Some aspects of \((r, k)\)-parking functions

Richard P. Stanley
University of Miami and M.I.T.

and

Yinghui Wang (王颖慧)
M.I.T.
(r, k)-parking function: a sequence (a_1, \ldots, a_n) of positive integers whose decreasing rearrangement $b_1 \leq \cdots \leq b_n$ satisfies

$$b_i \leq k + (i - 1)r.$$

$\text{PF}_{n}^{(r,k)}$: set of (r, k)-parking functions of length n

$r = k = 1$ (so $b_i \leq i$): ordinary parking function
Basic definition

(r, k)-parking function: a sequence \((a_1, \ldots, a_n)\) of positive integers whose decreasing rearrangement \(b_1 \leq \cdots \leq b_n\) satisfies

\[
b_i \leq k + (i - 1)r.
\]

\(\text{PF}_{n}^{(r,k)}\): set of \((r, k)\)-parking functions of length \(n\)

\(r = k = 1\) (so \(b_i \leq i\)): ordinary parking function

Example. \((8, 4, 8, 2)\) is not a \((2, 3)\)-parking function, since \((2, 4, 8, 8) \nleq (3, 5, 7, 9)\) (termwise).
Cars C_1, \ldots, C_{rn} need to park in spaces $1, 2, \ldots, rn + k - 1$.

Preference vector $\alpha = (a_1, \ldots, a_n)$, $1 \leq a_i \leq rn + k - 1$, where cars $C_{r(i-1)+1}, \ldots, C_{ri}$ all prefer a_i.

Cars go one at a time to their preferred space and then park in first available space.

Easy: all cars can park if and only if α is an (r, k)-parking function.
Theorem (Steck 1969, essentially).

\[\#\text{PF}_{n}^{(r,k)} = k(rn + k)^{n-1} \]
Theorem (Steck 1969, essentially).

\[\#PF_{n}^{(r,k)} = k(rn + k)^{n-1} \]

Proof. Completely analogous to Pollak’s proof for \(r = k = 1 \).
\mathfrak{S}_n acts on $\text{PF}^{(r,k)}_n$ by permuting coordinates. Let $F^{(r,k)}_n$ denote the Frobenius characteristic of this action.
\(\mathfrak{S}_n \) acts on \(\mathbb{P}F_n^{(r,k)} \) by permuting coordinates. Let \(F_n^{(r,k)} \) denote the Frobenius characteristic of this action.

Equivalently,

\[
F_n^{(r,k)} = \sum_{\beta} h_{m_1(\beta)} h_{m_2(\beta)} \cdots ,
\]

where \(\beta \) runs over all \textbf{weakly increasing} \((r, k)\)-parking functions, and \(m_i(\beta) \) is the number of \(i \)'s in \(\beta \).
An example

Let $r = 1, k = 2, n = 3$. The weakly increasing $(1, 2)$-parking functions (a, b, c) of length three, i.e, $(a, b, c) \leq (2, 3, 4)$:

- 111 112 113 114 122 123 124
- 133 134 222 223 224 233 234

Hence

$$F_3^{(2,1)} = 2h_3 + 8h_2h_1 + 4h_1^3.$$
Basis expansions

$F_{n}^{(r,k)}$ has “nice” expansions in terms of the six classical bases m, p, h, e, s, f.

E.g.,

$$F_{n}^{(r,k)} = \frac{k}{rn + k} \sum_{\lambda \vdash n} \left(d_1(\lambda), \ldots, d_n(\lambda), rn + k - \ell(\lambda) \right) h_{\lambda}$$

$$= k \sum_{\lambda \vdash n} z_{\lambda}^{-1} (rn + k)^{\ell(\lambda) - 1} p_{\lambda},$$

where $d_i(\lambda)$ is the number of parts of λ equal to i.
A generating function

\[P^{(r,k)}(t) := \sum_{n \geq 0} F^{(r,k)}_n t^n \]
A generating function

\[\mathcal{P}^{(r,k)}(t) := \sum_{n \geq 0} F_n^{(r,k)} t^n \]

