DEF. (1) a_0, \ldots, a_n is **unimodal** if $a_0 \le a_1 \le \cdots \le a_j \ge a_{j+1} \ge \cdots \ge a_n$ for some j.

(2) log-concave if

$$a_i^2 \ge a_{i-1}a_{i+1}$$
, for all i .

(3) **no internal zeros** if $a_i = 0 \Rightarrow$ either $a_1 = \cdots = a_{i-1} = 0$ or $a_{i+1} = \cdots = a_n = 0$.

Log-concave, NIZ, $a_i \ge 0 \Rightarrow \text{uni-modal}$.

Example.
$$\binom{n}{0}, \binom{n}{1}, \dots, \binom{n}{n}$$

I. REAL ZEROS

Theorem (Newton). Let

$$\gamma_1, \ldots, \gamma_n \in \mathbb{R}$$

and

$$P(x) = \prod (x + \gamma_i) = \sum a_i \binom{n}{i} x^i.$$

Then a_0, a_1, \ldots, a_n is log-concave.

Proof. $P^{(n-i-1)}(x)$ has real zeros

$$\Rightarrow Q(x) := x^{i+1} P^{(n-i-1)}(1/x)$$
 has real zeros $\Rightarrow Q^{(i-1)}(x)$ has real zeros.

But
$$Q^{(i-1)}(x) = \frac{n!}{2} (a_{i-1} + 2a_i x + a_{i+1} x^2)$$

 $\Rightarrow a_i^2 \ge a_{i-1} a_{i+1}. \quad \Box$

Example.

Hermite polynomials:

$$H_n(x) = \sum_{k=0}^{\lfloor n/2 \rfloor} \frac{(-1)^k n! (2x)^{n-2k}}{k! (n-2k)!}$$

$$H_n(x) = -e^{x^2} \frac{d}{dx} \left(e^{-x^2} H_{n-1}(x) \right).$$

By induction, $H_{n-1}(x)$ has n-1 real zeros. Since $e^{-x^2}H_{n-1}(x) \to 0$ as $x \to \infty$, it follow that $H_n(x)$ has n real zeros interlaced by the zeros of $H_{n-1}(x)$.

Example (Heilmann-Lieb, 1972). Let G be a graph with t_i *i*-sets of edges with no vertex in common (**matching** of size i). Then $\sum_i t_i x^i$ has only real zeros.

Theorem (Aissen-Schoenberg-Whitney, 1952) The polynomial $\sum_{i=0}^{n} a_i x^i$ has only real nonpositive zeros if and only if every minor of the following matrix is nonnegative:

$$\begin{bmatrix} a_0 & a_1 & a_2 & \cdots & a_n & 0 & \cdots \\ 0 & a_0 & a_1 & \cdots & a_{n-1} & a_n & \cdots \\ 0 & 0 & a_0 & \cdots & a_{n-2} & a_{n-1} & \cdots \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \end{bmatrix}$$

Let P be a finite poset with no induced $\mathbf{3} + \mathbf{1}$. Let c_i be the number of i-element chains of P.

Theorem. $\sum c_i x^i$ has only real zeros.

Conjecture (Neggers-S, c. 1970). Let P be a (finite) distributive lattice (a collection of sets closed under \cup and \cap , ordered by inclusion), with $\hat{0}$ and $\hat{1}$ removed. Then $\sum c_i x^i$ has only real zeros.

Example. If A is a (real) symmetric matrix, then every zero of det(I + xA) is real.

Corollary. Let G be a graph. Let a_i be the number of rooted spanning forests with i edges. Then $\sum a_i x^i$ has only real zeros.

Open for unrooted spanning forests.

II. ANALYTIC METHODS

Let p(n, k) be the number of partitions of n into k parts. E.g., p(7, 3) = 4:

$$5+1+1$$
, $4+2+1$, $3+3+1$, $3+2+2$.

$$\sum_{n\geq 0} p(n,k)x^n = \frac{x^k}{(1-x)(1-x^2)\cdots(1-x^k)}$$

$$\Rightarrow p(n,k) = \frac{1}{2\pi i} \oint \frac{s^{k-n-1} ds}{(1-s)(1-s^2)\cdots(1-s^k)}.$$

Theorem (Szekeres, 1954) For $n > N_0$, the sequence

$$p(n,1), p(n,2), \ldots, p(n,n)$$

is unimodal, with maximum at

$$k = c\sqrt{n}L + c^2\left(\frac{3}{2} + \frac{3}{2}L - \frac{1}{4}L^2\right) - \frac{1}{2}$$
$$+O\left(\frac{\log^4 n}{\sqrt{n}}\right)$$
$$c = \sqrt{6}/\pi, \qquad L = \log c\sqrt{n}.$$

Theorem (Entringer, 1968). The polynomial

$$(1+q)^2(1+q^2)^2\cdots(1+q^n)^2$$

has unimodal coefficients.

