April 26, 2016
More feedback #1
Paul Gieler

Nader-Zarei, Konfetti (ch...)
(After Tucker-Ol, Konfetti-ch - Oriolesman,)

Cotangent bundles and their relatives
Symmetry

Minor

Singularity constant bundle (exact) (exact)

Lagrangian microfunction

Scheme of moduli over a ring of

Ordinary sheaves of vector spaces

Constant bundles

E data

H =ラン

This lecture: Three situations in which the

Symplectic topology of Mn can be described

In terms of (different kinds of) sheaves on

A space B.
A Lagrangian submanifold \(\mathfrak{L} \) varies.

If \(\forall \, \xi \in \mathfrak{H}(L, T) \) varies.

Let \(\mathfrak{M} \) be an

Simplectic topology of \(\mathfrak{M} \cap B \times B \)

The contact complex picture is

\[
\begin{array}{c}
\frac{d\psi}{\partial \nu} = \mathfrak{M} \subset \mathfrak{L} \cap B \\
\mathfrak{L} = \mathfrak{L} \cap B \\
\end{array}
\]

coordinates \(\rho \) (time) and \(\eta \) (space).

Form \(\omega = d\theta \), \(\theta \) the universal one-form.

in its cotangent bundle, with the standard Simplectic

\(C \) a connected n-dimensional Cohn manifold, \(n = \mathfrak{T} \cdot \mathfrak{B} \)

(\text{Cotangent bundle})
Theorem (Nieder - Taylor and Fukaya - Smith):

\[\text{If } \tau: B \rightarrow \{1\} \text{ and } L \subset M = T^\times B \text{ is closed, exact, and } \text{holomorphic}, \text{ then } \text{holomorphic, } \]

Many partial results on Arnold's conjecture, modifying

diffeomorphism.

Conjecture (Fel') (Conjecture bundles of compact

Conjecture (Arnold) Suppose that \(B \) is compact.

conjecture to the zero section (through such symplectic)

Then, every closed exact \(L \subset M = T^\times B \) is

Conjecture (Arnold):
of \mathcal{O}_X (Fukaya-Oh, Hom $\neq \mathcal{M}$(\mathbb{L}, \mathbb{O})).

In fact, we have an underlying quasi-isomorphism

$$\mathbb{H}^0(\text{Hom}(\mathcal{M} \otimes \mathcal{M}^\vee, \mathbb{L})) \cong \mathbb{H}^1(\mathbb{L} \otimes \mathbb{O}).$$

Example

For some fixed $w \in \mathcal{H}^2(\mathcal{M}, \mathbb{C} \otimes \mathbb{Z})$, morphisms come from Floer cohomology theory.

For some fixed $w \in \mathcal{H}^2(\mathcal{M}, \mathbb{C} \otimes \mathbb{Z})$, morphisms come from Floer cohomology theory.

$$w^2(\mathcal{L}) = \mathcal{M} \otimes \mathcal{L} \otimes \mathcal{L} \otimes \mathbb{C} \otimes \mathbb{Z}.$$

Example

For some fixed $w \in \mathcal{H}^2(\mathcal{M}, \mathbb{C} \otimes \mathbb{Z})$, morphisms come from Floer cohomology theory.

For some fixed $w \in \mathcal{H}^2(\mathcal{M}, \mathbb{C} \otimes \mathbb{Z})$, morphisms come from Floer cohomology theory.

$$w^2(\mathcal{L}) = \mathcal{M} \otimes \mathcal{L} \otimes \mathcal{L} \otimes \mathbb{C} \otimes \mathbb{Z}.$$
Give rise to (general) isomorphisms. Moreover, over fields,

\[X(\mathbb{F}_p, (\mathbb{Z}_p, \mathbb{Q}_p)) = \mathbb{L}_{et}. \]

Consider the intersection point. Cancel excess intersection points.

Ker morphism direct sum, in theory only.

