A Survey of Parking Functions

Richard P. Stanley
U. Miami & M.I.T.

November 24, 2018
A parking scenario

\[n \quad \ldots \quad 2 \quad 1 \]

\[a_1 \quad a_2 \quad \ldots \quad a_n \]
A parking scenario
Parking functions

Car C_i prefers space a_i. If a_i is occupied, then C_i takes the next available space. We call (a_1, \ldots, a_n) a parking function (of length n) if all cars can park.
Small examples

\[n = 2 \]: 11 12 21

\[n = 3 \]: 111 112 121 211 113 131 311 122 212 221 123 132 213 231 312 321
Easy: Let $\alpha = (a_1, \ldots, a_n) \in \mathbb{P}^n$. Let $b_1 \leq b_2 \leq \cdots \leq b_n$ be the increasing rearrangement of α. Then α is a parking function if and only if $b_i \leq i$.

Corollary. Every permutation of the entries of a parking function is also a parking function.
Theorem (Pyke, 1959; Konheim and Weiss, 1966). Let $f(n)$ be the number of parking functions of length n. Then $f(n) = (n + 1)^{n-1}$.

Proof (Pollak, c. 1974). Add an additional space $n + 1$, and arrange the spaces in a circle. Allow $n + 1$ also as a preferred space.
Pollak’s proof

\[a_1, a_2, \ldots, a_n \]
Conclusion of Pollak’s proof

Now all cars can park, and there will be one empty space. α is a parking function \iff if the empty space is $n+1$. If $\alpha = (a_1, \ldots, a_n)$ leads to car C_i parking at space p_i, then $(a_1 + j, \ldots, a_n + j)$ (modulo $n+1$) will lead to car C_i parking at space $p_i + j$. Hence exactly one of the vectors

$$(a_1 + i, a_2 + i, \ldots, a_n + i) \pmod{n+1}$$

is a parking function, so

$$f(n) = \frac{(n+1)^n}{n+1} = (n+1)^{n-1}.$$
Definition (I. Gessel). A parking function is **prime** if it remains a parking function when we delete a 1 from it.

Note. A sequence $b_1 \leq b_2 \leq \cdots \leq b_n$ is an increasing parking function if and only if $1 \leq b_1 \leq \cdots \leq b_n$ is an increasing prime parking function.
Factorization of increasing PF’s

<table>
<thead>
<tr>
<th></th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>7</td>
<td>8</td>
<td>8</td>
<td>9</td>
</tr>
</tbody>
</table>
Factorization of increasing PF’s

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>7</td>
<td>8</td>
<td>8</td>
<td>9</td>
<td>10</td>
</tr>
</tbody>
</table>
Factorization of increasing PF’s

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>7</td>
<td>8</td>
<td>8</td>
<td>9</td>
<td>10</td>
</tr>
</tbody>
</table>

→ (1, 1), (1, 1, 2, 2), (1), (1, 1, 2, 3)
Factorization of increasing PF’s

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>7</td>
<td>8</td>
<td>8</td>
<td>9</td>
<td>10</td>
</tr>
</tbody>
</table>

→ (1, 1), (1, 1, 2, 2), (1), (1, 1, 2, 3)

$p(n)$: number of prime parking functions of length n

$$\sum_{n \geq 0} (n + 1)^{n-1} \frac{x^n}{n!} = \frac{1}{1 - \sum_{n \geq 1} p(n) \frac{x^n}{n!}}$$
Factorization of increasing PF’s

\[
\begin{array}{cccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
1 & 1 & 3 & 3 & 4 & 4 & 7 & 8 \\
\end{array}
\]

→ (1, 1), (1, 1, 2, 2), (1), (1, 1, 2, 3)

p(n): number of prime parking functions of length \(n\)

\[
\sum_{n \geq 0} (n + 1)^{n-1} \frac{x^n}{n!} = \frac{1}{1 - \sum_{n \geq 1} p(n) \frac{x^n}{n!}}
\]

Corollary. \(p(n) = (n - 1)^{n-1}\)
Factorization of increasing PF’s

\[
\begin{array}{cccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
1 & 1 & 3 & 3 & 4 & 4 & 7 & 8 \\
\end{array}
\]

\[
\rightarrow (1, 1), (1, 1, 2, 2), (1), (1, 1, 2, 3)
\]

\[p(n): \text{number of prime parking functions of length } n\]

\[
\sum_{n \geq 0} (n + 1)^{n-1} \frac{x^n}{n!} = \frac{1}{1 - \sum_{n \geq 1} p(n) \frac{x^n}{n!}}
\]

Corollary. \(p(n) = (n - 1)^{n-1} \)

Exercise. Find a “parking” proof.
Forests

Let F be a rooted forest on the vertex set $\{1, \ldots, n\}$.