Theorem (Odlyzko-Richmond, 1980).

For "nice" a_1, a_2, \ldots , the polynomial

$$(1+q^{a_1})\cdots(1+q^{a_n})$$

has "almost" unimodal coefficients.

III. ALEKSANDROV-FENCHEL INEQUALITIES (1936–38)

Let K, L be convex bodies (nonempty compact convex sets) in \mathbb{R}^n , and let $x, y \geq 0$. Define the **Minkowski sum**

$$xK+yL = \{x\alpha+y\beta : \alpha \in K, \beta \in L\}.$$

Then there exist $V_i(K, L) \ge 0$, the (Minkowski) mixed volumes of K and L, satisfying

$$Vol(xK+yL) = \sum_{i=0}^{n} \binom{n}{i} V_i(K,L) x^{n-i} y^i.$$

Note
$$V_0 = Vol(K)$$
, $V_n = Vol(L)$.

Theorem.
$$V_i^2 \geq V_{i-1}V_{i+1}$$

Corollary. Let P be an n-element poset. Fix $x \in P$. Let N_i denote the number of order-preserving bijections (linear extensions)

$$f: P \to \{1, 2, \dots, n\}$$
 such that $f(x) = i$. Then

$$N_i^2 \ge N_{i-1}N_{i+1}.$$

Proof. Find $K, L \subset \mathbb{R}^{n-1}$ such that $V_i(K, L) = N_{i+1}$. \square

$$(N_1,\ldots,N_5)=(0,1,2,2,2)$$

Variation (Kahn-Saks, 1984). Fix x < y in P. Let M_i be the number of linear extensions f with f(y) - f(x) = i. Then $M_i^2 \ge M_{i-1}M_{i+1}$, $i \ge 1$.

Corollary. If P isn't a chain, then there exist $x, y \in P$ such that the probability P(x < y) that x < y in a linear extension of P satisfies

$$\frac{3}{11} \le P(x < y) \le \frac{8}{11}.$$

Best bound to date (Brightwell-Felsner-Trotter, 1995): $\frac{5+\sqrt{5}}{10}$ (instead of 3/11)

Conjectured bound: 1/3

IV. REPRESENTATIONS OF $SL(2, \mathbb{C})$ AND $\mathfrak{sl}(2, \mathbb{C})$

Let

$$G = \mathrm{SL}(2, \mathbb{C}) = \{2 \times 2 \text{ complex }$$

matrices with determinant 1 $\}$.

Let $A \in G$, with eigenvalues θ, θ^{-1} . For all $n \geq 0$, there is a unique irreducible (polynomial) representation

$$\varphi_n: G \to \mathrm{GL}(V_{n+1})$$

of dimension n+1, and $\varphi_n(A)$ has eigenvalues

$$\theta^{-n}, \theta^{-n+2}, \theta^{-n+4}, \dots, \theta^n.$$

Every representation is a direct sum of irreducibles.

If $\varphi : G \to \operatorname{GL}(V)$ is any (finite-dimensional) representation, then

$$\operatorname{tr} \varphi(A) = \sum_{i \in \mathbb{Z}} a_i \theta^i, \quad a_i = a_{-i}$$

$$= \sum_{i \geq 0} (a_i - a_{i-2}) \left(\theta^{-i} + \theta^{-i+2} + \dots + \theta^i \right)$$

$$\Rightarrow a_i \geq a_{i-2}$$

$$\Rightarrow \{a_{2i}\}, \{a_{2i+1}\} \text{ are } \mathbf{unimodal}$$
(and symmetric)

(Completely analogous construction for the Lie algebra $\mathfrak{sl}(2,\mathbb{C})$.)

Example.
$$S^{k}(\varphi_{n})$$
, eigenvalues
$$(\theta^{-n})^{t_{0}} \left(\theta^{-n+2}\right)^{t_{1}} \cdots (\theta^{n})^{t_{n}},$$

$$t_{0} + t_{1} + \cdots + t_{n} = k$$

$$\Rightarrow \operatorname{tr} \varphi(A) =$$

$$\sum_{t_{0} + \cdots + t_{n} = k} \theta^{t_{0}(-n) + t_{1}(-n+2) + \cdots + t_{n}n}$$

$$t_{0} + \cdots + t_{n} = k$$

$$= \theta^{-nk} \begin{bmatrix} n + k \\ k \end{bmatrix}_{\theta^{2}}$$

$$= \theta^{-nk} \sum_{i \geq 0} P_{i}(n, k) \theta^{2i},$$

where $P_i(n, k)$ is the number of partitions of i with $\leq k$ parts, largest part $\leq n$.

$$\Rightarrow P_0(n,k),\ldots,P_{nk}(n,k)$$

is **unimodal** (Sylvester, 1878).

