Smith Normal Form and Combinatorics

Richard P. Stanley
Outline

Part I

- basics
- random matrices
Outline

Part I

- basics
- random matrices

Part II: symmetric functions

- \(\frac{\partial}{\partial p_1} p_1 \) (operator)
- Jacobi-Trudi specializations
A: \(n \times n \) matrix over commutative ring \(R \) (with 1)

Suppose there exist \(P, Q \in \text{GL}(n, R) \) such that

\[PAQ := B = \text{diag}(d_1, d_1d_2, \ldots d_1d_2 \cdots d_n), \]

where \(d_i \in R \). We then call \(B \) a Smith normal form (SNF) of \(A \).
Smith normal form

\[A : n \times n \] matrix over commutative ring \(R \) (with 1)

Suppose there exist \(P, Q \in \text{GL}(n, R) \) such that

\[
P A Q := B = \text{diag}(d_1, d_1 d_2, \ldots d_1 d_2 \cdots d_n),
\]

where \(d_i \in R \). We then call \(B \) a **Smith normal form (SNF)** of \(A \).

NOTE. (1) Can extend to \(m \times n \).

(2) unit \cdot \det(A) = \det(B) = d_1^n d_2^{n-1} \cdots d_n.

Thus SNF is a refinement of \(\det \).
Row and column operations

Can put a matrix into SNF by the following operations.

- Add a multiple of a row to another row.
- Add a multiple of a column to another column.
- Multiply a row or column by a unit in \mathbb{R}.
Row and column operations

Can put a matrix into SNF by the following operations.

- Add a multiple of a row to another row.
- Add a multiple of a column to another column.
- Multiply a row or column by a unit in \mathbb{R}.

Over a field, SNF is row reduced echelon form (with all unit entries equal to 1).
PIR: principal ideal ring, e.g., \mathbb{Z}, $K[x]$, $\mathbb{Z}/m\mathbb{Z}$.

If R is a PIR then A has a unique SNF up to units.
Existence of SNF

PIR: principal ideal ring, e.g., \mathbb{Z}, $K[x]$, $\mathbb{Z}/m\mathbb{Z}$.

If R is a PIR then A has a unique SNF up to units.

Otherwise A “typically” does not have a SNF but may have one in special cases.
Not known in general for which rings R does every matrix over R have an SNF.
Not known in general for which rings R does every matrix over R have an SNF.

Necessary condition: R is a Bézout ring, i.e., every finitely generated ideal is principal.

Example. ring of entire functions and ring of all algebraic integers (not PIR’s)
Not known in general for which rings R does every matrix over R have an SNF.

Necessary condition: R is a Bézout ring, i.e., every finitely generated ideal is principal.

Example. ring of entire functions and ring of all algebraic integers (not PIR’s)

Open: every matrix over a Bézout domain has an SNF.
\mathbb{R}: a PID

A: an $n \times n$ matrix over \mathbb{R} with rows

$v_1, \ldots, v_n \in \mathbb{R}^n$

$\text{diag}(e_1, e_2, \ldots, e_n)$: SNF of A
Algebraic interpretation of SNF

\(R \): a PID

\(A \): an \(n \times n \) matrix over \(R \) with rows \(v_1, \ldots, v_n \in R^n \)

\(\text{diag}(e_1, e_2, \ldots, e_n) \): SNF of \(A \)

Theorem.

\[
R^n / (v_1, \ldots, v_n) \cong (R/e_1R) \oplus \cdots \oplus (R/e_nR).
\]
\mathbb{R}: a PID

A: an $n \times n$ matrix over \mathbb{R} with rows
$v_1, \ldots, v_n \in \mathbb{R}^n$

diag(e_1, e_2, \ldots, e_n): SNF of A

Theorem.

$$R^n/(v_1, \ldots, v_n) \cong (\mathbb{R}/e_1 \mathbb{R}) \oplus \cdots \oplus (\mathbb{R}/e_n \mathbb{R}).$$

$R^n/(v_1, \ldots, v_n)$: *(Kasteleyn)* cokernel of A
An explicit formula for SNF

\mathbb{R}: a PID

A: an $n \times n$ matrix over \mathbb{R} with $\det(A) \neq 0$

$\text{diag}(e_1, e_2, \ldots, e_n)$: SNF of A
A PID\(R \): an \(n \times n \) matrix over \(R \) with \(\det(A) \neq 0 \)
diag\((e_1, e_2, \ldots, e_n)\): SNF of \(A \)

Theorem. \(e_1 e_2 \cdots e_i \) is the gcd of all \(i \times i \) minors of \(A \).

