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Abstract

These are reading notes of She�eld's Conformal welding of random surfaces: SLE

and the quantum gravity zipper [11]. In that paper, She�eld constructs a stationary
process (ht, ηt)t∈R whose marginal law is given by a Gaussian free �eld and an inde-
pendent SLE curve. This process evolves with a deterministic cutting and unzipping
dynamics: the curve is progressively unzipped, and the �eld varies according to a nat-
ural change of coordinates. The main result of [11] is to prove that the process in
reverse time (h−t, η−t)t∈R also evolves deterministically.

In these notes, we go through She�eld's proof of this result, with a minor variation
in certain formulations using an idea of [2]. Let us also point to [3, Section 4] for other
reading notes on the same topic.
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1 Introduction

In [11], She�eld studies quantum surfaces (Riemann surfaces carrying a random metric)
that are progressively cut by independent SLE curves. More precisely, on the upper-half
plane, consider the Liouville metric : eγh : dz where h is a Gaussian free �eld, and draw
on it an independent SLEκ curve η, with κ = γ2. One can then progressively cut the half-
plane alongside η, and study the law of the domain equipped with a random metric that
one obtains. The initial conditions we started with turn out to give a stationary measure
for this cutting dynamics.

The result of [11] we focus on in these notes states that the reverse time process evolves
deterministically, or in other words, that no information is lost in the (forward) cutting
dynamics. Indeed, one expects that the �eld h as observed from the left and the right side
of the curve η should be the same on the curve η itself, and it turns out that this is enough
information to recover the original curve after unzipping. However, the free �eld is a very
irregular object, and formalizing the intuition that its values match up on both sides of
η is not straightforward. This is done by building a measure on η - that She�eld calls a
quantum time - somehow carrying the information of the values taken by h on η. A key
step in the proof is then to understand the quantum time, which can be seen as a natural
time scale for the cutting procedure.

We will recall the de�nitions and some basic properties of SLE and the free �eld in
Section 2, before de�ning the zipper coupling in Section 3. We then procede to prove the
main theorem (Theorem 3.2) in Section 4. Let us point out that a technically non-trivial
step of this result is to control the constant part of the free �eld during certain operations.
In these notes, we partially avoid this work (in the proof of Lemma 4.7, which is used to
deduce Lemma 4.6 from Lemma 4.5) by assuming a non-trivial statement on SLE and its
natural parametrization.

2 Background

2.1 Schramm-Loewner evolutions (SLE)

Chordal Schramm-Loewner evolutions (SLEs) are a one parameter family of conformally
invariant random curves de�ned in simply-connected domains of the complex plane, with
prescribed starting point and endpoint on the boundary.

Let us �rst give the de�nition of (forward) SLEκ in the upper half-plane (H, 0,∞). It
is a random curve η : R+ → H, growing from the boundary point 0 to ∞.

Suppose that such a curve η is given to us. Let Hs be the unbounded connected
component of H \ η([0, s]), and consider the uniformizing map gs : Hs → H, normalized at
∞ such that

gs(z) = z + 2as/z + o(1/z).
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The quantity as is the so-called half-plane capacity of the compact hull Ks = H \ Hs

generated by η([0, s]). Under additional assumptions1, the half-plane capacity as is an
increasing bijection of R+, and so we can reparametrize our curve by t = as.

With this parametrization, the family of functions gt solves the Loewner di�erential
equation: {

g0(z) = z
∂tgt(z) = 2

gt(z)−Wt
,

where Wt = gt (η(t)) is the (real-valued) driving function.
Conversely, starting from a continuous real-valued driving function, it is always possible

to solve the Loewner equation, and hence to recover a family of compact sets Kt in H,
growing from 0 to ∞, namely Kt is the set of initial conditions z that yield a solution
gu(z) blowing up before time t. It may happen that the compact sets Kt coincides with
the set of hulls generated by the trace of a curve γ, which can in this case be recovered as
η(t) = limε→0 g

−1
t (Wt + iε).

De�nition 2.1. The process SLEH
κ (0 → ∞) is the curve obtained from the solution of

the Loewner equation with driving function Wt =
√
κBt, where Bt is a standard Brownian

motion.

The law of SLEH
κ (0 → ∞) is invariant by scaling. Hence, given a simply-connected

domain (D, a, b) with two marked points on its boundary, we can de�ne SLEDκ (a → b) to
be the image of an SLEH

κ (0→∞) by any conformal bijection (H, 0,∞)→ (D, a, b).
We now restrict to values of the parameter κ ≤ 4. The SLE curves almost surely are

simple curves of dimension d = 1 + κ
8 [1], and they carry a non-degenerate parametrization

morally given by the Hausdor� measure of dimension d.

De�nition 2.2 ([9],[8]). The Minkowski content µ of dimension d = 1 + κ
8 of the SLE is

called its natural parametrization.

Remark 2.3. Given a conformal isomorphism φ : D → φ(D), the Minkowski content of
the SLE transforms as a d-dimensional measure:

µφ(D) = |φ′|dφ?µD.

Let us �nally note that SLE curves with their natural parametrizations have the fol-
lowing spatial Markov property:

Proposition 2.4. The law of (SLEH
κ (0→∞), µH) after a stopping time τ conditioned on

its past has the law of an (SLEHτκ (ητ →∞), µHτ ).

2.2 The Neumann free �eld

We start by recalling general facts before de�ning the Neumann free �eld as the Gaussian
on a certain function space.

1The curve η needs to be instantaneously re�ected o� its past and the boundary in the following sense:

the set of times s larger than some time s0 that η spends outside of the domain Hs0 should be of empty

interior.
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2.2.1 Gaussians

Gaussians are usually associated to vector spaces carrying a non-degenerate scalar product.
However, it is natural to extend this de�nition in the degenerate case, by saying that a
Gaussian of variance 0 is deterministically 0.

De�nition 2.5. The Gaussian on a vector space V equipped with a symmetric positive
semi-de�nite bilinear form (·, ·) is the joint data, for every vector v ∈ V , of a centered
Gaussian random variable Γv, such that v 7→ Γv is linear, and such that for any couple
v, w ∈ V, Cov(Γv,Γw) = (v, w).

Heuristically, one should think of Γv as being the scalar product (h, v) of v with a

random vector h drawn according to the Gaussian law e−
1
2

(h,h)dh. However, the linear
form v → Γv is (in truly in�nite-dimensional examples) a.s. not continuous, and so there
does not exist a vector h ∈ V such that Γv = (h, v) for all v ∈ V . One can nonetheless
try to �nd such a random object h in a superspace of V : this is the question of �nding a
continuous version of Brownian motion, or of seeing the Gaussian free �eld as a distribution.

Before moving on to de�ning the Neumann free �eld, let us recall a useful property.