Theorem (Sylvester-Borchardt-Cayley). The number of such forests is $(n + 1)^{n-1}$.
The case $n = 3$
A bijection between forests and parking functions

\[\begin{array}{cccccccccccc}
1 & 2 & 5 & 6 & 4 & 1 & 7 & 9 & 3 & 8 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
4 & 1 & 6 & 2 & 1 & 1 & 4 & 6 & 4 & & & & & & & & & \\
\end{array} \]
Inversions

An inversion in F is a pair (i, j) so that $i > j$ and i lies on the path from j to the root.

$$\text{inv}(F) = \#(\text{inversions of } F)$$
Inversions

An inversion in F is a pair (i, j) so that $i > j$ and i lies on the path from j to the root.

$$\text{inv}(F) = \#(\text{inversions of } F)$$

Inversions:

$(5, 4), (5, 2), (12, 4), (12, 8), (3, 1), (10, 1), (10, 6), (10, 9)$

$$\text{inv}(F) = 8$$
The inversion enumerator

Let

\[I_n(q) = \sum_F q^{\text{inv}(F)}, \]

summed over all forests \(F \) with vertex set \(\{1, \ldots, n\} \). E.g.,

\[
\begin{align*}
I_1(q) &= 1 \\
I_2(q) &= 2 + q \\
I_3(q) &= 6 + 6q + 3q^2 + q^3
\end{align*}
\]
The inversion enumerator

Let

\[I_n(q) = \sum_F q^{\text{inv}(F)}, \]

summed over all forests \(F \) with vertex set \(\{1, \ldots, n\} \). E.g.,

\[I_1(q) = 1 \]
\[I_2(q) = 2 + q \]
\[I_3(q) = 6 + 6q + 3q^2 + q^3 \]

Theorem (Mallows-Riordan 1968, Gessel-Wang 1979) We have

\[I_n(1 + q) = \sum_G q^{e(G) - n}, \]

where \(G \) ranges over all connected graphs (without loops or multiple edges) on \(n + 1 \) labelled vertices, and where \(e(G) \) denotes the number of edges of \(G \).
Corollary.

\[
\sum_{n \geq 0} I_n(q)(q - 1)^n \frac{x^n}{n!} = \frac{\sum_{n \geq 0} q^{\binom{n+1}{2}} \frac{x^n}{n!}}{\sum_{n \geq 0} q^{\binom{n}{2}} \frac{x^n}{n!}}
\]
Connection with parking functions

Theorem (Kreweras, 1980) We have

\[q^n \binom{n}{2} I_n(1/q) = \sum_{(a_1, \ldots, a_n)} q^{a_1 + \cdots + a_n}, \]

where \((a_1, \ldots, a_n)\) ranges over all parking functions of length \(n\).
Connection with parking functions

Theorem *(Kreweras, 1980)* We have

\[q^{n \choose 2} I_n(1/q) = \sum_{(a_1, \ldots, a_n)} q^{a_1 + \cdots + a_n}, \]

where \((a_1, \ldots, a_n)\) ranges over all parking functions of length \(n\).

Note. The earlier bijection between forests and parking functions does not send the number of inversions to the sum of the terms. Such a bijection is more complicated.
The Shi arrangement: background

Braid arrangement \mathcal{B}_n: the set of hyperplanes

$$x_i - x_j = 0, \ 1 \leq i < j \leq n,$$

in \mathbb{R}^n.

$$\mathcal{R} = \text{set of regions of } \mathcal{B}_n$$

$$\# \mathcal{R} = ??$$
Braid arrangement \mathcal{B}_n: the set of hyperplanes

$$x_i - x_j = 0, \quad 1 \leq i < j \leq n,$$

in \mathbb{R}^n.

