Catalan Numbers

Richard P. Stanley

April 25, 2025

OEIS: Online Encylopedia of Integer Sequences (Neil Sloane). See http://oeis.org. A database of over 345,000 sequences of integers.

OEIS: Online Encylopedia of Integer Sequences (Neil Sloane). See http://oeis.org. A database of over 345,000 sequences of integers.

A000108: 1, 1, 2, 5, 14, 42, 132, 429, . . .

$$C_0=1,\ C_1=1,\ C_2=2,\ C_3=5,\ C_4=14,\dots$$

 C_n is a Catalan number.

OEIS: Online Encylopedia of Integer Sequences (Neil Sloane). See http://oeis.org. A database of over 345,000 sequences of integers.

A000108: 1, 1, 2, 5, 14, 42, 132, 429, . . .

$$C_0=1,\ C_1=1,\ C_2=2,\ C_3=5,\ C_4=14,\dots$$

 C_n is a Catalan number.

Comments. . . . This is probably the longest entry in OEIS, and rightly so.

OEIS: Online Encylopedia of Integer Sequences (Neil Sloane). See http://oeis.org. A database of over 345,000 sequences of integers.

A000108: 1, 1, 2, 5, 14, 42, 132, 429, . . .

$$C_0=1,\ C_1=1,\ C_2=2,\ C_3=5,\ C_4=14,\dots$$

C_n is a **Catalan number**.

Comments. ... This is probably the longest entry in OEIS, and rightly so.

Aside. A000001: number of groups of order n

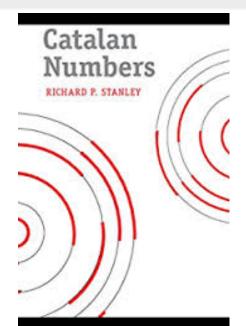
Catalan monograph

R. Stanley, Catalan Numbers, Cambridge University Press, 2015.

Catalan monograph

R. Stanley, Catalan Numbers, Cambridge University Press, 2015.

Includes 214 combinatorial interpretations of C_n and 68 additional problems.



Sharabiin Myangat, also known as Minggatu, Ming'antu (明安图), and Jing An (c. 1692–c. 1763): a Mongolian astronomer, mathematician, and topographic scientist who worked at the Qing court in China.

Sharabiin Myangat, also known as Minggatu, Ming'antu (明安图), and Jing An (c. 1692–c. 1763): a Mongolian astronomer, mathematician, and topographic scientist who worked at the Qing court in China.

Typical result (1730's):

$$\sin(2\alpha) = 2\sin\alpha - \sum_{n=1}^{\infty} \frac{C_{n-1}}{4^{n-1}} \sin^{2n+1}\alpha$$

Sharabiin Myangat, also known as Minggatu, Ming'antu (明安图), and Jing An (c. 1692–c. 1763): a Mongolian astronomer, mathematician, and topographic scientist who worked at the Qing court in China.

Typical result (1730's):

$$\sin(2\alpha) = 2\sin\alpha - \sum_{n=1}^{\infty} \frac{C_{n-1}}{4^{n-1}} \sin^{2n+1}\alpha$$

First example of an infinite trigonometric series.

Sharabiin Myangat, also known as Minggatu, Ming'antu (明安图), and Jing An (c. 1692–c. 1763): a Mongolian astronomer, mathematician, and topographic scientist who worked at the Qing court in China.

Typical result (1730's):

$$\sin(2\alpha) = 2\sin\alpha - \sum_{n=1}^{\infty} \frac{C_{n-1}}{4^{n-1}} \sin^{2n+1}\alpha$$

First example of an infinite trigonometric series.

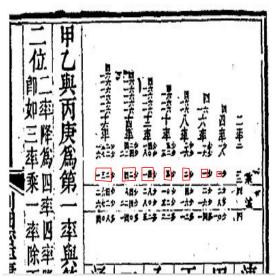
No combinatorics, no further work in China.