Proposition 2.6 (Cameron-Martin formula). Let us �x a vector m ∈ V and sample
(Γ̃v)v∈V according to the Gaussian law Γ, biased by eΓm .

Then Γ̃ has the law of (Γv + (m, v))v∈V .

In other words, under the biased law, h̃ has the law of h+m.

2.2.2 De�nition of the Neumann free �eld

We now �x a smooth simply-connected Jordan domain D of the plane. Let us consider the
(degenerate) Dirichlet scalar product

(f, g)∇ =
1

2π

∫
D
∇f∇g

on the space C∞∇
(
D
)
of continuous functions f on D that are smooth on D and such that

the Dirichlet norm ||f ||∇ := (f, f)
1/2
∇ is �nite. We denote by H(D) the completion of this

space with respect to the (non-degenerate) metric ||f ||∇ + |f(x0)|, where x0 ∈ D is an
arbitrary point.

De�nition 2.7. The Gaussian free �eld with Neumann boundary conditions on D (or
Neumann free �eld) is the Gaussian on the space H(D) equipped with the Dirichlet scalar
product (·, ·)∇. It is the joint data, for any function f ∈ H(D), of a random variable Γf .

Remark 2.8. The Dirichlet product being conformally invariant, so is the Neumann free
�eld.

2.2.3 The Neumann free �eld as a random distribution

In order to see the Neumann free �eld Γ as a random distribution h, i.e. to be able to write
Γf = (h, f)∇, we are looking for a consistent way to de�ne the quantities

(h, g) :=

∫
D
h(z)g(z)dz
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for every test function (i.e. smooth and compactly supported function) g. Let ∆ = ∂2
x +∂2

y

be the Laplacian, and ∂n denotes the outward normal derivative on the boundary. If H is
a regular enough distribution, and f is a smooth enough function, then Green's formula
holds:

2π(H, f)∇ = −(H,∆f) +

∫
∂D

H∂nf. (1)

If we can solve the Poisson problem with Neumann boundary conditions for a �xed smooth
function g, i.e. if we can �nd a function f so that{

∂nf = 0 on ∂D
∆f = g on D,

we can then tentatively de�ne (h, g) in formal agreement with Green's formula (1) by

(h, g) := −Γf .

Proposition 2.9. The Poisson problem with Neumann boundary conditions admits solu-
tions if and only if the function g satis�es the integral condition

∫
D g = 0. The solution is

then unique up to an additive constant.

Proof. Assuming a solution f for the Poisson problem exists, applying Green's formula (1)
with H being the constant function 1 yields the integral condition

∫
D g = 0.

We now show that solutions exist provided the integral condition holds. By conformal
covariance, it is enough to solve the Poisson problem in the upper half-plane H. This can
be achieved by using the fundamental solution

G(z, w) := − log |z − w| − log |z − w|. (2)

Indeed, the function

f(z) =
1

2π

∫
H
G(z, w)g(w)dy

is a solution of the Poisson problem, as, in particular the normal derivative ∂nf on the
boundary is a Dirac mass at ∞, of total mass

∫
H g.

Let us now consider f1 and f2 two solutions for the same Poisson problem. Then, for
any function H ∈ H(D), Green's formula yields (H, f1 − f2)∇ = 0. In particular f1 − f2 is
of zero Dirichlet norm, so is a constant.

In terms of �nding a distributional representation h of the Neumann free �eld Γ, Propo-
sition 2.9 implies that we only have a natural way to de�ne the pairing (h, g) for test func-
tions g such that

∫
D g = 0. In other words, the distribution h is canonically de�ned only in

the space of distributions modulo constants. On the other hand, with h is de�ned in this
way, we can a posteriori check consistency with Green's formula (1).

Remark 2.10. The (up to constant) distribution h is almost surely regular enough so that
for a smooth function f , the integral

∫
∂D h∂nf is well-de�ned, and vanishes when ∂nf is

identically zero on the boundary ∂D. This can be seen by considering the trace of the �eld
on the boundary, as in [5, Section 4.3].
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2.2.4 Choice of constant for the �eld

Even though there is no canonical choice of a distribution h representing the Neumann free
�eld, we can still make some choice for h and thus �x the constant. This is done by picking
a function g0 of non-zero mean, and by deciding that (h, g0) should have a certain joint
distribution with the set of random variables (h, g) where g runs over all test functions.
However, none of these choices will preserve the conformal invariance of the �eld.

In the following, unless otherwise noted, we will always assume that some choice of
constant for the Neumann free �eld has been made.

2.2.5 Covariance

De�nition 2.11. The pointwise covariance of the �eld is a choice of generalized function
K(x, y) that represents the bilinear form (g, g̃) 7→ E[(h, g)(h, g̃)], where g and g̃ are mean-
zero test functions: ∫

z,w∈D
g(z)K(z, w)g̃(w)dzdw := E[(h, g)(h, g̃)].

In the upper-half plane H, the covariance is given by Green's function (2).

2.3 Liouville quantum gravity (LQG)

2.3.1 Quantum surfaces

The goal of Liouville quantum gravity (LQG) is to study quantum surfaces, i.e. complex
domains carrying a natural random metric - the Liouville metric. This Liouville metric
is of the form eγhg where g is some metric compatible with the complex structure, and
h is a �eld related to the Neumann free �eld. However, the exponential eγh of the free
�eld is ill-de�ned and building the Liouville metric is not yet understood in general. We
can however build as chaos measures (see Section 2.5) certain Hausdor� volume measures
associated with the Liouville metric.

The �eld h only appears as a tool to construct the Liouville metric and objects related to
it in �xed coordinates, and hence should change appropriately when we change coordinates,
so that the geometric objects are left unchanged.

De�nition 2.12. Given a conformal isomorphism φ : D → φ(D) between complex do-
mains, the Liouville coordinate change formula is given by:

hφ(D) = hD ◦ φ−1 +Q log |φ−1′|,

where Q = γ
2 + 2

γ .

Natural volume measures are then invariant under this change of coordinates (Proposi-
tion 3.3). We call quantum surface a class of �eld-carrying complex domains (D,h) modulo
Liouville changes of coordinates. A particular representative (D,h) of a given quantum
surface is called a parametrization.

2.3.2 The circle-average coordinates

Let us consider a quantum surface (H, h, 0,∞) with two marked points. It will be sometimes
convenient to work in �xed coordinates, independent of a normalization at ∞. In order
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to do so, let us note that the Dirichlet space H(H) admits an orthogonal decomposition
Hr⊕Hm for the Dirichlet product, where Hr is the closure of radially symmetric functions
f(| · |), and Hm is the closure of functions that are of mean zero on every half-circle
CR = {z ∈ H, |z| = R}. Any �eld h correspondingly split as a sum hr + hm.

Note that the Liouville change of coordinates corresponding to a rescaling of the half-
plane by a factor eC is given by

hC(·) = h(e−C ·)−QC.