- $\mathcal{R} = \text{set of regions of } \mathcal{B}_n$
- $\#\mathcal{R} = n!$
The Shi arrangement: background

Braid arrangement \mathcal{B}_n: the set of hyperplanes

\[x_i - x_j = 0, \quad 1 \leq i < j \leq n, \]

in \mathbb{R}^n.

\[\mathcal{R} = \text{set of regions of } \mathcal{B}_n \]

\[\#\mathcal{R} = n! \]

To specify a region, we must specify for each $i < j$ whether $x_i < x_j$ or $x_i > x_j$. Hence the number of regions is the number of ways to linearly order x_1, \ldots, x_n.
Labeling the regions

Let R_0 be the base region

$$R_0 : x_1 > x_2 > \cdots > x_n.$$
Labeling the regions

Let R_0 be the base region

$$R_0 : x_1 > x_2 > \cdots > x_n.$$

Label R_0 with

$$\lambda(R_0) = (1, 1, \ldots, 1) \in \mathbb{Z}^n.$$

If R is labelled, R' is separated from R only by $x_i - x_j = 0$ ($i < j$), and R' is unlabelled, then set

$$\lambda(R') = \lambda(R) + e_i,$$

where e_i = ith unit coordinate vector.
The labeling rule

\[\lambda(R') = \lambda(R) + e_i \]

\[x_i = x_j \]

\[i < j \]
Description of labels

B_3

$x_1 = x_3$

$x_2 = x_3$

$x_1 = x_2$
Theorem (easy). The labels of B_n are the sequences $(b_1, \ldots, b_n) \in \mathbb{Z}^n$ such that $1 \leq b_i \leq n - i + 1$.
The Shi arrangement

Shi Jianyi
The Shi arrangement

Shi Jianyi (时俭益)
The Shi arrangement

Shi Jianyi (时俭益)

Shi arrangement S_n: the set of hyperplanes

$$x_i - x_j = 0, 1,$$

$$1 \leq i < j \leq n, \text{ in } \mathbb{R}^n.$$
The case $n = 3$
Labeling the regions

base region:

$$R_0 : \ x_n + 1 > x_1 > \cdots > x_n$$
Labeling the regions

base region:

\[R_0 : \quad x_n + 1 > x_1 > \cdots > x_n \]

\[\lambda(R_0) = (1, 1, \ldots, 1) \in \mathbb{Z}^n \]
The labeling rule

- If R is labelled, R' is separated from R only by $x_i - x_j = 0$ \((i < j)\), and R' is unlabelled, then set
 \[
 \lambda(R') = \lambda(R) + e_i.
 \]

- If R is labelled, R' is separated from R only by $x_i - x_j = 1$ \((i < j)\), and R' is unlabelled, then set
 \[
 \lambda(R') = \lambda(R) + e_j.
 \]
The labeling rule illustrated

\[\lambda(R') = \lambda(R) + e_i \]

\[x_i = x_j \]
\[i < j \]

\[\lambda(R') = \lambda(R) + e_j \]

\[x_i = x_j + 1 \]
\[i < j \]
The labeling for $n = 3$
Theorem (Pak, S.). The labels of S_n are the parking functions of length n (each occurring once).
Description of the labels

Theorem (Pak, S.). The labels of S_n are the parking functions of length n (each occurring once).

Corollary (Shi, 1986).

$$r(S_n) = (n + 1)^{n-1}$$
The parking function polytope

Given $x_1, \ldots, x_n \in \mathbb{R}_{\geq 0}$, define $P_n = P(x_1, \ldots, x_n) \subset \mathbb{R}^n$ by:

$$(y_1, \ldots, y_n) \in P_n \text{ if } 0 \leq y_i, \quad y_1 + \cdots + y_i \leq x_1 + \cdots + x_i$$

for $1 \leq i \leq n$.
The parking function polytope

Given $x_1, \ldots, x_n \in \mathbb{R}_{\geq 0}$, define $P_n = P(x_1, \ldots, x_n) \subset \mathbb{R}^n$ by:

$(y_1, \ldots, y_n) \in P_n$ if

$$0 \leq y_i, \quad y_1 + \cdots + y_i \leq x_1 + \cdots + x_i$$

for $1 \leq i \leq n$.