Minor: determinant of a square submatrix.

Special case: \(e_1 \) is the gcd of all entries of \(A \).
An example

Reduced Laplacian matrix of K_4:

$$A = \begin{bmatrix}
3 & -1 & -1 \\
-1 & 3 & -1 \\
-1 & -1 & 3
\end{bmatrix}$$
An example

Reduced Laplacian matrix of K_4:

$$A = \begin{bmatrix} 3 & -1 & -1 \\ -1 & 3 & -1 \\ -1 & -1 & 3 \end{bmatrix}$$

Matrix-tree theorem $\implies \det(A) = 16$, the number of spanning trees of K_4.
An example

Reduced Laplacian matrix of K_4:

$$A = \begin{bmatrix}
3 & -1 & -1 \\
-1 & 3 & -1 \\
-1 & -1 & 3
\end{bmatrix}$$

Matrix-tree theorem $\implies \det(A) = 16$, the number of spanning trees of K_4.

What about SNF?
An example (continued)

\[
\begin{bmatrix}
3 & -1 & -1 \\
-1 & 3 & -1 \\
-1 & -1 & 3
\end{bmatrix} \rightarrow
\begin{bmatrix}
0 & 0 & -1 \\
-4 & 4 & -1 \\
8 & -4 & 3
\end{bmatrix} \rightarrow
\begin{bmatrix}
0 & 0 & -1 \\
-4 & 4 & 0 \\
8 & -4 & 0
\end{bmatrix}
\]

\[
\begin{bmatrix}
0 & 0 & -1 \\
0 & 4 & 0 \\
4 & -4 & 0
\end{bmatrix} \rightarrow
\begin{bmatrix}
0 & 0 & -1 \\
0 & 4 & 0 \\
4 & 0 & 0
\end{bmatrix} \rightarrow
\begin{bmatrix}
4 & 0 & 0 \\
0 & 4 & 0 \\
0 & 0 & 1
\end{bmatrix}
\]
Reduced Laplacian matrix of K_n:

\[L_0(K_n) = nI_{n-1} - J_{n-1} \]

\[\det L_0(K_n) = n^{n-2} \]
Reduced Laplacian matrix of K_n

$$L_0(K_n) = nI_{n-1} - J_{n-1}$$

$$\det L_0(K_n) = n^{n-2}$$

Trick: 2×2 submatrices (up to row and column permutations):

$$\begin{bmatrix} n - 1 & -1 \\ -1 & n - 1 \end{bmatrix}, \quad \begin{bmatrix} n - 1 & -1 \\ -1 & -1 \end{bmatrix}, \quad \begin{bmatrix} -1 & -1 \\ -1 & -1 \end{bmatrix},$$

with determinants $n(n-2)$, $-n$, and 0. Hence $e_1e_2 = n$. Since $\prod e_i = n^{n-2}$ and $e_i|e_{i+1}$, we get the SNF diag$(1, n, n, \ldots, n)$.

Smith Normal Form and Combinatorics – p. 11
Laplacian matrices of general graphs

SNF of the Laplacian matrix of a graph: very interesting

cannections with sandpile models, chip firing, abelian avalanches, etc.
Laplacian matrices of general graphs

SNF of the Laplacian matrix of a graph: very interesting

connections with sandpile models, chip firing, abelian avalanches, etc.

no time for further details
Laplacian matrices of general graphs

SNF of the Laplacian matrix of a graph: very interesting connections with sandpile models, chip firing, abelian avalanches, etc.

no time for further details 😞
SNF of random matrices

Huge literature on random matrices, mostly connected with eigenvalues.

Very little work on SNF of random matrices over a PID.
$\text{Mat}_k(n)$: all $n \times n \mathbb{Z}$-matrices with entries in $[-k, k]$ (uniform distribution)

$p_k(n, d)$: probability that if $M \in \text{Mat}_k(n)$ and $\text{SNF}(M) = (e_1, \ldots, e_n)$, then $e_1 = d$.
Is the question interesting?