Combinatorial proof by K. O'Hara, 1990.

$$\sum_{i} P_{i}(3,2)q^{i} = 1 + q + 2q^{2} + 2q^{3} + 2q^{4} + q^{5} + q^{6}$$

$$= \begin{bmatrix} 5 \\ 2 \end{bmatrix} = \frac{(1 - q^{5})(1 - q^{4})}{(1 - q^{2})(1 - q)}$$

Superanalogue. Replace $\mathfrak{sl}(2,\mathbb{C})$ with the (five-dimensional) Lie superalgebra $\mathfrak{osp}(1,2)$. One irreducible representation φ_n of each dimension 2n+1. If $A \in \mathfrak{osp}(1,2)$ has eigenvalues

$$\theta^{-2}, \theta^{-1}, 1, \theta, \theta^2,$$

then φ_n has eigenvalues $\theta^{-n}, \theta^{-n+1}, \dots, \theta^n$.

Example. $S^k(\varphi_n)$ leads to unimodality of

$$Q_0(2n,k), Q_1(2n,k), \dots, Q_{2nk}(2n,k),$$

where $Q_i(2n, k)$ is the number of partitions of i with largest part $\leq 2n$, at most k parts, and no repeated odd part.

Example. Let \mathfrak{g} be a finite-dimensional complex semisimple Lie algebra. Then there exists a **principal** $\mathfrak{sl}(2,\mathbb{C}) \subset \mathfrak{g}$. A representation $\varphi : \mathfrak{g} \to \mathfrak{gl}(V)$ restricts to

$$\varphi:\mathfrak{sl}(2,\mathbb{C})\to\mathfrak{gl}(V).$$

Example. $\mathfrak{g} = \mathfrak{so}(2n+1,\mathbb{C}), \ \varphi =$ spin representation:

$$\Rightarrow (1+q)(1+q^2)\cdots(1+q^n)$$

has unimodal coefficients (Dynkin 1950, Hughes 1977). (No combinatorial proof known.)

Example. Let X be an irreducible n-dimensional complex projective variety with finite quotient singularities (e.g., smooth).

$$\beta_i = \dim_{\mathbb{C}} H^i(X; \mathbb{C})$$

 $\mathfrak{sl}(2,\mathbb{C})$ acts on $H^*(X;\mathbb{C})$, and $H^i(X;\mathbb{C})$ is a weight space with weight i-N

 $\Rightarrow \{\beta_{2i}\}, \{\beta_{2i+1}\}$ are **unimodal**.

Example. $X = G_k(\mathbb{C}^{n+k})$ (Grassmannian). Then

$$\sum \beta_i \theta^i = \begin{bmatrix} n+k \\ k \end{bmatrix}_{\theta^2}.$$

Example. Let \mathcal{P} be a simplicial polytope, with f_i *i*-dimensional faces (with $f_{-1} = 0$). E.g., for the octahedron,

$$f_0 = 6$$
, $f_1 = 12$, $f_2 = 8$.

Define the h-vector (h_0, h_1, \ldots, h_d) of \mathcal{P} by

$$\sum_{i=0}^{d} f_{i-1}(x-1)^{d-i} = \sum_{i=0}^{d} h_i x^{d-i}.$$

E.g., for the octahedron,

$$(x-1)^3 + 6(x-1)^2 + 12(x-1) + 8 = x^3 + 3x^2 + 3x + 1.$$

Dehn-Sommerville equations (1905,1927):

$$h_i = h_{d-i}$$

GLBC (McMullen-Walkup, 1971):

$$h_0 \le h_1 \le \dots \le h_{\lfloor d/2 \rfloor}$$

(Generalized Lower Bound Conjecture)

Let $X(\mathcal{P})$ be the toric variety corresponding to \mathcal{P} . Then \mathcal{P} is an irreducible complex projective variety with finite quotient singularities, and

$$\beta_j(X(\mathcal{P})) = \begin{cases} h_i, & \text{if } j = 2i \\ 0, & \text{if } j \text{ is odd.} \end{cases}$$
$$\Rightarrow \text{GLBC.}$$

Hessenberg varieties. Fix $1 \leq$

$$p \le n - 1$$
. For $w = w_1 \cdots w_n \in \mathfrak{S}_n$, let

$$\mathbf{d_p}(\mathbf{w}) = \#\{(i, j) : w_i > w_j, \ 1 \le j - i \le p\}.$$

$$d_1(w) = \#\mathbf{descents} \text{ of } w$$

 $d_{p-1}(w) = \#inversions \text{ of } w.$

Let

$$A_p(n,k) = \#\{w \in \mathfrak{S}_n : d_p(w) = k\}.$$

Theorem (de Mari-Shayman, 1987).