In particular, the average of the rescaled �eld hC on the unit half-circle is given by

hrC(0) = hr(e−C)−QC.

De�nition 2.13. The circle-average coordinates of a quantum surface (H, h, 0,∞) is its
unique parametrization (H, ĥ, 0,∞) such that

inf{C ∈ R|ĥr(e−C)−QC ≤ 0} = 0.

Note that this is well-de�ned as soon as the function C 7→ hr(e−C) − QC diverges to
+∞ (resp. −∞) when C goes to −∞ (resp. +∞).

2.4 Wedge �elds

2.4.1 The radial part of the free �eld

Before de�ning the wedge �eld, we make some observations about the Neumann free �eld.
Recall that a Neumann free �eld h splits as the sum hr +hm of its radial component with a
mean-zero component on each half-circle. If one �xes the constant of the �eld by requiring
that hr(1) = 0, the components hr and hm are independent. Moreover, the law of the radial

component hr(e−
t
2 ) can be explicitly computed (see the related [6, Proposition 3.3]): it is

a double-sided Brownian motion Bt, i.e. the functions
(
hr(e−

t
2 )
)
t≥0

and
(
hr(e

t
2 )
)
t≥0

are

independent standard Brownian motions. Indeed, with mR being the uniform measure on
the upper half-circle of radius R around 0, and radii 0 < R1 < R2, we see that

E [hr(R1)hr(R2)] = E [(h,mR1)(h,mR2)]

=

∫
H2

(mR1 −m1)(dz)G(z, w)(mR2 −m1)(dw)

= 2 log |R2/R1| .

Moreover, note that adding a drift at to hr(e−t) corresponds to adding the function−a log |·|
to the �eld.

2.4.2 De�nition of the wedge �eld

We now de�ne, in the upper half plane H, an object closely related to the Neumann free
�eld: the wedge �eld. Let us �x some real number α < Q = γ

2 + 2
γ .

De�nition 2.14. The α-wedge �eld is a random distribution that splits in Hr⊕Hm as an
independent sum hW = hrW + hm, where hm is as for the Neumann free �eld, and hrW (e−t)
has the law of At, as de�ned below.
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For t > 0, At = B2t + αt, where B is a standard Brownian motion started from 0. For
t < 0, At = B̂−2t+αt, where B̂ is a standard Brownian motion started from 0 independent
of B and conditioned on the singular event

At −Qt = B̂−2t + (α−Q)t > 0

for all negative times t.

Proposition 2.15. Let (Bt)t∈R be a double-sided standard Brownian motion, and for all
real number M , let

TM =
1

2
inf{t ∈ R|B2t + (α−Q)t+M ≤ 0}.

Then the process
(B2TM+2t + αt+M)t∈R

converges in law towards (At)t∈R as M tends to +∞

Proof. Note that, for large M , the time TM equals with high probability the �rst positive
time T ′M such that drifted Brownian motion hits the value −M :

T ′M =
1

2
inf{t ≥ 0|B2t + (α−Q)t = −M}.

The claim follows.

Proposition 2.16. Let h = h̃+ a log | · | where h̃ is a Neumann free �eld with an arbitrary
choice of constant, and let hW be an α-wedge �eld in H. Let K be a compact subset of the
punctured half-disk {z ∈ H, 0 < |z| ≤ 1}. There exists a random constant c such that h and
hW + c are absolutely continuous on K.

Proof. Without loss of generality, we can �x the constant of the Neumann free �eld h̃ as
we see �t: we ask that its radial component satis�es hr(1) = h̃r(1) = 0. Let us also de�ne
a �eld ĥ := hW + c, where hW is a wedge �eld, and where the random constant c is chosen
such that ĥr(2b) = 0.

The two �elds ĥ and h are absolutely continuous on K: their Hm components have
same law, and their independent Hr components ĥr(e−

t
2 ) and hr(e−

t
2 ) for positive times

have the law of drifted Brownian motions started from 0, with possibly di�erent drifts.

2.4.3 The wedge �eld as a scaling limit

Lemma 2.17. Consider the �eld h = h̃−α log | · |, where h̃ is a Neumann free �eld with an
arbitrary choice of constant and α < Q. Then h+M converges in law towards the α-wedge
�eld hW as M goes to ∞, in the sense of convergence on compact sets in circle-average
coordinates.

Proof. We �rst assume that the constant of the Neumann free �eld is �xed such that
hr(0) = 0. Going to circle-average coordinates after adding a constant M to the �eld h
amounts to zooming in towards 0, with a random scaling factor depending on hr alone, that
almost surely goes to∞ asM goes to∞. The space Hm equipped with the Dirichlet scalar
product is invariant by scaling, and so the law of the Hm component is left unchanged by
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this operation and is independent of the Hr component. The rescaling operation acts ex-
plicitly on the spaceHr, and under this operation, double-sided Brownian motion converges
towards the process A (see Proposition 2.15).

We go back to the general case. A general choice of constant for h̃ can be written
as the previous choice plus some random variable c depending on hr and hm. However,
the σ-algebra generated by the information contained in an arbitrary neighborhood of the
origin is trivial, and so c tends to be independent of the picture we look at in the scaling
limit M →∞.

Corollary 2.18. The law of an α-wedge �eld is invariant as a quantum surface (i.e. up
to a Liouville change of coordinates) when one adds a deterministic constant to the wedge
�eld.

2.5 Chaos measures

We now explain how to associate natural measures to a �eld h.

2.5.1 De�nition

Given a �eld h and a reference measure σ, one can build interesting random measures
: eγ̃h : σ called chaos measures, that were �rst studied for their multiplicative structure.
The �eld h is usually too irregular for its exponential to make sense, and so de�ning chaos
requires some renormalization.

Let σ be a Radon measure whose support has Hausdor� dimension at least d, and let
h be a Gaussian �eld with covariance K blowing up like − log, meaning that we have, for
any point z in the support of σ,

K(z, z + δ) = − log |δ|+O|δ|→0(1).

We can then build non-trivial chaos measures σ[γ̃, h] for values of the parameter 0 < γ̃ <√
2d (see [4] and references therein).
Let us �rst de�ne these chaos measures in the upper half-plane H, when the �eld h is

of the form h̃+m, where h̃ is a Neumann free �eld, and m is a smooth function.