\(\text{Mat}_k(n) \): all \(n \times n \mathbb{Z} \)-matrices with entries in \([-k, k]\) (uniform distribution)

\(p_k(n, d) \): probability that if \(M \in \text{Mat}_k(n) \) and \(\text{SNF}(M) = (e_1, \ldots, e_n) \), then \(e_1 = d \).

Recall: \(e_1 = \text{gcd} \) of \(1 \times 1 \) minors (entries) of \(M \)
Is the question interesting?

\(\text{Mat}_k(n) \): all \(n \times n \mathbb{Z} \)-matrices with entries in \([-k, k]\) (uniform distribution)

\(p_k(n, d) \): probability that if \(M \in \text{Mat}_k(n) \) and \(\text{SNF}(M) = (e_1, \ldots, e_n) \), then \(e_1 = d \).

Recall: \(e_1 = \gcd \) of \(1 \times 1 \) minors (entries) of \(M \)

Theorem. \(\lim_{k \to \infty} p_k(n, d) = \frac{1}{d^{n^2}} \zeta(n^2) \)
Specifying some e_i

with Yinghui Wang
Specifying some e_i

with Yinghui Wang (王颖慧)
Two general results.

Let $\alpha_1, \ldots, \alpha_{n-1} \in \mathbb{P}$, $\alpha_i | \alpha_{i+1}$.

$\mu_k(n)$: probability that the SNF of a random $A \in \text{Mat}_k(n)$ satisfies $e_i = \alpha_i$ for $1 \leq \alpha_i \leq n - 1$.

$$\mu(n) = \lim_{k \to \infty} \mu_k(n).$$

Then $\mu(n)$ exists, and $0 < \mu(n) < 1$.

with Yinghui Wang (王颖慧)
Let $\alpha_n \in \mathbb{P}$.

$\nu_k(n)$: probability that the SNF of a random $A \in \text{Mat}_k(n)$ satisfies $e_n = \alpha_n$.

Then

$$\lim_{k \to \infty} \nu_k(n) = 0.$$
Sample result

$$\mu_k(n)$$: probability that the SNF of a random $A \in \text{Mat}_k(n)$ satisfies $e_1 = 2$, $e_2 = 6$.

$$\mu(n) = \lim_{k \to \infty} \mu_k(n).$$
\[
\mu(n) = 2^{-n^2} \left(1 - \sum_{i=(n-1)^2}^{n(n-1)} 2^{-i} + \sum_{i=n(n-1)+1}^{n^2-1} 2^{-i} \right) \\
\cdot \frac{3}{2} \cdot 3^{-(n-1)^2} \left(1 - 3^{(n-1)^2} \right) \left(1 - 3^{-n} \right)^2 \\
\cdot \prod_{p>3} \left(1 - \sum_{i=(n-1)^2}^{n(n-1)} p^{-i} + \sum_{i=n(n-1)+1}^{n^2-1} p^{-i} \right).
\]
$\kappa(n)$: probability that an $n \times n \mathbb{Z}$-matrix has SNF $\text{diag}(e_1, e_2, \ldots, e_n)$ with $e_1 = e_2 = \cdots = e_{n-1} = 1$.
Cyclic cokernel

\(\kappa(n) \): probability that an \(n \times n \) \(\mathbb{Z} \)-matrix has SNF \(\text{diag}(e_1, e_2, \ldots, e_n) \) with \(e_1 = e_2 = \cdots = e_{n-1} = 1 \).

Theorem. \(\kappa(n) = \frac{\prod_p \left(1 + \frac{1}{p^2} + \frac{1}{p^3} + \cdots + \frac{1}{p^n} \right)}{\zeta(2) \zeta(3) \cdots} \)
Cyclic cokernel

\(\kappa(n) \): probability that an \(n \times n \) \(\mathbb{Z} \)-matrix has SNF \(\text{diag}(e_1, e_2, \ldots, e_n) \) with \(e_1 = e_2 = \cdots = e_{n-1} = 1 \).