The sequence

$$A_p(n,0), A_p(n,1), \dots, A_p(n,p(2n-p-1)/2)$$
 is **unimodal**.

Proof. Construct a "generalized Hessenberg variety" X_{np} satisfying $\beta_{2k}(X_{np}) = A_p(n,k)$. \square

V. REPRESENTATIONS OF FINITE GROUPS

Let #S = n and $G \subseteq \mathfrak{S}(S)$, the group of all permutations of S. Let \hat{G} denote the set of all (ordinary) irreducible characters of G. Let

$$\chi_i = \text{ character of } G \text{ on } \binom{S}{i},$$

where
$$\binom{S}{i} = \{T \subseteq S : \#T = i\}.$$

Note: $\chi_i = \chi_{n-i}$.

Write

$$\chi_i = \sum_{\chi \in \hat{G}} m_i(\chi) \chi.$$

Theorem. For all $\chi \in \hat{G}$, the sequence

$$m_0(\chi), m_1(\chi), \ldots, m_n(\chi)$$

is symmetric and unimodal.

Proof. Let $0 \le i < n/2$. Define

$$\varphi: \mathbb{C}\binom{S}{i} \to \mathbb{C}\binom{S}{i+1}$$

by

$$\varphi(T) = \sum_{\substack{T' \supset T \\ \#T' = i+1}} T'.$$

Easy: φ commutes with the action of G.

Not difficult: φ is injective (one-to-one).

$$\Rightarrow \chi_i \leq \chi_{i+1}$$
. \square

Corollary (Livingstone and Wagner, 1965). $(\chi = 1)$ Let

$$f_i = \left| \binom{S}{i} / G \right|,$$

the number of orbits of G acting on $\binom{S}{i}$. Then $f_i = f_{n-i}$ and f_0, f_1, \ldots, f_n is unimodal.

Corollary. Let $N_p(q)$ be the number of nonisomorphic graphs (without loops or multiple edges) with p vertices and q edges. Then the sequence

$$N_p(0), N_p(1), \dots, N_p(p(p-1)/2)$$

is symmetric and unimodal.

$$(N_4(0),\ldots,N_4(6))=(1,1,2,3,2,1,1)$$

Example.
$$S = \{1, ..., r\} \times \{1, ..., s\}$$

$$G = \mathfrak{S}_r \wr \mathfrak{S}_s$$

$$\Rightarrow \sum f_i q^i = \begin{bmatrix} r+s \\ r \end{bmatrix}_q$$

REFERENCES (incomplete)

- 1. F. Brenti,
- 2. G. R. Brightwell, S. Felsner, and W. T. Trotter, Balancing pairs and the cross product conjecture, *Order* **12** (1995), 327–349.
- 3. F. de Mari and M. A. Shayman,
- 4. E. B. Dynkin, Some properties of the weight system
- 5. Hughes,
- 6. J. Kahn and M. Saks, Balancing poset extensions, Order 1 (1984), 113–126.
- 7. D. Livingstone and A. Wagner, Transitivity of finite permutation groups on unordered sets, *Math. Z.* **90** (1965), 393–403.
- 8. K. M. O'Hara, Unimodality of Gaussian coefficients: a constructive proof, *J. Combinatorial Theory* (A) **53** (1990), 29–52.
- 9. R. Stanley, The number of faces of a simplicial convex polytope, *Advances in Math.* **35** (1980), 236–238.
- 10. R. Stanley, Two combinatorial applications of the Aleksandrov-Fenchel inequalities, J. Combinatorial Theory (A) **31** (1981), 56–65.
- 11. R. Stanley, Unimodality and Lie superalgebras, Studies in Applied Math. 72 (1985), 263–281.
- 12. R. Stanley, Unimodal and log-concave sequences in algebra, combinatorics, and geometry, in *Graph Theory and Its Applications: East and West*, Ann. New York Acad. Sci., vol. 576, 1989, pp. 500–535.
- 13. D. Zeilberger, Kathy O'Hara's constructive proof of the unimodality of the Gaussian polynomials, *Amer. Math. Monthly* **96** (1989), 590–602.