De�nition 2.19. The γ̃-chaos of a Radon measure σ with respect to the �eld h is de�ned
in the following way. For a measure σ supported in the bulk H, and γ̃ <

√
2d:

σ[γ̃, h](dz) =: eγ̃hσ : (dz) := lim
ε→0

eγ̃(θεz ,h)ε
γ̃2

2 σ(dz),

and for a measure σ supported on the boundary R and γ̃ <
√
d (the covariance of h blows

up like −2 log on the boundary):

σ[γ̃, h](dz) =: eγ̃h : σ(dz) := lim
ε→0

eγ̃(θεz ,h)εγ̃
2
σ(dz),

where (θεz, h) is some ε-regularization of the �eld h by a smooth test function θεz(·) of total
mass one and of �xed shape, and supported on the ball (in the bulk case) or on the half-ball
(in the boundary case) of radius ε around z.
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For example, one can �x a radially-symmetric smooth function θ1
i of total mass 1 sup-

ported in the unit ball around i ∈ H, and let the bulk regularizing function be given by

θεz(w) = ε−2θ1
i

(
w − z
ε

+ i

)
.

Remark 2.20. Note that, if m is a smooth function, then

σ[γ̃, h+m](dz) = eγ̃mσ[γ̃, h](dz).

As the chaos measures de�ned above are non-atomic, we can extend the previous de�nition
when the mean m of the �eld is singular, for example when m = a log | · |.

Remark 2.21. The theory of chaos measure was developed in the context of Gaussian
�elds. However, chaos are also well-de�ned for the Neumann free �eld with a non-Gaussian
choice of constant: indeed such a �eld can be written as the sum of a Gaussian �eld and a
random constant. Moreover, one can build chaos measures for wedge �elds, by local absolute
continuity (Proposition 2.16).

Note that we can recover a measure σ from one of its chaos.

Lemma 2.22. Let h be a Neumann free �eld with a Gaussian choice of constant, and let
σ be a Radon measure supported in the bulk. We can recover the measure σ from its chaos
σ[γ̃, h] :

σ(dx) = e−
γ̃2

2
K̂(x)E[σ[γ̃, h](dx)],

where K̂(x) = limε→0 Var(θεx, h) + log ε.
The same statement holds in the boundary case.

Proof. We do the computation in the bulk case. The �rst equality holds by uniform inte-
grability (see [4, Section 3]).

E[σ[γ̃, h](dx)] = lim
ε→0

E[eγ̃(θεx,h)ε
γ̃2

2 σ(dx)]

= lim
ε→0

E[eγ̃(θεx,h)]ε
γ̃2

2 σ(dx)

= lim
ε→0

e
γ̃2

2
Var(θεx,h)ε

γ̃2

2 σ(dx)

= lim
ε→0

e
γ̃2

2
(− log ε+K̂(x)+oε(1))ε

γ̃2

2 σ(dx)

= e
γ̃2

2
K̂(x)σ(dx).

Together with Proposition 4.1, this provides a way to construct the natural parametriza-
tion of SLE from the free �eld.
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2.5.2 The Cameron-Martin formula for chaos measures

In this section, we want to describe the law of a Neumann free �eld biased by the total
mass σ[γ̃, h](H) of a certain chaos measure. In order for the choice of constant for the �eld
to not matter, we introduce a compensation that takes the form of an additional bias of
the form e−γ̃(ρ,h) for a non-negative test function ρ of total mass 1, i.e. such that

∫
H ρ = 1.

Let σ be a bulk-supported �nite measure on H and γ̃ > 0 be, such that the chaos σ[γ̃, h]
is non-trivial for h a Neumann free �eld. Let dh denote the law of the Neumann free �eld
on H with some arbitrary choice of constant. Let us also consider the probability measure

M(dz) := Z−1E[e−γ̃(ρ,h)σ[γ̃, h](dz)],

where Z is a normalization constant.

Lemma 2.23. A couple (h, z) sampled according to

Z−1dh(h)e−γ̃(ρ,h)σ[γ̃, h](dz)

can also be described in the following way. First, one samples z according to the measure
M(dz). Then, one samples h with the law of

h̃+ γ̃G(z, ·)−
∫
H
γ̃ρ(w)G(w, ·)dw,

where h̃ is a Neumann free �eld (with a complicated choice of constant that can depend on
z), and G is the Green's function (2).

Proof. Let us consider the ε-approximation of the chaos measure:

Z−1e−γ̃(ρ,h)σ[γ̃, h](dz) = Z−1 lim
ε→0

eγ̃(θεz−ρ,h)ε
γ̃2

2 σ(dz).

The measure on (h, z) on the right hand side can be read as �rst picking a point z according
to

Z−1ε
γ̃2

2 E[eγ̃(θεz−ρ,h)]σ(dz)

(which tends to M(dz) as ε goes to 0), and conditionally on z, sampling a �eld according
to eγ̃(θεz−ρ,h)dh. This last step can be understood by Cameron-Martin as sampling a �eld
according to dh and then adding to it the function∫

H
γ̃(θεz(w)− ρ(w))G(w, ·)dw,

which converges as ε→ 0 towards

γ̃G(z, ·)−
∫
H
γ̃ρ(w)G(w, ·)dw.

3 The zipper coupling of LQG and SLE

From now on, we work in the upper half plane (H, 0,∞), and we tune LQG and SLE
parameters so that γ2 = κ < 4.

11
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0(η
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φt
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h0
ht = h0 ◦ φ0

t +Q log |φ0
t
′|

Figure 1: The capacity zipper

3.1 The capacity zipper

The capacity zipper (ht, ηt)t≥0 is a process of pairs consisting of a distribution and a curve.
The curve η0 is an SLEκ (parametrized by half-plane capacity) sampled independently of
a �eld h0 which has the law of h̃ + 2

γ log | · |, where h̃ is a Neumann free �eld (with some
arbitrary choice of constant). The process evolves by deterministically unzipping the SLE
(see Figure 1): for a time t > 0, call φt0 : H\η0([0, t])→ H the uniformizing map normalized
at ∞ so that φt0(z) = z +Oz→∞(1) and φt0(η0(t)) = 0, and let φ0

t be its inverse. The curve
ηt is then the simple curve parametrized by capacity given by(

ηt(u)
)
u≥0

=
(
φt0(η0(t+ u))

)
u≥0

and the �eld ht is given by the Liouville change of coordinates

ht := h0 ◦ φ0
t +Q log |φ0

t
′|.

We also de�ne zipping/unzipping maps for all couples of non-negative times s, t by

φts = φt0 ◦ φ0
s.

Proposition 3.1 ([11, Theorem 1.2]). The capacity zipper (ht, ηt)t≥0 has stationary law,
when the �elds ht are seen as distributions up to a constant.

In particular, we can naturally extend the capacity zipper by stationarity to a (station-
ary up to constant) process (ht, ηt)t∈R, as the choice of constant for h0 can be propagated
to negative times.

Proof. We only sketch the proof here, and refer to [11] for details.
Let us �x a time t > 0. The curve ηt is an SLE independent of h0 and η0([0, t]), so in

particular of ht = h0 ◦ φ0
t + Q log |φ0

t
′|. We thus only need to show that the �eld ht is a

Neumann free �eld.
For any point z ∈ H, SLE computations via Itô calculus gives us a martingale

Ms(z) =
2

γ
log |φt−st (z)|+Q log |(φt−st )′(z)|,

whose quadratic covariations are explicit:

d 〈Ms(z),Ms(w)〉 = −dGs(z, w), (3)

12



where Gs is Green's function in the domain H \ ηs([0, t− s]) = φt−st (H), i.e.