Theorem. \(\kappa(n) = \prod_p \left(1 + \frac{1}{p^2} + \frac{1}{p^3} + \cdots + \frac{1}{p^n} \right) \frac{\zeta(2) \zeta(3) \cdots}{\zeta(6) \prod_{j \geq 4} \zeta(j)} \)

Corollary. \(\lim_{n \to \infty} \kappa(n) = \frac{1}{\zeta(6) \prod_{j \geq 4} \zeta(j)} \approx 0.846936 \cdots \).
Small number of generators

g: number of generators of cokernel (number of entries of SNF $\neq 1$) as $n \to \infty$

previous slide: $\text{Prob}(g = 1) = 0.846936 \cdots$
Small number of generators

g: number of generators of cokernel (number of entries of SNF $\neq 1$) as $n \to \infty$

previous slide: $\text{Prob}(g = 1) = 0.846936 \cdots$

$\text{Prob}(g \leq 2) = 0.99462688 \cdots$
g: number of generators of cokernel (number of entries of SNF $\neq 1$) as $n \to \infty$

previous slide: $\text{Prob}(g = 1) = 0.846936 \cdots$

$\text{Prob}(g \leq 2) = 0.99462688 \cdots$

$\text{Prob}(g \leq 3) = 0.99995329 \cdots$
Small number of generators

g: number of generators of cokernel (number of entries of SNF ≠ 1) as $n \to \infty$

previous slide: Prob$(g = 1) = 0.846936 \cdots$

Prob$(g \leq 2) = 0.99462688 \cdots$

Prob$(g \leq 3) = 0.99995329 \cdots$

Theorem. Prob$(g \leq \ell) =

1 - (3.46275 \cdots)2^{-(\ell+1)^2}(1 + O(2^{-\ell}))$
Number of generators g as $n \to \infty$

Previous slide: $\Pr(g = 1) = 0.846936 \ldots$

$\Pr(g \leq 2) = 0.99462688 \ldots$

$\Pr(g \leq 3) = 0.99995329 \ldots$

Theorem. $\Pr(g \leq \ell) = 1 - (3.46275 \ldots)2^{-(\ell+1)^2}(1 + O(2^{-\ell}))$
\[3.46275 \cdots = \frac{1}{\prod_{j \geq 1} \left(1 - \frac{1}{2^j} \right)}\]
Universality

What other probability distributions on $n \times n$ integer matrices give the same conclusions?
Universality

What other probability distributions on $n \times n$ integer matrices give the same conclusions?

Example (P. Q. Nguyen and I. E. Shparlinski). Fix k, n. Choose a subgroup G of \mathbb{Z}^n of index $\leq k$ uniformly.

$\rho_k(n) :$ probability that G is cyclic
Universality

What other probability distributions on $n \times n$ integer matrices give the same conclusions?

Example (P. Q. Nguyen and I. E. Shparlinski). Fix k, n. Choose a subgroup G of \mathbb{Z}^n of index $\leq k$ uniformly.

$$\rho_k(n) : \text{probability that } G \text{ is cyclic}$$

$$\lim_{n \to \infty} \lim_{k \to \infty} \rho_k(n) \approx 0.846936 \cdots ,$$

same probability of cyclic cokernel as $k, n \to \infty$ using previous distribution.
Part II: symmetric functions

- $\frac{\partial}{\partial p_1} p_1$ (operator)
- Jacobi-Trudi specializations
A down-up operator

In collaboration with Tommy Wuxing Cai.
A down-up operator

In collaboration with Tommy Wuxing Cai (蔡吴兴).
A down-up operator

In collaboration with Tommy Wuxing Cai (蔡晧興).

\(\text{Par}(n) \): set of all partitions of \(n \)

E.g., \(\text{Par}(4) = \{ 4, 31, 22, 211, 1111 \} \).
A down-up operator

In collaboration with Tommy Wuxing Cai (蔡吴生).

\[\text{Par}(n) : \text{set of all partitions of } n \]

E.g., \[\text{Par}(4) = \{4, 31, 22, 211, 1111\} \].

\[V_n : \text{real vector space with basis } \text{Par}(n) \]
Define $U = U_n : V_n \rightarrow V_{n+1}$ by

$$U(\lambda) = \sum_{\mu} \mu,$$

where $\mu \in \text{Par}(n + 1)$ and $\mu_i \geq \lambda_i \ \forall i$.

Example.

$$U(42211) = 52211 + 43211 + 42221 + 422111$$
Dually, define $D = D_n : V_n \to V_{n-1}$ by

$$D(\lambda) = \sum_{\nu} \nu,$$

where $\nu \in \text{Par}(n-1)$ and $\nu_i \leq \lambda_i \ \forall i$.