Ming'antu

Manuscript of Ming'antu

ロト (御) (重) (重) (重) のの(

Manuscript of Ming'antu



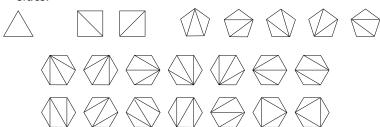
Manuscript of Ming'antu

少

ロト 4回 ト 4 重 ト 4 重 ト 9 年 の 9 で

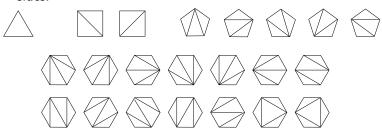
More history, via Igor Pak

• Euler (1751): conjectured formula for the number of triangulations of a convex (n+2)-gon. In other words, draw n-1 noncrossing diagonals of a convex polygon with n+2 sides.



More history, via Igor Pak

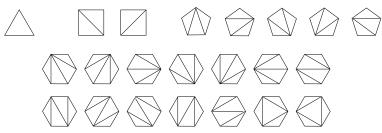
• Euler (1751): conjectured formula for the number of triangulations of a convex (n + 2)-gon. In other words, draw n - 1 noncrossing diagonals of a convex polygon with n + 2 sides.



1, 2, 5, 14, ...

More history, via Igor Pak

• Euler (1751): conjectured formula for the number of triangulations of a convex (n + 2)-gon. In other words, draw n - 1 noncrossing diagonals of a convex polygon with n + 2 sides.



1, 2, 5, 14, ...

We define these numbers to be the Catalan numbers C_n .

Completion of proof

- Goldbach and Segner (1758–1759): helped Euler complete the proof, in pieces.
- Lamé (1838): first self-contained, complete proof.

Catalan

• Eugène Charles Catalan (1838): wrote C_n in the form $\frac{(2n)!}{n! (n+1)!}$ and showed it counted (nonassociative) bracketings (or parenthesizations) of a string of n+1 letters.

Catalan

• Eugène Charles Catalan (1838): wrote C_n in the form $\frac{(2n)!}{n! (n+1)!}$ and showed it counted (nonassociative) bracketings (or parenthesizations) of a string of n+1 letters.

Born in 1814 in Bruges (now in Belgium, then under Dutch rule). Studied in France and worked in France and Liège, Belgium. Died in Liège in 1894.

• **John Riordan** (1948): introduced the term "Catalan number" in *Math Reviews*.

- John Riordan (1948): introduced the term "Catalan number" in *Math Reviews*.
- Riordan (1964): used the term again in Math. Reviews.

- John Riordan (1948): introduced the term "Catalan number" in *Math Reviews*.
- Riordan (1964): used the term again in Math. Reviews.
- **Riordan** (1968): used the term in his book *Combinatorial Identities*. Finally caught on.

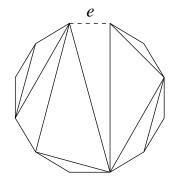
- **John Riordan** (1948): introduced the term "Catalan number" in *Math Reviews*.
- Riordan (1964): used the term again in Math. Reviews.
- **Riordan** (1968): used the term in his book *Combinatorial Identities*. Finally caught on.
- Martin Gardner (1976): used the term in his Mathematical Games column in Scientific American. Real popularity began.

The primary recurrence

$$C_{n+1} = \sum_{k=0}^{n} C_k C_{n-k}, \quad C_0 = 1$$

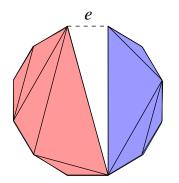
The primary recurrence

$$C_{n+1} = \sum_{k=0}^{n} C_k C_{n-k}, \quad C_0 = 1$$



The primary recurrence

$$C_{n+1} = \sum_{k=0}^{n} C_k C_{n-k}, \quad C_0 = 1$$



Solving the recurrence

$$C_{n+1} = \sum_{k=0}^{n} C_k C_{n-k}, \quad C_0 = 1$$

Let $y = \sum_{n \geq 0} C_n x^n$ (generating function).

Solving the recurrence

$$C_{n+1} = \sum_{k=0}^{n} C_k C_{n-k}, \quad C_0 = 1$$

Let $y = \sum_{n \geq 0} C_n x^n$ (generating function).

Multiply both sides by x^n and sum on $n \ge 0$:

$$\sum_{n\geq 0} C_{n+1} x^n = \frac{y-1}{x}$$

$$\sum_{n\geq 0} \left(\sum_{k=0}^n C_k C_{n-k}\right) x^n = y^2$$

Solving the recurrence

$$C_{n+1} = \sum_{k=0}^{n} C_k C_{n-k}, \quad C_0 = 1$$

Let $y = \sum_{n>0} C_n x^n$ (generating function).

