ERRATUM TO "SOME SPECULATIONS ON PAIRS-OF-PANTS DECOMPOSITIONS AND FUKAYA CATEGORIES"

PAUL SEIDEL

ABSTRACT. We correct an error in [1]. This Erratum will not be published. I would like to thank Umut Varolgunes for pointing out the mistake to me.

The isomorphism in [1, Equation (3.4)] is incorrect. A correct statement is this:

(1)
$$CF^0(L,L;H) \cong \mathcal{O}_B^{unif}(U),$$

where $\mathcal{O}_B^{unif}(U)$ is the ring of non-archimedean power series which are uniformly q-adically convergent in U, in a sense to be explained below. On both sides of (1) we are considering formal power series

(2)
$$f(b) = a_1 b^{v_1} + a_2 b^{v_2} + \cdots \quad a_i \in \Lambda_a, \ v_i \in \mathbb{Z}^n.$$

Take a convex function $H: U \to \mathbb{R}$ as in [1, p. 419]. Note that by construction, H is bounded. Let $K: \mathbb{R}^n \to \mathbb{R}$ be its Legendre transform:

(3) $K(v) = H(b) - v \cdot b$, where $b \in U$ is the unique point such that $dH_b = v$;

or equivalently,

(4)
$$K(v) = \min_{b \in U} (H(b) - v \cdot b)$$

On the left hand side of (1), the definition of the Floer complex has the effect of imposing the following condition on the coefficients of (2):

(5)
$$\lim_{i \to \infty} \operatorname{val}(a_i) + K(v_i) = \infty,$$

where $\operatorname{val}(a_i) \in \mathbb{R} \cup \{\infty\}$ is the q-adic valuation. By "uniformly q-adically convergent in U", we mean the following:

(6)
$$\lim_{i\to\infty} \operatorname{val}(a_i) - v_i \cdot b = \infty$$
 uniformly with respect to $b \in U$.

Of course, a sequence of functions converges to ∞ uniformly if and only if the infima of those functions converge to ∞ . Hence, given (4), (5) and (6) are equivalent.

For comparison with the original statement [1, Equation (3.4)], note that $\mathcal{O}_B^{unif}(U)$ is a sub-ring of $\mathcal{O}_B(U)$, but not equal to it. For instance, take U = (0, 1), and consider

$$(7) 1+qx+q^2x^2+\cdots$$

The functions i(1-b) converge to ∞ pointwise for $b \in (0,1)$, but not uniformly so. Hence, (7) belongs to $\mathcal{O}_B(U)$, but not to $\mathcal{O}_B^{unif}(U)$.

PAUL SEIDEL

References

 P. Seidel. Some speculations on pairs-of-pants decompositions and Fukaya categories. In Surveys in differential geometry. Vol. XVII, volume 17 of Surv. Differ. Geom., pages 411–425. Int. Press, Boston, MA, 2012.