Example. $D(42211) = 32211 + 42111 + 4221$
NOTE. Identify V_n with the space $\Lambda^n_{\mathbb{Q}}$ of all homogeneous symmetric functions of degree n over \mathbb{Q}, and identify $\lambda \in V_n$ with the Schur function s_λ. Then

$$U(f) = p_1 f, \quad D(f) = \frac{\partial}{\partial p_1} f.$$
Symmetric functions

Note. Identify V_n with the space Λ^n_Q of all homogeneous symmetric functions of degree n over \mathbb{Q}, and identify $\lambda \in V_n$ with the Schur function s_λ. Then

\[
U(f) = p_1 f, \quad D(f) = \frac{\partial}{\partial p_1} f.
\]

Write

\[
U = U_n : V_n \rightarrow V_{n+1} \\
D = D_{n+1} : v_{n+1} \rightarrow V_n.
\]
Basic commutation relation: \(DU - UD = I \)

Allows computation of eigenvalues of
\(DU: V_n \rightarrow V_n \).

Or note that the eigenvectors of \(\frac{\partial}{\partial p_1} p_1 \) are the \(p_\lambda \)'s
\((\lambda \vdash n)\), with eigenvalue \(1 + m_1(\lambda) \), where \(m_1(\lambda) \) is the number of parts of \(\lambda \) equal to 1.
Commutation relation

Basic commutation relation: $DU - UD = I$

Allows computation of eigenvalues of $DU : V_n \rightarrow V_n$.

Or note that the eigenvectors of $\frac{\partial}{\partial p_1} p_1$ are the p_λ’s ($\lambda \vdash n$), with eigenvalue $1 + m_1(\lambda)$, where $m_1(\lambda)$ is the number of parts of λ equal to 1.

NOTE.

$$\#\{\lambda \vdash n : m_1(\lambda) = i\} = p(n + 1 - i) - p(n - i),$$

where $p(m) = \#\text{Par}(m) = \dim V_m$.
Eigenvalues of DU

Theorem. Let $1 \leq i \leq n + 1$, $i \neq n$. Then i is an eigenvalue of $D_{n+1}U_n$ with multiplicity $p(n + 1 - i) - p(n - i)$. Hence

$$\det D_{n+1}U_n = \prod_{i=1}^{n+1} i^{p(n+1-i) - p(n-i)}.$$
Theorem. Let $1 \leq i \leq n + 1$, $i \neq n$. Then i is an eigenvalue of $D_{n+1}U_n$ with multiplicity $p(n + 1 - i) - p(n - i)$. Hence

$$\det D_{n+1}U_n = \prod_{i=1}^{n+1} i^{p(n+1-i) - p(n-i)}.$$

What about SNF of the matrix $[D_{n+1}U_n]$ (with respect to the basis $\text{Par}(n)$)?
Conjecture (first form). The diagonal entries of the SNF of $[D_{n+1}U_n]$ are:

- $(n + 1)(n - 1)!$, with multiplicity 1
- $(n - k)!$ with multiplicity $p(k + 1) - 2p(k) + p(k - 1)$, $3 \leq k \leq n - 2$
- 1, with multiplicity $p(n) - p(n - 1) + p(n - 2)$.
NOTE. \(\{ p^\lambda \}_{\lambda | n} \) is not an integral basis.
$m_1(\lambda)$: number of 1’s in λ

$\mathcal{M}_1(n)$: multiset of all numbers $m_1(\lambda) + 1$, $\lambda \in \text{Par}(n)$

Let SNF of $[D_{n+1} U_n]$ be $\text{diag}(f_1, f_2, \ldots, f_p(n))$.

Conjecture (second form). $f_p(n)$ is the product of the distinct entries of $\mathcal{M}_1(n)$; $f_{p(n)-1}$ is the product of the remaining distinct entries of $\mathcal{M}_1(n)$, etc.
An example: \(n = 6 \)

\[
\text{Par}(6) = \{6, 51, 42, 33, 411, 321, 222, 3111, 2211, 21111, 111111\}
\]

\[
\mathcal{M}_1(6) = \{1, 2, 1, 1, 3, 2, 1, 4, 3, 5, 7\}
\]

\[
(f_1, \ldots, f_{11}) = (7 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1, 3 \cdot 2 \cdot 1, 1, 1, 1, 1, 1, 1, 1, 1, 1)
\]

\[
= (840, 6, 1, 1, 1, 1, 1, 1, 1, 1, 1)
\]
Conjecture (third form). The matrix
\[D_{n+1} U_n + x I \] has an SNF over \(\mathbb{Z}[x] \).

