of those objects with D_x-quasi-coherent D_x-coherent (respectively) cohomology. Let $\text{Mod}^q(D_x)$ and $\text{Mod}(D_x)$ denote the cats of D_x-quasi-coherent D_x-coherent (resp.) D_x-modules.
Thus (1) Any object in \(D^b(D_X) \) is represented by a bounded complex of flat \(D_X \)-modules. Any object of \(D^b_{\text{coh}}(D_X) \) is represented by a bounded complex of locally projective \(D_X \)-modules belonging to \(M^\text{coh}(D_X) \).

(2) The natural functors
\[
D^b(M_{\text{coh}}(D_X)) \to D^b(D_X)
\]
\[
D^b(M_{\text{coh}}(D_X)) \to D^b_{\text{coh}}(D_X)
\]
are equivalences.

(3) The natural functors
\[
D^b(D_X) \to D^b_{\text{hol}}(D_X)
\]
is an equivalence of categories. In particular,
\[
\text{For } M, N \in D_{\text{hol}}(D_X),
\]
\[
\text{Ext}^n_{D_{\text{hol}}(D_X)}(M, N) \cong \text{Ext}^n_M(D_X)(M, N).
\]

Duality Functor

Define \(D : D^b(D_X) \to D^b(D_X) \),
\[
D(M) := R \text{Hom}^n_{D_X}(M, D_X) \otimes K^{(-n)}_{D_X} \quad (n = \dim X)
\]
where \(\text{Hom} \) is sheaf hom/\(D_X \), \([n]\) is the shift functor, and \(K^{(-n)}_{D_X} \) is the shift-changing sheaf.

Theorem

(1) \(D^2 \cong \text{id} \) on \(D^b(M_{\text{coh}}(D_X)) \)

(2) For \(M, N \in D^b(M_{\text{hol}}(D_X)) \), we have
\[
\text{Hom}(M, DN) \cong \text{Hom}(N, DM).
\]

Inverse Image Functor

Let \(\pi : X \to Y \) be a morphism of smooth alg \(C \)-vars. Then we define the inverse image functor
\[
\pi^! : D^b(D_Y) \to D^b(D_X)
\]
by
\[
\pi^!(M) = D_X \to Y \otimes_{D_Y} \pi^* M [\dim X - \dim Y]
\]
\(\pi^! \) sends \(D\text{-gsh} \to \Omega\text{-gsh} \), and holonomic \(\to \) holonomic. It due not in general preserve \(D\text{-coherence} \).

Direct Image Have functor \(\pi_* : D^b(D_x) \to D^b(D_y) \),

\[
\pi_* M = R^\text{Tor}\text{sheaf} (M \otimes_{D_x} D_x \to y)
\]

(twist by side changing sheaf to get story for top D-mods).

Properties
- Both \(\pi^! \), \(\pi_* \) preserve \(D\text{-gsh} \text{coherence} \)
- If \(\pi \) smooth, \(\pi^! \) preserves \(D\text{-coherence} \)
- If \(\pi \) projective, \(\pi_* \) preserves \(D\text{-coherence} \)
- If \(\pi \) projective, \(f_* \) is left adjoint to \(f^! \) on \(D\text{-coherent complexes, and } f^* \) commutes with \(D\text{-} \)

We want to define \(\pi^{\star} := D \pi^! \text{D} \) and
\(\pi^{\star} := D \pi_* \text{D} \), but the problem is \(\pi^! (\text{coh}) \) may not be coh, same for \(\pi_* \).

For the holonomic case, these problems go away:

Then The functors \(\pi^\star, \pi^!, \text{D}, \text{ and } \boxtimes \) preserve (cohomological) holonomicity, \(\text{D} \) preserves actual holonomicity.

Cor Can define \(\pi^{\star} := D \pi^\star \text{D} \), \(\pi^{\star} := D \pi_* \text{D} \) between bounded derived cats of holonomic \(D\text{-} \\text{modules} \).

Fact This satisfies the "formalism of 6 functors"

Prop
1. \(\pi^\star \) is left adjoint to \(\pi_* \)
2. \(\pi^! \) is right adjoint to \(\pi^! \)
Classification of Irreducible Holonomic D-Modules: Minimal Extension:

Thin (Existence of Minimal/Intermediate Gevrey-MacPherson-Deligne Extension)

Let X be irreducible, $U \subset X$ open subset. For every holonomic D_X-module N, there exists a unique holonomic D_X-module, denoted $j!_{\ast}N$ (if $j:U \to X$) such that
1) $j!_{\ast}N \supseteq N$ (so $j!_{\ast}N$ is an extension of N)
2) $j!_{\ast}N$ has no subs or quotients supported on $X \setminus U$.

Prop N irred \Rightarrow $j!_{\ast}N$ irred.

PF All but possibly one composition factor of N must be supported on $X \setminus U$ (to see this, take $j!_{\ast}$ which is just restriction and use (1)).

So if ≥ 2 comp factors, either one at top or one at bottom is supported on $X \setminus U$, contradiction.

So any irred holonomic on U has a unique holonomic irred extension to X.

Idea of Construction

3 morphism $j!_{\ast}N \to j\ast N$.

- $j!_{\ast}N \in D_{\text{hol}}^0(X)$, but $j\ast N \in D_{\text{hol}}^\infty(X)$, so morphism $j!_{\ast}N \to j\ast N$ factorize as

$j!_{\ast}N \to H^0(j!_{\ast}N) \to H^0(j\ast N) \to j\ast N$.

$j!_{\ast}N$ is the image here.

FACT $j\ast$ commutes with D.
So now we can see how to classify/describe all irreducible holonomic D-modules.

Let M be an irreducible holonomic D_X-module. Let $Y \subseteq X$ be its support, which is an irreducible closed subvariety of X. By Kashiwara's Theorem, M is obtained as the pushforward of a holonomic D_Y-module, M_Y. M_Y is a local system on some open subset $U \subseteq Y$.

So M_Y must be the minimal extension of this local system.

So, we see irreducible holonomic D_X-modules are given by starting with a local system N on a locally closed subspace $Z \subset X$, taking the minimal extension of N to \overline{Z}, and then pushing forward to X.

The equiv relation on such pairs (Z, N) generated by $Z', Z' \cap Z = N \implies (Z, N) - (Z', N)$ clearly coincides with the equiv relation given by isomorphism of corresponding holonomic on X, so holonomic irreducible D-mods are parameterized by sets of pairs equivalence classes of such pairs.