DEF. (1) ag, ..., an is unimodal if
ap < ap << a5 2 G541 200 2 ap
for some 7.

(2) log-concave if

a? > a;_1a;11, tor all .
(3) no internal zeros if ¢; = 0 =

either a1 = -+ = a;,_1 = 0 or
aHl:---:an:O.

Log-concave, NIZ, a;, > 0 = uni-
modal.

Example. (p). (7)., (»)



[. REAL ZEROS

Theorem (Newton). Let

Y15+ € R
and
n .
Pa) =[x +7) = Z()x
Then ag, aq, ..., ay 1s log-concave.

Proof. P"~i=1)(z) has real zeros
= Q(z) == 2/ TP =1=1)(1 /1) has real zeros
= Q<i_1>(x) has real zeros.
But QU—(z) = %’ (a;—1 + 2a;x + a;117?%)

= a; > a;_1a;11. O



Example.
Hermite polynomials:

2 Y ()2

H(w)= ) _ kKl (n — 2K)

k=0

Hy(z) = —er% (6_3’2 n—l(ﬂ?)) .

By induction, H,,_1(x) has n — 1 real
zeros. Since e~ % n-1(x) > 0asx —
00, it follow that Hy(x) has n real zeros

interlaced by the zeros of H,,_1(x).









Example (Heilmann-Lieb, 1972). Let
(G be a graph with ¢; i-sets of edges
with no vertex in common (matching
of size 7). Then > . ¢;x* has only real
ZET0S.

Theorem (Aissen-Schoenberg-Whitney,
1952) The polynomial S I, a;x" has
only real nonpositive zeros if and only
if every manor of the following matrix
1S nonnegative:

agay ag -+ ap 0
0 apa; -+ ap_1 apn
O O a/o o o o a/n_2 a/n—]_ o o o




Let P be a finite poset with no in-
duced 3 +1. Let ¢; be the number of
1-element chains of P.

A

C,=1
C,=5
C,=5
Cy=1

Theorem. ) c;z" has only real ze-
ros.



Conjecture (Neggers-S, ¢. 1970). Let
P be a (finite) distributive lattice (a
collection of sets closed under U and
N, ordered by inclusion), with 0 and 1
removed. Then > c;x' has only real
2€T08.

e abcd
abde.  “mabc
ab bc
a._ b
o
c,=1
C,=06
c,=10

C,=9



Example. If A is a (real) symmetric
matrix, then every zero of det(I + xA)
1S real.

Corollary. Let G be a graph. Let

a; be the number of rooted spanning
forests with v edges. Then ) a;x" has
only real zeros.

Open for unrooted spanning forests.



[I. ANALYTIC METHODS

Let p(n, k) be the number of parti-
tions of n into k parts. E.g., p(7,3) = 4:

54+1+41, 44241, 34341, 3+2+2.

k

Zp(n, k)ax' = ’

>0 (1—2)(1 —22)---(1 —zF)

1 sh=n=1gg
= pln.k) = %}'{(1 —5)(1—2) - (1—sk)

10



Theorem (Szekeres, 1954) For n >
Ny, the sequence

p(n,1),p(n,2),...,p(n,n)

1s unimodal, with maximum at

3 3. 1 1
k=cy/nL+c¢ (S+L—>L%)—=
cv/nL + ¢ (2+2 1 ) 5

L0 (105%7@)

c =6/, L = log cy/n.

11



Theorem (Entringer, 1968). The poly-
nomial

(1+9)*(1+¢*)% - (1+¢")
has unimodal coefficients.

Theorem (Odlyzko-Richmond, 1980).
For “nice” ay, ay, ..., the polynomial

(T4+¢") - (14 ¢")

has “almost” unimodal coeflicients.

12



[1I. ALEKSANDROV-FENCHEL
INEQUALITIES (1936-38)

Let K, L be convex bodies (nonempty
compact convex sets) in R" and let
x,y > 0. Define the Minkowski sum

rK+yL ={xa+yl : a € K, g € L}.

Then there exist V;(K, L) > 0, the (IMin-
kowski) mixed volumes of K and
L, satistying

n
n _. .
Vol(z K4yL) = z% (Z) Vi(K, L)z Yy
1=
Note Vi = Vol(K), V;, = Vol(L).

Theorem. ‘/;2 > Vi_1Vii

13



Corollary. Let P be an n-element
poset. Fix x € P. Let N; denote the
number of order-preserving bijections
(linear extensions)

f:P—{1,2,....,n}
such that f(x) =1. Then
N; > N;_1Nij1.

Proof. Find K, L c R" ! such that
%(Ka L) — Ni—|—1° L]

14



(N, ...

12345
12354
12435
21345
21354
21435
24135

OO r~WOIA

,N5) =(0,1,2,2,2)

15



Variation (Kahn-Saks, 1984). Fix
r < yin P. Let M, be the number of
linear extensions f with f(y) — f(x) =
. Then ]\42-2 2 Mi—lMi+1a 1 Z 1.

Corollary. If P isn’t a chain, then
there exist x,y € P such that the
probability P(x < y) that z < y in
a linear extension of P satisfies

3 S
2 < p <=
g SPle<y =g

Best bound to date (Brightwell-Felsner-

5445
1

(instead of 3/11)

Trotter, 1995):

Conjectured bound: 1/3

16



IV. REPRESENTATIONS OF
SL(2,C) AND s[(2, C)

Let
G =SL(2,C) = {2 x 2 complex
matrices with determinant 1}.
Let A € G, with eigenvalues 6,61,

For all n > 0, there 1s a unique irre-
ducible (polynomial) representation

©n - G — GL(Vn—I—1>

of dimension n+1, and ¢, (A) has eigen-
values

(9_”, 9—724-27 9—724-47 o 7(972.