Note that \(\mathbb{Z}[x] \) is not a PID.
Theorem. The conjecture of Miller is true.
Theorem. The conjecture of Miller is true.

Proof (first step). Rather than use the basis \(\{ s_{\lambda} \}_{\lambda \in \text{Par}(n)} \) (Schur functions) for \(\Lambda_{n}^{\mathbb{Q}} \), use the basis \(\{ h_{\lambda} \}_{\lambda \in \text{Par}(n)} \) (complete symmetric functions). Since the two bases differ by a matrix in \(SL(p(n), \mathbb{Z}) \), the SNF’s stay the same.
Conclusion of proof

(second step) Row and column operations.
(second step) Row and column operations.

Not very insightful.
(second step) Row and column operations.

Not very insightful. 😞
A generalization

\(m_j(\lambda) \): number of \(j \)'s in \(\lambda \)

\(\mathcal{M}_j(n) \): multiset of all numbers \(j(m_j(\lambda) + 1) \), \(\lambda \in \text{Par}(n) \)

\(p_j \): power sum symmetric function \(\sum x_i^j \)

Let SNF of the operator \(f \rightarrow j \frac{\partial}{\partial p_j} p_j f \) with respect to the basis \(\{ s_\lambda \} \) be \(\text{diag}(g_1, g_2, \ldots, g_{p(n)}) \).
A generalization

$m_j(\lambda)$: number of j’s in λ

$M_j(n)$: multiset of all numbers $j(m_j(\lambda) + 1)$, $\lambda \in \text{Par}(n)$

p_j: power sum symmetric function $\sum x_i^j$

Let SNF of the operator $f \mapsto j \frac{\partial}{\partial p_j} p_j f$ with respect to the basis $\{s_\lambda\}$ be $\text{diag}(g_1, g_2, \ldots, g_{p(n)})$.

Theorem (Zipei Nie). $g_{p(n)}$ is the product of the distinct entries of $M_j(n)$; $g_{p(n)-1}$ is the product of the remaining distinct entries of $M_j(n)$, etc.
Two remarks

The operators D, U and identity $DU - UD = I$ extend to any differential poset P. Miller and Reiner have conjectures for the SNF of DU. Nie has a conjecture on the structure of P which would prove the Miller-Reiner conjecture.
Two remarks

The operators D, U and identity $DU - UD = I$ extend to any differential poset P. Miller and Reiner have conjectures for the SNF of DU. Nie has a conjecture on the structure of P which would prove the Miller-Reiner conjecture.

More general operators:

$$\frac{\partial^2}{\partial p_1^2} p_1^2, \quad 2 \frac{\partial}{\partial p_1} \frac{\partial}{\partial p_2} p_2 p_1, \text{ etc.}$$

No conjecture known for SNF.
Jacobi-Trudi identity:

\[s_\lambda = \det[h_{\lambda_i-i+j}], \]

where \(s_\lambda \) is a **Schur function** and \(h_i \) is a **complete symmetric function**.
Jacobi-Trudi identity:

\[s_\lambda = \det[h_{\lambda - i + j}], \]

where \(s_\lambda \) is a Schur function and \(h_i \) is a complete symmetric function.

We consider the specialization

\[x_1 = x_2 = \cdots = x_n = 1, \text{ other } x_i = 0. \]

Then

\[h_i \rightarrow \binom{n + i - 1}{i}. \]
Specialized Schur function

\[s_\lambda \rightarrow \prod_{u \in \lambda} \frac{n + c(u)}{h(u)}. \]

c(u): \text{content of the square } u

\[
\begin{array}{cccccc}
0 & 1 & 2 & 3 & 4 \\
-1 & 0 & 1 & 2 \\
-2 & -1 & 0 & 1 \\
-3 & -2 \\
\end{array}
\]
Diagonal hooks D_1, \ldots, D_m

\[
\begin{array}{cccccc}
0 & 1 & 2 & 3 & 4 \\
-1 & 0 & 1 & 2 \\
-2 & -1 & 0 & 1 \\
-3 & -2 \\
\end{array}
\]

$\lambda = (5,4,4,2)$
Diagonal hooks D_1, \ldots, D_m

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>-1</td>
<td>-1</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>-2</td>
<td>-2</td>
<td>-1</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>-3</td>
<td>-3</td>
<td>-2</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