(also called Pitman-Stanley polytope)
Theorem. Let $x_1, \ldots, x_n \in \mathbb{R}_{\geq 0}$. Then

$$n! \, V(P_n) = \sum_{\text{parking functions}} x_{i_1} \cdots x_{i_n}.$$
Theorem. Let $x_1, \ldots, x_n \in \mathbb{R}_{\geq 0}$. Then

$$n! \, V(P_n) = \sum_{\text{parking functions}} x_{i_1} \cdots x_{i_n}.$$

Note. If each $x_i > 0$, then P_n has the combinatorial type of an n-cube.
The case $n = 2$

$x + y = a + b$

$x = a$
A **noncrossing partition** of \{1, 2, \ldots, n\} is a partition \{B_1, \ldots, B_k\} of \{1, \ldots, n\} such that

\[a < b < c < d, \quad a, c \in B_i, \quad b, d \in B_j \Rightarrow i = j. \]

\((B_i \neq \emptyset, \quad B_i \cap B_j = \emptyset \text{ if } i \neq j, \quad \bigcup B_i = \{1, \ldots, n\})\)
Number of noncrossing partitions
Theorem (H. W. Becker, 1948–49). The number of noncrossing partitions of \{1, \ldots, n\} is the Catalan number

\[C_n = \frac{1}{n+1} \binom{2n}{n}. \]
Catalan numbers

214 combinatorial interpretations:
Maximal chains of noncrossing partitions

A maximal chain m of noncrossing partitions of $\{1, \ldots, n+1\}$ is a sequence

$$\pi_0, \pi_1, \pi_2, \ldots, \pi_n$$

of noncrossing partitions of $\{1, \ldots, n+1\}$ such that π_i is obtained from π_{i-1} by merging two blocks into one. (Hence π_i has exactly $n + 1 - i$ blocks.)
A **maximal chain** \(m \) of noncrossing partitions of \(\{1, \ldots, n+1\} \) is a sequence

\[
\pi_0, \pi_1, \pi_2, \ldots, \pi_n
\]

of noncrossing partitions of \(\{1, \ldots, n+1\} \) such that \(\pi_i \) is obtained from \(\pi_{i-1} \) by merging two blocks into one. (Hence \(\pi_i \) has exactly \(n + 1 - i \) blocks.)

\[
125-34 \quad 12345
\]
A maximal chain labeling

Define:

\[\min B = \text{least element of } B \]

\[j < B : j < k \quad \forall k \in B. \]

Suppose \(\pi_i \) is obtained from \(\pi_{i-1} \) by merging together blocks \(B \) and \(B' \), with \(\min B < \min B' \). Define

\[\Lambda_i(m) = \max\{j \in B : j < B'\} \]

\[\Lambda(m) = (\Lambda_1(m), \ldots, \Lambda_n(m)). \]
A maximal chain labeling

Define:

\[
\min B = \text{least element of } B
\]

\[
j < B : j < k \quad \forall k \in B.
\]

Suppose \(\pi_i \) is obtained from \(\pi_{i-1} \) by merging together blocks \(B \) and \(B' \), with \(\min B < \min B' \). Define

\[
\Lambda_i(m) = \max\{j \in B : j < B'\}
\]

\[
\Lambda(m) = (\Lambda_1(m), \ldots, \Lambda_n(m)).
\]

For above example:

\[
1\,2\,3\,4\,5 \quad 1\,2\,5\,3\,4 \quad 1\,2\,5\,3\,4
\]

\[
125\,3\,4 \quad 12\,3\,4\,5
\]

we have

\[
\Lambda(m) = (2, 3, 1, 2).
\]
Theorem. Λ is a bijection between the maximal chains of noncrossing partitions of \{1, \ldots, n + 1\} and parking functions of length \(n\).
Labelings and parking functions

Theorem. \(\Lambda \) is a bijection between the maximal chains of noncrossing partitions of \(\{1, \ldots, n + 1\} \) and parking functions of length \(n \).