Gs(z, w) := G(φt−st (z), φt−st (w)).

Now, note that we can rewrite the �eld ht as

ht = h0 ◦ φ0
t +Q log |φ0

t
′| = Mt + (h0 −M0) ◦ φ0

t ,

which is the sum of the log singularity M0 plus an η
0-measurable centered random variable

B = Mt −M0 plus a random variable N = (h0 −M0) ◦ φ0
t .

We now prove that (the up to constant part of) the �eld ht−M0 is a centered Gaussian
�eld of covariance given by Green's function G. In other words, we now show that, for any
test function ρ of mean zero, the random variable (ht −M0, ρ) is a centered Gaussian of
variance ∫

H2

ρ(z)G(z, w)ρ(w)dzdw. (4)

Let us consider the martingale

Mρ
s =

∫
H
ρ(z)Ms(z)dz.

From the covariation computation (3), we see that (B, ρ) = Mρ
t −Mρ

0 has the law of an
η0-measurable standard Brownian motion evaluated at the (non-negative) stopping time∫

H2

ρ(z) (G(z, w)−Gt(z, w)) ρ(w)dzdw. (5)

Moreover, conditionally on the curve η0, the up to constant part of the �eld N = (h0 −
M0) ◦φ0

t is a centered Gaussian of covariance Gt. In particular, the random variable (N, ρ)
is a Gaussian of variance ∫

H2

ρ(z)Gt(z, w)ρ(w)dzdw. (6)

Now, note that if BT is the value taken by Brownian motion at a stopping time T ≤ 1, and
N is conditionally on B a centered Gaussian of variance 1−T , then (BT , N,BT +N) has the
law of (BT , B1−BT , B1). In particular, the random variable (ht−M0, ρ) = (B, ρ) + (N, ρ)
is a centered Gaussian of variance given by (4)=(5)+(6).

The main result of [11] is the following. We postpone its proof to Section 4.

Theorem 3.2 ([11, Theorem 1.4]). The zipping up dynamics (h−t, η−t)t∈R on the capacity
zipper almost surely evolves deterministically.

3.2 Some volume measures for the zipper

We can build several natural chaos measures (Figure 2) from a �xed time frame (ht, ηt) of
the capacity zipper.

• The boundary Liouville measure λ
[γ

2 , h
t
]
, a chaos on the Lebesgue measure λ on R.

• The chaos µt
[γ

2 , h
t
]
on the natural parametrization µt of the SLE ηt.

Note that these measures depend on the normalization of the free �eld: adding a random
constant c to the �eld will introduce a scaling factor e

γ
2
c.

13



Proposition 3.3. The boundary Liouville measure and the γ/2-chaos on the natural parametriza-
tion are invariant by Liouville change of coordinates This includes invariance under rescal-
ing, but also the fact that for any couple of times s < t,

(i) λ
[γ

2
, ht
]
|φts(R)

◦ φts = λ
[γ

2
, hs
]

and

(ii) µt
[γ

2
, ht
]

= µs
[γ

2
, hs
]
|φst (ηt)

◦ φst .

φt
s

φs
t

ηs
ηt

ηs(t− s)

φt
s(0

+)φt
s(0

−)

0 0

Figure 2: Under the unzipping operation, the natural volume measures on the curve and
on the boundary are preserved: Proposition 3.3 (i) and (ii) respectively claim that the red
(resp. blue) regions carry the same measure. On the purple regions, the natural measures
on the curve and on the boundary coincide (Proposition 4.1) .

Proof. We only prove (ii). The other claims are proved similarly. Recall that the dimension

of SLE is given by d = 1 + γ2

8 , and that the Liouville change of coordinates for the capacity
zipper reads ht = hs ◦ φst +Q log |φst ′|. We have that:

µs
[γ

2
, hs
]
|φst (ηt)

◦ φst (dz) = ε
γ2

8 lim
ε→0

e
γ
2

(θε
φst (z)

,hs)
dµs ◦ φst (dz)

= lim
ε→0

ε
γ2

8 e
γ
2

(θ
ε|φts
′◦φst (z)|

z ,hs◦φst )|φst ′|ddµt(dz)

= lim
δ→0

(|φst ′|δ)
γ2

8 e
γ
2

(θδz ,h
t)− γ

2
Q log |φst ′||φst ′|ddµt(dz)

= |φst ′|
γ2

8
− γ

2
Q+d lim

δ→0
δ
γ2

8 e
γ
2

(θδz ,h
t)dµt(dz)

= |φst ′|
γ2

8
− γ

2
( γ
2

+ 2
γ

)+1+ γ2

8 µt
[γ

2
, ht
]

(dz)

= µt
[γ

2
, ht
]

(dz).

Note that to go from the �rst to the second line, we used that

(θεφst (z)
, hs)− (θ

ε|φts′◦φst (z)|
z , hs ◦ φst )
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is a Gaussian of variance o(1) as ε goes to 0. This is seen in the following way: with

Fε(·) = θεφst (z)
(·)− |φts

′
(·)|2θε|φ

t
s
′◦φst (z)|

z (φts(·)),
and G being Green's function, one has that∫

H2

Fε(w)G(w, y)Fε(w)dwdy = oε(1).

4 The zipping operation is deterministic

4.1 Proof of the main theorem (Theorem 3.2)

The main theorem will be a consequence of the following result, which is in the line of ideas
from [2] (see Figure 2).

Proposition 4.1. Let (ht, ηt)t∈R be a capacity zipper. The following identity holds for
s < t:

λ
[γ

2
, ht
]
|[0,φts(0+)]

◦ φts = Cµs
[γ

2
, hs
]
|ηs([0,t−s])

,

where C is a universal constant2.

By symmetry, we deduce the following.

Corollary 4.2 ([11, Theorem 1.3]). The push-forwards on the SLE curve of the boundary
Liouville measure from the positive and from the negative half-lines agree:

λ
[γ

2
, ht
]
|[0,φts(0+)]

◦ φts = λ
[γ

2
, ht
]
|[φts(0−),0]

◦ φts.

We can now prove that the zipping up process (h−t, η−t)t∈R evolves deterministically
(Figure 3).