D_1
Diagonal hooks D_1, \ldots, D_m

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>-1</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-2</td>
<td>-1</td>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-3</td>
<td>-2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

D_2
Diagonal hooks D_1, \ldots, D_m

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>-1</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-2</td>
<td>-1</td>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-3</td>
<td>-2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

D_3
\[R = \mathbb{Q}[n] \text{ (a PID)} \]

Let

\[
\text{SNF} \begin{bmatrix}
(n + \lambda_i - i + j - 1) \\
\lambda_i - i + j
\end{bmatrix} = \text{diag}(e_1, \ldots, e_m).
\]

Theorem.

\[
e_i = \prod_{u \in D_{m-i+1}} \frac{n + c(u)}{h(u)}
\]
Idea of proof

\[f_i = \prod_{u \in D_{m-i+1}} \frac{n + c(u)}{h(u)} \]

Want to prove \(e_i = f_i \). Note that \(f_1 f_2 \cdots f_i \) is the value of the lower-left \(i \times i \) minor. (Special argument for 0 minors.)
Idea of proof

\[f_i = \prod_{u \in D_{m-i+1}} \frac{n + c(u)}{h(u)} \]

Want to prove \(e_i = f_i \). Note that \(f_1 f_2 \cdots f_i \) is the value of the lower-left \(i \times i \) minor. (Special argument for 0 minors.)

Every \(i \times i \) minor is a specialized skew Schur function \(s_{\mu/\nu} \). Let \(s_{\alpha} \) correspond to the lower left \(i \times i \) minor.
Conclusion of proof

Let \(s_{\mu/\nu} = \sum_{\rho} c^{\mu}_{\nu\rho} s_{\rho} \). By Littlewood-Richardson rule,

\[
c^{\mu}_{\nu\rho} \neq 0 \implies \alpha \subseteq \rho
\]

\[
\Rightarrow \{\text{contents of } \alpha\} \subseteq \{\text{contents of } \rho\}
\]

(as multisets).
Let $s_{\mu/\nu} = \sum_{\rho} c_{\nu\rho}^{\mu} s_{\rho}$. By Littlewood-Richardson rule,

$$c_{\nu\rho}^{\mu} \neq 0 \Rightarrow \alpha \subseteq \rho$$

$$\Rightarrow \{\text{contents of } \alpha\} \subseteq \{\text{contents of } \rho\}$$

(as multisets).

Hence $f_1 \cdots f_i = \gcd(i \times i \text{ minors}) = e_1 \cdots e_i$. \qed
An example

\[\lambda = (7, 6, 6, 5, 3), \quad k = 3 \implies \mu = (4, 3, 1) \]
An example

\[\lambda = (7, 6, 6, 5, 3), \ k = 3 \Rightarrow \mu = (4, 3, 1) \]

\[J T_\lambda = \begin{bmatrix}
 h_7 & h_8 & h_9 & h_{10} & h_{11} \\
 h_5 & h_6 & h_7 & h_8 & h_9 \\
 h_4 & h_5 & h_6 & h_7 & h_8 \\
 h_2 & h_3 & h_4 & h_5 & h_6 \\
 0 & 1 & h_1 & h_2 & h_3
\end{bmatrix} \]
An example

\[\lambda = (7, 6, 6, 5, 3), \ k = 3 \Rightarrow \mu = (4, 3, 1) \]

\[
JT_\lambda = \begin{bmatrix}
 h_7 & h_8 & h_9 & h_{10} & h_{11} \\
 h_5 & h_6 & h_7 & h_8 & h_9 \\
 h_4 & h_5 & h_6 & h_7 & h_8 \\
 h_2 & h_3 & h_4 & h_5 & h_6 \\
 0 & 1 & h_1 & h_2 & h_3
\end{bmatrix}
\]
An example (cont.)