Then cohomology, the differential use.

\[\text{Hom}_\mathbb{F}(\mathbb{Z}/p, (\mathbb{Z}/p, \mathbb{Q}/p)) = \mathbb{H}^\bullet(\mathbb{L}_p, \mathbb{L}_p). \]

Per intersection point, there are one generator. Exchange cochains, in the fundamental group.

\[\text{Hom}_\mathbb{F}(\mathbb{Z}/p, (\mathbb{Z}/p, \mathbb{Q}/p)) \cong \mathbb{G}_m(\mathbb{L}_p, \mathbb{L}_p). \]

Generally,
Here, $F(M)$ is set up using $v = w_2(B)$ pulled back to M.

Theorem (Vadori; alternatively, Aboujarad). There is a canonically full and faithful embedding $F(M) \hookrightarrow \Omega^*(B)$. Let $\Omega^*(B)$ be the differential graded derived category of sheaves of vector spaces whose cohomology sheaves are bounded and locally free of finite rank.

$\Omega^*(B)$ is not very interesting; up to (quasi-)isomorphism there is only one object, the zero-section.

Arnold's conjecture predicts that $F(M)$ for $M = T^*B$.
version of the statement in A. Arnold's Compendium: $E \in \mathcal{Q}_{\mathcal{B}}$ and hence $L \in \mathcal{B}$ (Galois-excision). In the

$\xrightarrow{\Rightarrow} E \in \mathcal{Q}_{\mathcal{B}}$ and hence $L \in \mathcal{B}$ (Galois-excision). In the

$H^x(\text{Hom}(\mathcal{Q}_{\mathcal{B}}, E, \mathcal{E})) \cong H^x(\mathcal{B}, L)$

Suppose now that E is a dg local system. Then $E \in \mathcal{Q}_{\mathcal{B}}$ if and only if E is a dg local system. L"efschetz theorem.

This leads to the previously stated theorem.
not all Lagrangian tori. Furthermore, admit one.

\[M = \frac{T^2 \setminus \mathbb{R}^2}{\mathbb{Z}} \]

where \(T^2 \) is the symplectic manifold. Take the disjoint union \(T^2 \sqcup T^2 \), and consider \(T^2 \times \mathbb{R} \). In particular, \(T^2 \times \mathbb{R} \) contains a canonical section

\[\mathfrak{g}_2(\mathbb{R}) = \mathbb{R} \times \text{Cl}(n,2). \]

Let \(B \) be a \(\mathbb{Z} \)-affine manifold. This means that \(\text{Logarithm torsion fibrations (with sections)} \)
This is an interesting question for more general affine manifolds (answer not as obvious).

For some affine map \(\phi \),

\[
\mathbb{R}^n \times B \xrightarrow{\phi} \mathbb{R}^n \times B
\]

symplectically \(\leftrightarrow \) symplectic.

We have the theorem of Eilenberg: Consider \(B \subset \mathbb{R}^n \) open. Suppose: Then:

Example: Consider \(B \subset \mathbb{R}^n \) open. Suppose: Then:

For \(\mathbb{R}^n \)-affine geometry of \(B \)

The tentative picture

Topological of \(M \)

Symplectic
For the g-valuation.

only if \(\lim_{n \to \infty} \frac{1}{n} = 0 \). We write \(\log v = \infty \), but

in other words, infinities may now be \(+0 \) but

for every \(C \) such that \(a_r \to 0 \)

for every \(C \) there are only finitely

many \(a_r \in C \).

In formal sense \(a = \frac{a_r}{r} \) where \(v \in \mathbb{R} \), \(a \in \mathbb{C} \), and:

Definition. The notion \(\forall v \in \mathbb{F} \).

