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(complete) matching:

SN O,

crossing: 7N N
nesting: / —~"\

Theorem. The number of match-
ings on |2n| with no crossings (or with
no nestings) is

L [2n
Cn = .
" n+1<n)




Recall:

Cp=#{a1--agy, 1 a; = *1,
b= 0.3 a0}

(ballot sequence).

S OO AN

-1

/7@?\ 7
1 1 -1 1 -1 -1 1 -



NN

3—crossing
TN
3—nesting
M = matching

cr(M) = max{k : 3 k-crossing}
ne(M) = max{k : 3 k-nesting}.

Theorem. Let f,,(i,j) = # match-
ings M on [2n| with cx(M) = © and
ne(M) =j. Then fn(i,5) = fn(d,12).

Corollary. # matchings M on |2n]
with cr(M) = k equals # matchings
M on 2n] with ne(M) = k.
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Partitions (of the set [n)).

m=145—-20—-3

N2 NN

3—crossing

N

3—nesting




0N

2—nesting

SO\

2—crossing



7T = set partition
cr(m) = max{k : 3 k-crossing}
ne(w) = max{k : 3 k-nesting}.

Theorem. Let gn(i,7) = # par-
tittons w of [n| with ce(M) = 1 and
ne(M) =j. Then

gn(t,7) = gn(J,1).



A common generalization. Given
m € 11, define:

min(7) = {minimal block elements of 7}
max(7) = {maximal block elements of 7}

min(135 — 26 — 4) = {1,2,4)
max(135 — 26 —4) = {4,5,6}.

Note. (min(m), max (7)) determines num-
ber of blocks of 7, number of singleton
blocks, whether 7 is a matching, .. ..

Fix S,T C |n|, #S5 = #T.
fn,s,1(%,3) = #4m € Il : min(r) = 5,
max(mw) =T, cr(m) = i,ne(m) = j}.

Theorem. fn,S,T(ia J) = .fn,S,T(ja i)



vacillating tableaux.

Label points 7 with a pair a;b; from
right-to-lett.

For arcs or singletons 77 with ¢ < 7j.

a; =1,2,...,n in order from right-to-
left.
bz' — CLj

Otherwise a; = b;.

T o

44 66 33 66 11 55 42 33 22 11
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Begin with empty tableaux Ty = 0.

Scan numbers aibiasbs - - - anby, left-
to-right. At each step either RSK-insert,
delete, or do nothing:

O

11 1]
* 41 -1 FE ] 4

*: do nothing
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T RN

4 66 33 66 11 55 42 33 22 11

O O 4 4 46 46 36 3 3 3
4 4 4 4
2 12 12 11 0 0

=~ QO —
A~ QO —

I 1 1
3 3 3
4

Remember only the shapes:

(R

P q
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This gives a vacillating tableau or
gently enhanced Sunday tableau
of length 2n and shape 0, viz., a se-
quence

0 =200 N =0)
of shapes such that

o )\Qi—l—l _ )\21' or )\22' 0O
o N2 = \2i~1 o \2i~1 4

(Always AL = "1 =0)
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Theorem. The above correspon-
dence is a bijection from partitions of
in| and vacillating tableaux of length
2n and shape (.

Note. Let P(n) be the partition
algebra (Martin, Doran, Wales, Halver-
son, Ram, . ..), a semisimple C-algebra
satistying

dim P(n) = B(n),

the number of partitions of [n] (Bell
number).

[mplicit in theory of P(n): Irreps I,
of P(n) indexed by A for which there is
a vacillating tableaux

D=2 AL N =

with A" = A, and dim I, is the number
of such vacillating tableaux.
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U = "add a square” operator
D I ”
= ‘remove a square  operator.

standard Young tableaux: U
oscillating tableaux: U + D
vacillating tableaux: (U + I)(D + I)
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Theorem. Let 7 € 11,, and
r— (0= 00 N =0).
Then cr(m) is the most number of rows
in any A*, and ne(r) is the most num-
ber of columns in any \'.
Compare: (*) if w € &,, and

w28 (P,Q),

then the number of columns of P is the
length of the longest increasing subse-
quence of w (easy), and the number of
rows of P is the length of the longest
decreasing subsequence of w (harder).

In fact, proof of above theorem uses

().
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Corollary to previous theorem:

Theorem. .fn,S,T(iv J) = fn,S,T(jv i)
Proof. Let
m— AN A
7= (AN, ).

Then cr(r) = ne(n’), ne(n) = cr(n’),
S(m) = S(x"), T(rw) = T(x), etc. O
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Enumeration of k-noncrossing
matchings (or nestings).

Recall: The number of matchings M
on [2n] with no crossings, i.e., cr(M) =
1, (or with no nestings) is Cy, = %H (27?

N——"

What about the number with cr(M)
k?

Let M — V., where V is a vacil-
lating tableau. Remove all steps that
do nothing. We obtain an oscillating
tableau

0 =p'put,. " =0)
of length 2n and shape 0, i.e.,

9 . .
MOIM":@, /LZ—I_l:/LZjZD.

VAN
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This gives a (well-known) bijection be-
tween matchings on |2n] and oscillating
tableaux of length 2n and shape 0.

cr(M) < ke lu) <kVi

Regard po = (p1, ..., ug) € NF.

Corollary. The number fr.(n) of
matchings M on |2n] with cv(M) <
k 1s the number of lattice paths of
length 2n from O to 0 n the region
Cpn={(ar,...,ap) €NV :a; <. <ap}
with steps +e; (e; = ith unit coordi-

nate vector).

Cn ® R>( is a fundamental chamber
for the Weyl group of type By.
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. applied Gessel-
Zeilberger reflection principle to
solve this lattice path problem (not know-
ing connection with matchings).

Theorem. Define
:C2n

Fi(z) =) filn) o)l

Then
k
Fk(CC) = det {]’Z_]’@CC) - ]Z'+j<2£lj‘) el
where
xm+2j
1, (2x) =
m(22) il(m + j5)!

720

(hyperbolic Bessel function of the
first kind of order m ).
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Example. k = 1 (noncrossing match-

ings):
Fi(z) = Iy(2z) —2f2(23?)
= ZCJ%
j=>0
Compare:

up(n) = #{w € &, : longest increasing
subsequence of length < k}.

Z uk(n)x— = det []Z-_j(Qx)] szl :

n!2 )

Many similar formulas involving RSK
for classical groups.
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gj,k(n) = #{matchings M on [2n/,
cr(M) < 7, ne(M) < k}

Now

gipn) =#{0 =" ... N =0) -

AN =N +o N Cjxk rectangle},

a walk on the Hasse diagram H(j, k)
of

L(g,k) :={X Cj X k rectangle},

ordered by inclusion.
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A = adjacency matrix of H(j, k)
Ag = adjacency matrix of H(j, k) — {0}.

Transter-matrix method =

det(I — xAp)
. 2n _ 0
2 9T = Ty
n>0

Conjecture. det(I — xA) factors
into polynomials of “small” degree over

Q.
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Example. j =2, k =5:
det(I — zA) = (1—227)(1 — 4a” + 22%)
(1—8z%+8z%)(1—82%+82% —22%)
(1 — 8% — 87 — 2%
7 =k=23:
det(I—2A) = (1—z)(1+2)(142—9z°—z°)
(1—z—92°+27)(1—z—22°+1°)?
(1+xz —22° — 1°)°
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Variations. Can modify the insertion-
deletion algorithm for vacillating tableaux
so that:

e [solated points can belong to a nest-
ng.

e Arcs touching at their endpoints can
be part of a crossing.
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