A “random” 3×3 minor of JT_λ:

$$JT_\lambda = \begin{bmatrix}
 h_7 & h_8 & h_9 & h_{10} & h_{11} \\
 h_5 & h_6 & h_7 & h_8 & h_9 \\
 h_4 & h_5 & h_6 & h_7 & h_8 \\
 h_2 & h_3 & h_4 & h_5 & h_6 \\
 0 & 1 & h_1 & h_2 & h_3
\end{bmatrix}$$
A “random” 3×3 minor of JT_λ:

$$
\begin{bmatrix}
 h_7 & h_8 & h_9 & h_{10} & h_{11} \\
 h_5 & h_6 & h_7 & h_8 & h_9 \\
 h_4 & h_5 & h_6 & h_7 & h_8 \\
 h_2 & h_3 & h_4 & h_5 & h_6 \\
 0 & 1 & h_1 & h_2 & h_3
\end{bmatrix}
$$

Jacobi-Trudi matrix for $s_{653/21}$
An example (concluded)

Every LR-filling contains 1,1,1,1,2,2,2,3. Thus if \(\langle s_{653/21}, s_\rho \rangle > 0 \), then \(431 \subseteq \rho \). Therefore

\[
\prod_{u \in 431} (n + c(u)) \mid \prod_{u \in \rho} (n + c(u))
\]

\[
\Rightarrow \prod_{u \in 431} (n + c(u)) \mid s_{653/21}(1^n).
\]
A q-analogue

“Natural” q-analogue of $f(1^n)$ is $f(1, q, \ldots, q^{n-1})$.

$$h_i(1, q, \ldots, q^{n-1}) = \binom{n + i - 1}{i}_q$$

$$s_\lambda(1, q, \ldots, q^{n-1}) = q^* \prod_{u \in \lambda} \frac{1 - q^{n+c(u)}}{1 - q^{h(u)}}.$$
A q-analogue

“Natural” q-analogue of $f(1^n)$ is $f(1, q, \ldots, q^{n-1})$.

\[h_i(1, q, \ldots, q^{n-1}) = \binom{n + i - 1}{i}_q \]

\[s_\lambda(1, q, \ldots, q^{n-1}) = q^* \prod_{u \in \lambda} \frac{1 - q^{n+c(u)}}{1 - q^{h(u)}}. \]

Doesn’t work (and SNF is unknown).
A q-analogue

“Natural” q-analogue of $f(1^n)$ is $f(1, q, \ldots, q^{n-1})$.

$$h_i(1, q, \ldots, q^{n-1}) = \binom{n+i-1}{i}_q$$

$$s_\lambda(1, q, \ldots, q^{n-1}) = q^* \prod_{u \in \lambda} \frac{1 - q^{n+c(u)}}{1 - q^{h(u)}}.$$

Doesn’t work (and SNF is unknown).

Before we had $R = \mathbb{Q}[n]$. Now $R = \mathbb{Q}[q]$. Putting $q = 1$ doesn’t reduce second situation to the first.
Set $y = q^n$. Thus for instance

$$h_3(1, q, \ldots, q^{n-1}) = \frac{(1 - q^{n+2})(1 - q^{n+1})(1 - q^n)}{(1 - q^3)(1 - q^2)(1 - q)} \cdot$$

$$= \frac{(1 - q^2y)(1 - qy)(1 - y)}{(1 - q^3)(1 - q^2)(1 - q)}.$$

Work over the field $\mathbb{Q}(q)[y]$ (a PID).
Set $y = q^n$. Thus for instance

$$h_3(1, q, \ldots, q^{n-1}) = \frac{(1 - q^{n+2})(1 - q^{n+1})(1 - q^n)}{(1 - q^3)(1 - q^2)(1 - q)} = \frac{(1 - q^2y)(1 - qy)(1 - y)}{(1 - q^3)(1 - q^2)(1 - q)}.$$

Work over the field $\mathbb{Q}(q)[y]$ (a PID).

Previous proof carries over (using a couple of tricks).
Write

\[(i) = \frac{1 - q^i}{1 - q}.\]

E.g., \((-3) = -q^{-1} - q^{-2} - q^{-3}\) and \((0) = 0\). For \(k \geq 1\) let

\[f(k) = \frac{y(y + (1))(y + (2)) \cdots (y + (k - 1))}{(1)(2) \cdots (k)}.\]

Set \(f(0) = 1\) and \(f(k) = 0\) for \(k < 0\).
Theorem. Define

\[JT(q)_\lambda = [f(\lambda_i - i + j)]_{i,j=1}^t, \]

where \(\ell(\lambda) \leq t \). Let the SNF of \(JT(q)_\lambda \) over the ring \(\mathbb{Q}(q)[y] \) have main diagonal \((\gamma_1, \gamma_2, \ldots, \gamma_t) \). Then we can take

\[\gamma_i = \prod_{u \in D_{t-i+1}} \frac{y + c(u)}{h(u)}. \]