Every representation is a direct sum of
irreducibles.

17



If o : G — GL(V) is any (finite-
dimensional) representation, then

trp(A) = Z aiei, a; = a_;

i€z
= (ai—a;_2 (9_i+9_”2+---+9i)
1>0
= A 2 A2

= {a9;},{a9;;1} are unimodal

(and symmetric)

(Completely analogous construction for
the Lie algebra sl(2,C).)

18



Example. S¥(¢y,), eigenvalues

)
( tO (0 n+2) Al
to+t1+---+tph =~k
= tr go(A) —
Z gto(—n)+ti(—n+2)+-+tpn
tot+-+tn=~k

= 07" " Pi(n, k)6,

1>0

where Pj(n, k) is the number of parti-
tions of ¢ with < k parts, largest part
< n.

19



= By(n, k), ..., Py(n, k)
is unimodal (Sylvester, 1878).

Combinatorial proof by K. O’Hara, 1990.

1

1+q+2q2+2q3+2q4+q5+q6
) H a-Pi-gh
(1—¢*)(1—q)

20

2



Superanalogue. Replace sl(2,C)
with the (five-dimensional) Lie super-
algebra osp(1,2). Oneirreducible rep-
resentation ¢,, of each dimension 2n + 1.
If A € osp(1,2) has eigenvalues

07071, 1,0.6%,
then o, has eigenvalues 0", 0~ "+ . g7,

Example. S¥(p,,) leads to unimodal-
ity of

Qo(Zn, k), Q1(2n, k), e ank@n, k),

where Q;(2n, k) is the number of par-
titions of ¢+ with largest part < 2n, at
most k parts, and no repeated odd part.

21



Z Qi<47 2)(]7; —

1—|—q—|—2q2+2q3—|—3q4+2q5—|—2q6—|—q7+q8

bosons fermions

22



Example. Let g be a finite-dimensional
complex semisimple Lie algebra. Then
there exists a principal s[(2,C) C g.

A representation ¢ : g — gl(V) re-
stricts to

@ :sl(2,C) — gl(V).
Example. g = s0(2n+ 1,C), p =
spin representation:
= (1+q)(1+¢") - (1+¢")

has unimodal coefficients (Dynkin 1950,
Hughes 1977). (No combinatorial proof
known. )

23



Example. Let X be an irreducible
n-dimensional complex projective vari-
ety with finite quotient singularities (e.g.,
smooth).

B = dimg H'(X; C)

5((2,C) acts on H*(X; C), and H'(X; C)
1s a weight space with weight ¢ — NV

= {02}, {241} are unimodal.

24



Example. X = Gj(C""*) (Grass-

mannian). Then
. (n+k
0" = .
2.0 [ k ]92

Example. Let P be a simplicial poly-
tope, with f; ¢-dimensional faces (with
f—_1=0). E.g., for the octahedron,

fo=6, fi=12, fr=8

Define the h-vector (hq, hy, ..., hg) of
P by

d

d
Y ficale =1 =D "t
i=0

1=0
E.g., for the octahedron,

(2—1)%+6(z—1)>+12(z—1)+8 = 2°+3z°+3z+1.

25



Dehn-Sommerville equations (1905,1927):
hi = hq—

GLBC (McMullen-Walkup, 1971):
hp < hy < -+ < hygp)

(Generalized Lower Bound Con-
jecture)

26



Let X (P) be the toric variety corre-
sponding to P. Then P is an irreducible
complex projective variety with finite
quotient singularities, and

| by, ifg =2
Bi(X(P)) = { 0, if 7 is odd.
= GLBC.

27



Hessenberg varieties. Fix 1 <

p<n-—1 Forw=w; - -w, € Gy,
let

dplw) = {0, 7) = wi > wj, 1 < j=i < p}.
di(w) = #descents of w

dp—1(w) = #Finversions of w.

Let
Ap(n, k) = #{w € &), : dp(w) = k}.

Theorem (de Mari-Shayman, 1987).
The sequence

Ap(n,0), Ap(n, 1), ..., Ap(n, p(2n—p—1)/2)
is unimodal.

Proof. Construct a “generalized Hes-
senberg variety” Xy, satistying Gop.(Xnp) =
Ap(n, k). O

28



V. REPRESENTATIONS OF FINITE
GROUPS

Let #S = n and G C &(S), the
oroup of all permutations of S. Let
G denote the set of all (ordinary) ir-
reducible characters of GG. Let

S
Y; = character of G on ( ,),

[/

where (?) ={T CS : #T =1}.
Note: y;, = Xn—;.
Write
Xi= Y mi(x)x.

YeG

29



Theorem. For all y € G, the se-
quence

mo(x), m1(x); - - -, mn(x)
18 symmetric and unimodal.

Proof. Let 0 < ¢ < n/2. Define

wi@@)ﬁc(z‘fl)

o(T)y= > T

T'>T
HT!=i+1

Fasy: ¢ commutes with the action of

G.

by

Not difficult: ¢ is injective (one-to-
one).
= Xi < Xi+1- U

30



Corollary (Livingstone and Wagner,
1965). (x = 1) Let

fi = (f)/G

the number of orbits of G acting on

(}9) Then f; = fn—; and fo, f1,..., In

15 unimodal.

7

Corollary. Let Ny(q) be the num-
ber of nonisomorphic graphs (without
loops or multiple edges) with p ver-
tices and q edges. Then the sequence

Np(0), Np(1), ..., Np(p(p —1)/2)

1s symmetric and unimodal.

31



Pl Y Y
7.0 A

(N4(0),...,Ny(6)) =(1,1,2,3,2,1,1)




Example. S ={1,...,r}x{l,...

GZGTZGS

= fid = [T;rs]q

33



N =

10.

11.

12.

13.

A
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