Multiply both sides by x^n and sum on $n \ge 0$:

$$\sum_{n\geq 0} C_{n+1} x^n = \frac{y-1}{x}$$

$$\sum_{n\geq 0} \left(\sum_{k=0}^n C_k C_{n-k} \right) x^n = y^2$$

$$\Rightarrow xy^2 - y + 1 = 0$$

$$xy^2 - y + 1 = 0$$

$$xy^2 - y + 1 = 0$$

$$\Rightarrow y = \frac{1 \pm \sqrt{1 - 4x}}{2x}$$

$$xy^{2} - y + 1 = 0$$

$$\Rightarrow y = \frac{1 \pm \sqrt{1 - 4x}}{2x}$$

The - sign is correct:

$$y = \frac{1}{2x} - \frac{1}{2x} (1 - 4x)^{1/2}$$
$$= \frac{1}{2x} - \frac{1}{2x} \sum_{n>0} {1/2 \choose n} (-4x)^n,$$

where

$$\binom{\alpha}{n} = \frac{\alpha(\alpha-1)\cdots(\alpha-n+1)}{n!}.$$

$$xy^{2} - y + 1 = 0$$

$$\Rightarrow y = \frac{1 \pm \sqrt{1 - 4x}}{2x}$$

The - sign is correct:

$$y = \frac{1}{2x} - \frac{1}{2x} (1 - 4x)^{1/2}$$
$$= \frac{1}{2x} - \frac{1}{2x} \sum_{n \ge 0} {1/2 \choose n} (-4x)^n,$$

where

$$\binom{\alpha}{n} = \frac{\alpha(\alpha-1)\cdots(\alpha-n+1)}{n!}.$$

$$C_n = \frac{1}{n+1} {2n \choose n} = \frac{(2n)!}{n! (n+1)!}$$

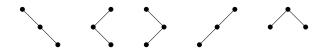
Other combinatorial interpretations

```
\mathcal{P}_n := {triangulations of convex (n+2)-gon} \Rightarrow \#\mathcal{P}_n = C_n (where \#S = number of elements of S)
```

We want other combinatorial interpretations of C_n , i.e., other sets S_n for which $C_n = \#S_n$.

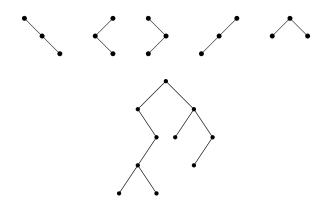
"Transparent" interpretations

4. Binary trees with *n* vertices (each vertex has a left subtree and a right subtree, which may be empty)



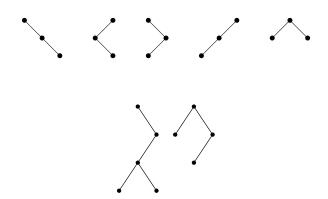
"Transparent" interpretations

4. Binary trees with *n* vertices (each vertex has a left subtree and a right subtree, which may be empty)



"Transparent" interpretations

4. Binary trees with *n* vertices (each vertex has a left subtree and a right subtree, which may be empty)



Binary parenthesizations

3. Binary parenthesizations or bracketings of a string of n + 1 letters

$$(xx \cdot x)x \quad x(xx \cdot x) \quad (x \cdot xx)x \quad x(x \cdot xx) \quad xx \cdot xx$$

Binary parenthesizations

3. Binary parenthesizations or bracketings of a string of n + 1 letters

$$(xx \cdot x)x \quad x(xx \cdot x) \quad (x \cdot xx)x \quad x(x \cdot xx) \quad xx \cdot xx$$
$$((x(xx))x)(x((xx)(xx)))$$

Binary parenthesizations

3. Binary parenthesizations or bracketings of a string of n + 1 letters

$$(xx \cdot x)x \quad x(xx \cdot x) \quad (x \cdot xx)x \quad x(x \cdot xx) \quad xx \cdot xx$$

$$((x(xx))x)(x((xx)(xx)))$$

The ballot problem

Bertrand's ballot problem: first published by **W. A. Whitworth** in 1878 but named after **Joseph Louis François Bertrand** who rediscovered it in 1887 (one of the first results in probability theory).

The ballot problem

Bertrand's ballot problem: first published by **W. A. Whitworth** in 1878 but named after **Joseph Louis François Bertrand** who rediscovered it in 1887 (one of the first results in probability theory).