Theorem. For \(n \geq 1 \), we have

\[\mathcal{P}^{(r,k)}(t) = \left(\mathcal{P}^{r,1}(t) \right)^k . \]
A generating function

\[P^{(r,k)}(t) := \sum_{n \geq 0} F_n^{(r,k)} t^n \]

Theorem. For \(n \geq 1 \), we have

\[P^{(r,k)}(t) = (P^{r,1}(t))^k. \]

Proof: simple factorization argument.
Negative exponents

What about $\left(P^{r,1}(t) \right)^k$ for $k < 0$?

Simplest case: $r = 1$ and $k = -1$.
Motivation

Let

\[A(t) = \sum_{n \geq 0} a_n t^n \]

\[B(t) = \sum_{n \geq 0} b_n t^n \]

\[= \frac{1}{1 - A(t)} = \sum_{k \geq 0} A(t)^k. \]

Thus \(a_n \) counts “prime” objects and \(b_n \) all objects.
Note. \(B(t) = \frac{1}{1-A(t)} \iff A(t) = 1 - \frac{1}{B(t)}. \)
Note. $B(t) = \frac{1}{1-A(t)} \iff A(t) = 1 - \frac{1}{B(t)}$.

Suggests: $1 - \frac{1}{\mathcal{P}(1,1)(t)}$ might be connected with “prime” parking functions.
Definition (I. Gessel). A parking function is **prime** if it remains a parking function when we delete a 1 from it.

Note. A sequence $b_1 \leq b_2 \leq \cdots \leq b_n$ is an increasing parking function if and only if $1 \leq b_1 \leq \cdots \leq b_n$ is an increasing prime parking function.
E.g., $n = 4$: increasing prime parking functions are

1111, 1112, 1113, 1122, 1123.
The prime parking function sym. fn.

E.g., $n = 4$: increasing prime parking functions are

$1111, 1112, 1113, 1122, 1123$.

$\Rightarrow \mathcal{PF}_{4}^{(1,1)} = h_4 + 2h_3h_1 + h_2^2 + h_2h_1^2$
Factorization of increasing PF’s

\[
\begin{array}{cccccccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 \\
1 & 1 & 3 & 3 & 4 & 4 & 7 & 8 & 8 & 9 & 10 \\
\end{array}
\]
Factorization of increasing PF’s

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>7</td>
<td>8</td>
<td>8</td>
<td>9</td>
<td>10</td>
</tr>
</tbody>
</table>

Some aspects of (r, k)-parking functions – p. 14
Factorization of increasing PF’s

\[
\begin{array}{ccccccc|ccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 \\
1 & 1 & 3 & 3 & 4 & 4 & 7 & 8 & 8 & 9 & 10 \\
\end{array}
\]

\[\rightarrow (1, 1), \ (1, 1, 2, 2), \ (1), \ (1, 1, 2, 3)\]
Factorization of increasing PF’s

\[
\begin{array}{ccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 \\
1 & 1 & 3 & 3 & 4 & 4 & 7 \\
\end{array}
\quad \quad
\begin{array}{cccc}
8 & 9 & 10 & 11 \\
8 & 8 & 9 & 10 \\
\end{array}
\]

\[\rightarrow (1, 1), \ (1, 1, 2, 2), \ (1), \ (1, 1, 2, 3)\]

Theorem. \((P^{(1,1)}(t))^{-1} = 1 - \sum_{n \geq 1} \text{PPF}_n t^n\)
Coefficient of \(t^5 \) in \(-P^{(1,1)}(t)^{-2} \) is

\[
2h_3h_1^2 + 2h_2^2h_1 + 4h_3h_2 + 4h_4h_1 + 2h_5.
\]