Proof of Theorem 3.2. Let us �x a time t > 0. Let η̃ denote the range of a simple curve in
H starting from 0, of half-plane capacity t. Consider the conformal map φ̃ from the upper
half-plane H to H \ η̃ normalized so that φ̃(z) = z +Oz→∞(1) and φ̃(0) is the endpoint of
η̃. We assume that the preimages x− and x+ by φ̃ of any point in η̃ are such that

λ
[γ

2
, ht
]

([x−, 0]) = λ
[γ

2
, ht
]

([0, x+]). (7)

By Corollary 4.2, the map φ0
t satis�es this property, and we only need to show that any

map φ̃ satisfying the above property has to be equal to φ0
t . Indeed, this would imply that

the map φ0
t is determined by ht. The couple (h0, η0) can then be easily recovered from the

data of (ht, ηt, φ0
t ).

Let us then consider the map f = φ̃◦φts where the time s ∈ (−∞, t) is such that f(0−) =
0−. We see by (7) that the map f is a continuous bijection of H. The map f is moreover
conformal o� the SLE curve ηs([0, t−s]). However, SLE is removable [7, 10], which implies
that the map f is conformal on the whole of H, hence a Moebius transformation. From the
behavior of f at ∞ and 0, we see that f is the identity. In particular, ηs([0, t− s]) = η̃. By
comparing the half-plane capacities of the two curves, we see that t− s = t, i.e. s = 0.

2The constant C depends on the somewhat arbitrary renormalization procedure used to build chaos

measures.
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φ0
t

η0
ηtη0(t)

0 0

η0(s)

x− x+

ht

Figure 3: From the �eld ht, we can construct a bijection between the negative and positive
half-lines, by associating to each boundary point x− ∈ R− the point x+ ∈ R+ such that
λ[γ2 , h

t]([x−, 0]) = λ[γ2 , h
t]([0, x+]). Each of these couples (x−, x+) should be mapped to

a same point η0(s) by the zipping map φ0
t . It turns out that the data of this bijection is

enough to completely recover the map φ0
t and the curve η0([0, t]).

We still need to prove Proposition 4.1. In order to be able to make use of the stationarity
of the unzipping dynamics, one has to modify the zipper coupling so that the volume
measures λ[γ2 , h] and µ[γ2 , h] are stationary, and not only up to a scaling constant. One can
achieve this by considering a quantum zipper on a (γ − 2

γ )-wedge �eld hW .

4.2 Unzipping wedges: the quantum zipper

The quantum zipper (htW , η
t)t≥0 is a process of pairs consisting of a distribution and a

curve. The initial conditions are given by a (γ − 2
γ )-wedge �eld h0

W , and an independent

SLEκ curve η0, that we choose to parametrize by the chaos µ0[γ2 , h
0
W ], i.e. such that

µ0
[γ

2
, h0

W

] (
η0([0, t])

)
= t.

The quantum zipper evolves by deterministically unzipping the curve η0 according to the
time clock µ0[γ2 , h

0
W ], and applying the Liouville change of coordinates to transform the

�eld, so that (
ηt(u)

)
u≥0

=
(
φt0(η0(t+ u))

)
u≥0

and
htW := h0

W ◦ φ0
t +Q log |φ0

t
′|.

Proposition 4.3 ([11, Theorem 1.8]). The quantum zipper (htW , η
t)t≥0 has stationary law,

when the �elds are considered up to Liouville changes of coordinates.

Remark 4.4. We built two stationary processes. In the capacity setting (Proposition 3.1),
we �x coordinates on H through a normalization at ∞, and the �eld up to a constant is
invariant in law. In the quantum setting (Proposition 4.3), we keep track of the constant
of the �eld. The time-parametrization of the zipper is coordinate-invariant, in particular
invariant by scaling (Proposition 3.3). The law of the �eld as a quantum surface (i.e. up
to change of coordinates) is invariant in law .
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We will deduce Proposition 4.3 from its analog for the capacity zipper, Proposition 3.1.
This is done by introducing a bias

µ0
[γ

2
, h0
] (
η0([0, 1])

)
on the law of the capacity zipper, and sampling a point z on the curve η0 according to
the chaos measure µ0[γ2 , h

0]|η0([0,1])(dz). The quantum zipper can then be recovered by
unzipping the curve η0 all the way to the marked point z, and subsequently zooming in at
0. We need to introduce a second bias of the form e−

γ
2

(ρ,h) for technical reasons, namely so
that the choice of constant of the �eld h0 has no e�ect. We hence choose a non-negative
test function ρ of total mass 1, that is supported on a compact set at distance say at least
10 from the real line, so that it is almost surely disjoint from η0([0, 1]). For any real β ≥ 1,
we also de�ne the rescaled test function ρβ(w) = β−2ρ(wβ ).

Let us consider the capacity process (ht, ηt)t∈R biased by

Z−1e−
γ
2

(ρβ ,h
0)µ0

[γ
2
, h0
] (
η0([0, 1])

)
,

where Z is a normalization constant. We also sample a point z on η0 proportionally to
µ0[γ2 , h

0]|η0([0,1])(dz), and let Tz be the time such that φTz0 (z) = 0.

Lemma 4.5. As the parameter β goes to∞ alongside a well-chosen subsequence, the couple

(hTz , ηTz) converges in law towards an SLEκ curve and a �eld h̃ +
(

2
γ − γ

)
log | · |, where

the up to constant part of h̃ is a Neumann free �eld independent from the curve.

In the rest if this section, ĥ will exclusively stand for a Neumann free �eld de�ned up
to a constant. We �rst prove the following:

Lemma 4.6. The couple (hTz , ηTz) (with hTz seen as a distribution up to constant) con-
verges in law when β goes to ∞ towards an SLEκ curve together with an independent (up

to constant) �eld ĥ+
(

2
γ − γ

)
log | · |.

Proof. Let us �rst note that the Markov property of SLE implies that the curve ηTz is an
SLEκ independent from the �eld hTz . Indeed, note that under the biased law, conditionally
on h0, the time Tz is a stopping time for the �ltration generated by η0. Hence, the claim
will follow if we understand the law of the �eld hTz as β goes to ∞.

Let us now �x an integer n, and let us cut the interval [0, 1) into n consecutive intervals
In,l := [l/n, (l + 1)/n). We call k the integer in {0, 1, · · · , n − 1} such that the point z
belongs to η0(In,k), and let Tn := k/n. The (biased) law of (hTn , ηTn , z) can be sampled as
follows: let k be uniformly chosen integer between 0 and n − 1, and unzip an (unbiased)
couple (h0, η0) until time Tn. Then, bias the resulting couple (hTn , ηTn) by (we do not keep
track of normalizing constants)

e−
γ
2

(ρβ ,h
0)µTn

[γ
2
, hTn

] (
ηTn([0, 1/n])

)
.

The point y = φTn0 (z) can �nally be picked according to µTn [γ2 , h
Tn ]|ηTn ([0,1/n])(dy).