To organize these, we need:

arcs \(r = \int_{u}^{v} \) appear naturally in their cohomology.

this situation, infinities sum indexed by simplicial

Note that we \(\mathbb{Z}_2(M) \) is no longer always exact.
Given \(C \), there are only finitely many \((k_1, \ldots, k_n)\)

\[
\log_b \left(\frac{a_1^{k_1} \cdots a_n^{k_n}}{} \right) = C.
\]

Such that

\[
\forall y \in \mathbb{N} \quad \exists \frac{1}{n} \in \mathbb{Z}.
\]

Following conditions for all \(b \in \mathbb{Z} \), \(a \in \mathbb{Z} \) and satisfying

\[
\prod_{i=1}^{n} a_i = 1
\]

Suppose \(\mathcal{B}(R, \mathfrak{m}) \) is open and connected. Recall that \(\mathfrak{m} \)

arc of the form

The sheaf \(\mathcal{O} \) of \(\mathcal{O}_X \) on \(X \) is non-archimedean holomorphic.

A manifold \(\mathcal{B} \) a sheaf \(\mathcal{O} \) of \(\mathcal{O}_X \) on \(X \) is non-archimedean.

Kontsevich-Siebert's manifolds associate to every \(2 \)-brane
no longer true (or even makes sense) in general.

For instance, \(f(x, x) = x \times (1, 0) \) is not even one-to-one. Hence, in definition 7, for \(f(M) \) is given our \(A_B \). The ultraharmonic category

is now on \(B \) is compact. The ultraharmonic category

function theory). For the far deeper ultraharmonic phenomenon in complex

Remark. Given \(T \in X \), we

As \(k \to \infty \), at most \(k \log k \) growth \(\forall \alpha \in \mathbb{R}, k \leq 0 \).

As \(k \to -\infty \), rapid decay \(\forall \alpha \in \mathbb{R}, k \leq 0 \).

\(f(t) = \frac{1}{(x^2 + t^2)^{1/2}} \) and

For \(B = (-\infty, 0] \), we get function on the

non-archimedean punctured disc.
About the -smith.

(Polytechnic - Taylor) and \(B \times \frac{\pi}{4} \) (square terms).

\[B = \frac{\pi}{4} \times \frac{\pi}{4} \]

We have full proofs for \(B = \frac{\pi}{4} \) whenever the conjecture is true, proved so far the subcategory of \(\mathcal{F}(M) \) comprising all Lagrangean.

The right hand side is the derived category

\[\mathcal{F}(M) \xrightarrow{\mathcal{D}(\mathcal{E})} \]

faithful embedding

Conjecture. There is a (cohomological) full and

We take to be the pullback of \(\mathcal{W}_2(\mathcal{B}) \).

As before, the definition includes \(\mathcal{W}_2(\mathcal{M}, \mathcal{N}, \mathcal{L}) \), which
depending on the ribbon

\[w = \theta \]

for a closed oriented surface \(M \), and equip \(E \) to an open oriented surface \(M \), and equip \(E \) to an

surface with a symplectic form \(\omega \) and equip \(E \) with a "fattening of the edges" together with a cyclic ordering of the vertices, which matches the edges of \(E \) (an unoriented graph).

Take a finite ribbon graph \(E \) and

ribbon graphs.
The Fukaya category $\mathbf{F}(M)$ is defined as $\mathbf{F}(M) \leftarrow \mathfrak{X}_G \leftarrow \mathfrak{G}$. It can be an action of the chain complex...

If needed to come with d by function to dg category associated to a d - variety or...

On the smooth part, X_B is the same as in the dg category.

\mathfrak{G} is a global section $\mathbf{L}(\mathfrak{X}_G) \leftarrow \mathfrak{G}$.
In $\mathbb{C}(A^2)$, there are non-isomorphic 2-dimensional vector spaces. There are replaced by 2x2 graded chain complexes. There are 3 natural indecomposable objects.

\[\begin{array}{c c}
\emptyset & \emptyset \\
\emptyset & 1
\end{array} \]

For a general d-valent graph, use A_{d-1} in this way.
The origin of their theories is in "superman fields".

From compact Lagrangian "superman fields".

For noncompact Lagrangian "superman fields."

Conclusion.