Corollary (Kreweras, 1972) The number of maximal chains of noncrossing partitions of \(\{1, \ldots, n + 1\} \) is

\[
(n + 1)^{n-1}.
\]
The symmetric group \mathfrak{S}_n acts on the set \mathcal{P}_n of all parking functions of length n by permuting coordinates.
Sample properties

- Multiplicity of trivial representation (number of orbits)
 \[C_n = \frac{1}{n+1} \binom{2n}{n} \]

 \(n = 3 : \) 111 211 221 311 321
Sample properties

- Multiplicity of trivial representation (number of orbits)
 \[C_n = \frac{1}{n+1} \binom{2n}{n} \]

 \[n = 3 : \quad 111 \quad 211 \quad 221 \quad 311 \quad 321 \]

- Number of elements of \(P_n \) fixed by \(w \in S_n \) (character value at \(w \)):
 \[\#\text{Fix}(w) = (n + 1)^{\#\text{cycles of } w} - 1 \]
Sample properties

- Multiplicity of trivial representation (number of orbits)
 \[C_n = \frac{1}{n+1} \binom{2n}{n} \]

 \[n = 3 : \quad 111 \ 211 \ 221 \ 311 \ 321 \]

- Number of elements of \(\mathcal{P}_n \) fixed by \(w \in S_n \) (character value at \(w \)):
 \[\#\text{Fix}(w) = (n + 1)(\# \text{cycles of } w) - 1 \]

- Multiplicity of the irreducible representation indexed by \(\lambda \vdash n \):
 \[\frac{1}{n+1}s_{\lambda}(1^{n+1}) \]
The group \mathfrak{S}_n acts on $R = \mathbb{C}[x_1, \ldots, x_n]$ by permuting variables, i.e., $w \cdot x_i = x_{w(i)}$. Let

$$R^{\mathfrak{S}_n} = \{ f \in R : w \cdot f = f \text{ for all } w \in \mathfrak{S}_n \}.$$
The group \mathfrak{S}_n acts on $R = \mathbb{C}[x_1, \ldots, x_n]$ by permuting variables, i.e., $w \cdot x_i = x_{w(i)}$. Let

$$R^{\mathfrak{S}_n} = \{ f \in R : w \cdot f = f \text{ for all } w \in \mathfrak{S}_n \}.$$

Well-known:

$$R^{\mathfrak{S}_n} = \mathbb{C}[e_1, \ldots, e_n],$$

where

$$e_k = \sum_{1 \leq i_1 < i_2 < \cdots < i_k \leq n} x_{i_1} x_{i_2} \cdots x_{i_k}.$$
The coinvariant algebra

\(R^\mathfrak{S}_n^+ \): symmetric functions with 0 constant term

\((\text{irrelevant ideal of } R^\mathfrak{S}_n)\)

\[D \coloneqq R / \left(R^\mathfrak{S}_n^+ \right) = R / (e_1, \ldots, e_n). \]

Then \(\dim D = n! \), and \(\mathfrak{S}_n \) acts on \(D \) according to the regular representation.
Now let \mathfrak{S}_n act **diagonally** on

$$R = \mathbb{C}[x_1, \ldots, x_n, y_1, \ldots, y_n],$$

i.e,

$$w \cdot x_i = x_{w(i)}, \quad w \cdot y_i = y_{w(i)}.$$

As before, let

$$R^{\mathfrak{S}_n} = \{ f \in R : w \cdot f = f \text{ for all } w \in \mathfrak{S}_n \}$$

$$D = R / \left(R^{\mathfrak{S}_n} \right).$$
Haiman’s theorem

Theorem (Haiman, 1994, 2001). \(\dim D = (n + 1)^{n-1} \), and the action of \(\mathfrak{S}_n \) on \(D \) is isomorphic to the action on \(\mathcal{P}_n \), tensored with the sign representation.
Haiman’s theorem

Theorem (Haiman, 1994, 2001). \(\dim D = (n + 1)^{n-1} \), and the action of \(\mathfrak{S}_n \) on \(D \) is isomorphic to the action on \(\mathcal{P}_n \), tensored with the sign representation.

Connections with Macdonald polynomials, Hilbert scheme of points in the plane, etc.
The last slide
The last slide

Darn!
That's the end...