In particular, hTn has the law of a �eld ĥ+ 2
γ log | · | biased by αnα̃n, where

αn = e−
γ
2

(ρβ ,h
Tn )µTn

[γ
2
, hTn

] (
ηTn([0, 1/n])

)
and

α̃n = e
γ
2

(ρβ ,h
Tn−h0).
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Let us �rst bias by αn only. By Lemma 2.23, the (up to constant) �eld hTn biased by αn
has the law of

ĥ+
2

γ
log | · |+ γ

2
G(y, ·)− γ

2

∫
H
ρβ(w)G(w, ·)dw,

where the point y belongs to ηTn([0, 1/n]). We now let n go to ∞ so that the time Tn goes
to Tz. Note that, the diameter of ηTn([0, 1/n]) almost surely goes to 0 as n goes to ∞.
Indeed, for the (unbiased) SLE curve η0, we almost surely have that

lim
n→∞

sup
t∈[0,1]

diam
(
ηt([0, 1/n])

)
= 0.

As for any almost sure property, it also holds under any biased law. As a consequence,
the point y almost surely goes to 0. The (up to constant) law of hTn biased by αn hence
converges as n goes to ∞ towards the law of a �eld

ĥ+

(
2

γ
− γ
)

log | · | − γ

2

∫
H
ρβ(z)G(z, ·)dz.

Note that, on any compact set K,

sup
x∈K

∣∣∣∣∫
H
ρβ(w) (G(w, x)−G(w, 0)) dw

∣∣∣∣ = oβ→∞(1).

In other words, the term −γ
2

∫
H ρβ(w)G(w, ·)dw is negligible (up to a constant) in the limit

β →∞.
We prove in Lemma 4.7 below that, under the law of (hTn , ηTn) biased by αn, the

additional bias α̃n is uniformly integrable and converges almost surely towards 1 as �rst n
then β go to ∞, and this concludes the proof.

Lemma 4.7. With the notations of the proof of Lemma 4.6, under the law of the quantum
zipper biased by αn, the random variable α̃n is uniformly integrable in n, β and almost surely
converges to 1, uniformly in n as β goes to ∞.

Proof. We only show uniform integrability, as the convergence to 1 is slightly easier and
follows from similar estimates. This proof assumes that a non-trivial statement about SLE
and natural parametrization holds.

We want to control the quantity

α̃n = e
γ
2

(ρβ ,h
Tn−h0) = e

γ
2

(|φTn0
′|2ρβ◦φTn0 −ρβ ,h0)e

γ
2

(ρβ ,Q log |φ0Tn
′|).

The second term of the product in the right-hand side is a geometric term which can be
deterministically bounded.

The goal is then to show uniform integrability of the quantity

N(n, β) = (|φTn0

′|2ρβ ◦ φTn0 − ρβ, h0)

under the law of the capacity zipper biased by an ε-approximation of the chaos:

α(n, β, ε) = e−
γ
2

(ρβ ,h
Tn )

∫
η0([Tn,Tn+1/n])

e
γ
2

(θεz ,h
0)ε

γ2

8 µ0(dz).
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By conditionning on z, this follows from uniform integrability in (n, β, ε, z) of e
γ
2
N(n,β)

under the biased law by

α(n, β, ε, z) := e−
γ
2

(ρβ ,h
Tn )e

γ
2

(θεz ,h
0)ε

γ2

8 = e
γ
2

(θεz−|φTn0
′|2ρβ◦φTn0 ,h0)e−

γ
2

(ρβ ,Q log |φ0Tn
′|)ε

γ2

8 .

The constant ε
γ2

8 cancels out with the normalization factor, and the quantity (ρβ, Q log |φ0
Tn

′|)
can be deterministically bounded.

We hence reduced the problem to understanding the law of N(n, β) under the bias
e
γ
2
N′(n,β,ε,z), with

N′(n, β, ε, z) = (θεz − |φTn0

′|2ρβ ◦ φTn0 , h0).

We now condition on η0. The random variables N(n, β) and N′(n, β, ε, z) are jointly Gaus-
sians. By Cameron-Martin, N(n, β) has the law of

Ñ(n, β, ε, z) = (|φTn0

′|2ρβ ◦ φTn0 − ρβ, h0) (8)

+

∫
H2

(
θεz(w)− |φTn0

′
(w)|2ρβ ◦ φTn0 (w)

)
G(w, y)

(
|φTn0

′
(y)|2ρβ ◦ φTn0 (y)− ρβ(y)

)
dwdy,

where h0 is a Neumann free �eld.
Note that in the second term of (8), the two functions we integrate against G are of

mean zero. Moreover, G(βw, βy) = −2 log β +G(w, y). Hence, the second term of (8) can
be rewritten by scaling the integration variables as:∫

H2

(
θ
ε/β
z/β(w)− ρnβ(w)

)
G(w, y)

(
ρnβ(y)− ρ(y)

)
dwdy, (9)

where

ρnβ(w) = |φTn0

′
(βw)|2ρ

(
φTn0 (βw)

β

)
.

Let d be the diameter of η0([0, 1]). We will bound (9) by a quantity depending on d only. On
the complementary of this event, and we have that |x| and |z| are of order at most d, where
x is the real number (depending on n and on the SLE) such that φTn0 (w) = w+ x+ o∞(1).

Let D be twice the maximum distance to 0 of points in the support of ρ. We can �nd
a deterministic compact subset K ⊂ H such that, on the event d ≤ D, the supports of the

functions ρnβ(·) and θε/βz/β for ε ≤ 1 are included in K.
Moreover, note that by choosing ρ with support at distance 10 from the real line, we

ensured that points in the support of one of the ρnβ are at a distance no less than 5 than

points in the support of one of the θ
ε/β
z/β , as long as ε ≤ 1. This allows to look only at the

o�-diagonal (i.e. negative) part of G when trying to bound terms of the form
∫
θGρ.

We hence see that when d ≤ D, the quantity (9) can be bounded by:

M := 2 sup
K×K

(−G ∨ 0) + sup
K

∣∣ρnβ − ρ∣∣ sup
K

∣∣ρnβ∣∣ ∣∣∣∣∫
K×K

|G(w, y)|dwdy

∣∣∣∣
Note that supK

∣∣∣ρnβ∣∣∣ can be bounded by a constant depending on sup |ρ| only. When d ≥ D′,
we can bound (9) by M + 10 log d.
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We assume that the probability that the diameter d of η0([0, 1]) is larger than some
positive number D, under the law of SLE biased by

Eh
0
[
µ0
[γ

2
, h0
] (
η0([0, 1])

)]
=

∫
η0([0,1])

|2=(w)|− γ
2

8 e−
γ2

4

∫
H ρ(y)G(y,w)dydµ0(w),

decreases faster than any polynomial in D.
Together with the estimate on the tail of the law d, we get the wanted uniform integra-

bility of the exponential of the second term of (8).

The �rst term of (8), (|φTn0

′|2ρβ ◦ φTn0 − ρβ, h0), is a centered Gaussian of variance∫ (
ρnβ(w)− ρ(w)

)
G(w, y)

(
ρnβ(y)− ρ(y)

)
dwdy.