Frobenius characteristic of the action of \(S_5 \) on all sequences \((a_1, \ldots, a_5) \in P^{(1,1)} \) whose increasing rearrangement \(b_1 \leq \cdots \leq b_5 \) satisfies either of the conditions

1. \(b_1 = b_2 = 1, b_3 \leq 2, b_4 \leq 3, b_5 \leq 3 \), or
2. \(b_1 = b_2 = b_3 = 2, b_4 \leq 3, b_5 \leq 4 \).
Write $F_n = F_n^{(1,1)}$ (simplest case), with $F_0 = 1$. For $\lambda = (\lambda_1, \lambda_2, \ldots)$ write

$$F_\lambda = F_{\lambda_1} F_{\lambda_2} \cdots.$$

Easy. $\{F_\lambda : \lambda \vdash n\}$ is a \mathbb{Z}-basis for Λ_n (homogeneous symmetric functions of degree n with integer coefficients).
Some problems

- Expand F_λ in the classical bases m, h, e, p, s, f, and vice versa.

- Formula or combinatorial interpretation of $\langle F_\lambda, F_\mu \rangle$.
Some problems

- Expand F_λ in the classical bases m, h, e, p, s, f, and vice versa.

- Formula or combinatorial interpretation of $\langle F_\lambda, F_\mu \rangle$.

Very little is known.
Theorem.

\[\langle F_n, F_\lambda \rangle = \frac{1}{n+1} \prod_{i \geq 1} \frac{1}{\lambda_i + 1} \left(\frac{(n + 1)(\lambda_i + 1) + \lambda_i - 1}{\lambda_i} \right) \]
Scalar products

Theorem.

\[\langle F_n, F_\lambda \rangle = \frac{1}{n+1} \prod_{i \geq 1} \frac{1}{\lambda_i + 1} \left(\frac{(n+1)(\lambda_i + 1) + \lambda_i - 1}{\lambda_i} \right) \]

Corollary.

\[\langle F_n, F_n \rangle = \frac{1}{n+1} \binom{n(n+3)}{n} \]
Theorem. \[\langle F_n, F_\lambda \rangle = \frac{1}{n+1} \prod_{i \geq 1} \frac{1}{\lambda_i + 1} \left(\frac{(n+1)(\lambda_i + 1) + \lambda_i - 1}{\lambda_i} \right) \]

Corollary. \[\langle F_n, F_n \rangle = \frac{1}{n+1} \left(\frac{n(n+3)}{n} \right) \]

In general \(\langle F_\lambda, F_\mu \rangle \) has large prime factors. Is there a combinatorial interpretation?
Theorem.

\[\langle F_n, F_\lambda \rangle = \frac{1}{n+1} \prod_{i \geq 1} \frac{1}{\lambda_i + 1} \left(\frac{(n + 1)(\lambda_i + 1) + \lambda_i - 1}{\lambda_i} \right) \]

Corollary. \[\langle F_n, F_n \rangle = \frac{1}{n+1} \binom{n(n+3)}{n} \]

In general \[\langle F_\lambda, F_\mu \rangle \] has large prime factors. Is there a combinatorial interpretation, even for \[\frac{1}{n+1} \binom{n(n+3)}{n} \]?
Three expansions

\(d_i \): number of parts of \(\lambda \) equal to \(i \)

\[
e_n = \frac{1}{n + 1} \sum_{\lambda \vdash n} (-1)^{n - \ell(\lambda)} \binom{n + \ell(\lambda)}{d_1, d_2, \ldots, r n} F_\lambda
\]

\[
p_n = \sum_{\lambda \vdash n} (-1)^{\ell(\lambda) + 1} \binom{n + \ell(\lambda) - 1}{d_1, d_2, \ldots, r n - 1} F_\lambda
\]

\[
h_n = \frac{1}{n - 1} \sum_{\lambda \vdash n} (-1)^{\ell(\lambda) + 1} \binom{n + \ell(\lambda) - 2}{d_1, d_2, \ldots, r n - 2} F_\lambda
\]
The last slide
The last slide