This variance can be controlled as above in a way such that (|φTn0

′|2ρβ ◦ φTn0 − ρβ, h0) is
seen to be uniformly integrable. This concludes the proof.

Proof of Lemma 4.5. The claim follows from tightness in β of hTz under the law of the
biased capacity zipper. By Lemma 4.6, the law of hTz up to a constant is tight. However,
the law of hTz can be seen as a coupling of hTz up to a constant with (hTz , ρ1). As the set
of all couplings of tight random variables is itself tight, it is enough to show that (hTn , ρ1)
is tight in (n, β). This follows from the proof of Lemma 4.7, which shows tightness of the
random variable (hTn , ρ1) − (h0, ρ1) under the law of the capacity zipper biased by αn,
together with uniform integrability of the additional bias α̃n.

Proof of Proposition 4.3. Let us consider a (γ − 2
γ )-wedge �eld and an independent SLE

(h0
W , η̂

0). We want to show that for any �xed a > 0, the couple (haW , η̂
a) obtained by

unzipping the picture by a units of µ0[γ2 , h
0
W ] mass has the law of (h0

W , η̂
0).

In the setup and with the notations of Lemma 4.5, consider ε = e−
γ
2
Ma where M is a

large real number, and let zε be the point such that

µ0
[γ

2
, h0
] (
η0([Tz, Tzε ])

)
= ε.

By Lemmas 2.17 and 4.5, (hTz +M,ηTz) converges in law to (h0
W , η̂

0) when β �rst goes to
∞ along a well-chosen subsequence, and we then let M go to ∞. As a consequence, the
couple (hTz +M,ηTz , hTzε +M,ηTzε ) converges in law to (h0

W , η̂
0, haW , η̂

a).
On the other hand, the laws of (h0, η0, z) and (h0, η0, zε) are at a total variation distance

of order ε, that goes to 0 when M goes to ∞. Hence, (hTz +M,ηTz) and (hTzε +M,ηTzε )
have the same limit in law as M goes to ∞. In other words, (haW , η̂

a) has the law of
(h0
W , η̂

0).

4.3 The push-forward of the Liouville boundary measure is a chaos on
the natural parametrization (Proof of Proposition 4.1)

We �rst prove the analog of Proposition 4.1 for the quantum zipper.

Proposition 4.8. Let us consider the quantum zipper (htW , η
t)t∈R. Then, for any times

s < t:
λ
[γ

2
, htW

]
|[0,φts(0+)]

◦ φts = Cµs
[γ

2
, hsW

]
|ηs([0,t−s])

,

where C is a universal constant.
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Proof. Let m(t) = λ[γ2 , h
t
W ]([0, φts(0

+)]) be the right-hand side Liouville boundary mass of
the part of the SLE path that has been unzipped between times 0 and t. Note that for any
0 < s < t,

m(t) = λ
[γ

2
, hsW

]
([0, φs0(0+)]) + λ

[γ
2
, htW

]
([0, φts(0

+)]).

On the other hand, by stationarity of the quantum zipper up to Liouville change of co-
ordinates (Proposition 4.3), and by invariance of volume measures under such changes
(Proposition 3.3), the quantity λ[γ2 , h

t
W ]([0, φtt−1(0+)]) has stationary law. By the Birkho�

ergodic theorem, the quantity m(n)
n almost surely converges towards a random variable

C(ω), for integer times n going to∞. The function m(t) being monotone, this implies that
m(t)
t converges towards C(ω) as the time t goes to ∞.
Let us spell out the previous statement: there is a random variable C(ω) such that for

any ε > 0, we can �nd a deterministic time T , such that with probability at least 1− ε, we
have that

sup
t≥T

∣∣∣∣m(t)

t
− C(ω)

∣∣∣∣ < ε.

Let us now add a constant 2
γ log τ

T to the �eld h0
W , where τ > 0 is an arbitrary small time.

The law of the quantum zipper is preserved (Corollary 2.18), but the time scale t and the
quantity m(t) are both scaled by τ

T . Hence, for any ε > 0, for any time τ > 0, with
probability at least 1− ε:

sup
t≥τ

∣∣∣∣m(t)

t
− C(ω)

∣∣∣∣ < ε.

In other words, m(t) = C(ω)t for all positive times. The random constant C(ω) is then
measurable with respect to the curve and the �eld in any neighborhood of 0. However, the
corresponding σ-algebra is trivial, and the constant C(ω) is hence deterministic.

Remark 4.9. Chaos measures are only de�ned almost surely. However, the �elds htW at
di�erent times are related through the Liouville change of coordinates formula, and so it is
almost surely possible to de�ne simultaneously all chaos λ[γ2 , h

t
W ] and µt[γ2 , h

t
W ] in such a

way that the statements of Proposition 3.3 (i) and (ii) hold for all couples of times s < t.
As a consequence, we can assume that Proposition 4.8 almost surely holds simultaneously
for any couple of times s < t.

Proof of Proposition 4.1. We now consider the capacity zipper, and show that the chaos
on the natural parametrization and the push-forward of the right-sided Liouville boundary
measure agree on η0([ε, T ]):

λ
[γ

2
, hT

]
|[0,φT0 (η0(ε)+)]

◦ φT0 = Cµ0
[γ

2
, h0
]
|η0([ε,T ])

, (10)

where ε is a small parameter, and T is the �rst time such that η0 exits the ball of radius 1
around the origin:

This is enough, as we can rescale the initial conditions of the capacity zipper to make
any �xed interval of η0 appears before the exit time of the ball of radius 1 (at the cost of
changing the law of the constant of the �eld h0).

Let us consider a quantum zipper (htW , η̂
t)t≥0 such that h0

W is in circle-average coor-
dinates, and η̂0 = η0, i.e. such that η̂t is a time-reparametrization of ηt. Let τ be the
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random time such that η̂τ = ηT . We unzip η0 by φ̂τ0 = φT0 . By Remark 4.9, even though τ
is random, we almost surely have that

λ
[γ

2
, hτW

]
|[0,φ̂τ0 (0+)]

◦ φ̂τ0 = Cµ0
[γ

2
, h0

W

]
|η̂0([0,τ ])

. (11)

We now condition on η0([0, T ]). The unzipping operation is deterministic given the
curve η0, and so whether (10) holds is determined by the sample of the �eld at time 0 in
any neighborhood of η0([ε, T ]). By Proposition 2.16, there exists a random constant c such
that h0 and h̃ := h0

W + c are absolutely continuous on a neighborhood of η0([ε, T ]). The

identity (11) also holds for h̃, as adding a constant c amounts to multiplying both sides of
the equality by e

γ
2
c. By absolute continuity of h0 and h̃, we thus see that (11) implies (10),

and this concludes the proof.
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