Special case: there are two candidates A and B in an election. Each receives n votes. What is the probability that A will never trail B during the count of votes?

Example. AABABBBAAB is bad, since after seven votes, A receives 3 while B receives 4.

Definition of ballot sequence

Encode a vote for A by 1, and a vote for B by -1 (abbreviated -). Clearly a sequence $a_1a_2\cdots a_{2n}$ of n each of 1 and -1 is allowed if and only if $\sum_{i=1}^k a_i \geq 0$ for all $1 \leq k \leq 2n$. Such a sequence is called a **ballot sequence**.

Ballot sequences

77. Ballot sequences, i.e., sequences of n 1's and n -1's such that every partial sum is nonnegative (with -1 denoted simply as - below)

Ballot sequences

77. Ballot sequences, i.e., sequences of n 1's and n -1's such that every partial sum is nonnegative (with -1 denoted simply as - below)

Note. Answer to original problem (probability that a sequence of n each of 1's and -1's is a ballot sequence) is therefore

$$\frac{C_n}{\binom{2n}{n}} = \frac{\frac{1}{n+1}\binom{2n}{n}}{\binom{2n}{n}} = \frac{1}{n+1}.$$

The ballot recurrence

$$11-11-1---1-11-1--\\$$

The ballot recurrence

The ballot recurrence

$$11 - 11 - 1 - - - 1 - 11 - 1 - 11 - 11 - 1 - - - | 1 - 11 - 1 - 1 - 11 - 1 - - - | 1 - 11 - 1 - -$$

A combinatorial proof

B(n): number of ballot sequences of length 2n

Goal: a direct combinatorial proof that $B(n) = \frac{1}{n+1} \binom{2n}{n}$

A combinatorial proof

B(n): number of ballot sequences of length 2n

Goal: a direct combinatorial proof that $B(n) = \frac{1}{n+1} \binom{2n}{n}$

Note. Let C(n) denote the number of sequences $b_1b_2 \ldots b_{2n+1}$ with n+1 occurrences of 1 and n occurrences of -1, such that $b_1+b_2+\cdots+b_i>0$, $1\leq i\leq 2n+1$ (strict ballot sequence). In particular, $b_1=1$. Then C(n)=B(n).

A combinatorial proof

B(n): number of ballot sequences of length 2n

Goal: a direct combinatorial proof that $B(n) = \frac{1}{n+1} \binom{2n}{n}$

Note. Let C(n) denote the number of sequences $b_1b_2 \dots b_{2n+1}$ with n+1 occurrences of 1 and n occurrences of -1, such that $b_1+b_2+\dots+b_i>0$, $1\leq i\leq 2n+1$ (strict ballot sequence). In particular, $b_1=1$. Then C(n)=B(n).

Proof. $b_1b_2\cdots b_{2n+1}$ is counted by C(n) if and only if $b_2b_3\cdots b_{2n+1}$ is a ballot sequence. \square

Crucial lemma

Lemma. Every sequence $b_1b_2 \cdots b_{2n+1}$ where 1 occurs n+1 times and -1 occurs n times, with $b_1=1$, has a unique cyclic shift $b_ib_{i+1}\cdots b_{2n+1}b_1\cdots b_{i-1}$ that is a strict ballot sequence.

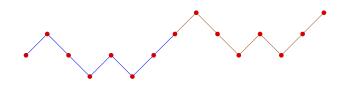
Crucial lemma

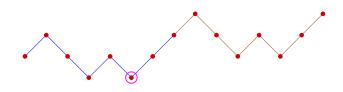
Lemma. Every sequence $b_1b_2 \cdots b_{2n+1}$ where 1 occurs n+1 times and -1 occurs n times, with $b_1 = 1$, has a unique cyclic shift $b_ib_{i+1} \cdots b_{2n+1}b_1 \cdots b_{i-1}$ that is a strict ballot sequence.

Proof #1. Induction on n. Clear for n=0. Assume for n-1. Let $\beta=b_1b_2\cdots b_{2n+1}$ be a sequence with $b_1=1$, 1 occurring n+1 times and -1 occurring n times. Let $b_j=1$, $b_{j+1}=-1$ (subscripts mod 2n+1). Remove b_j , b_{j+1} from β , obtaining β' .

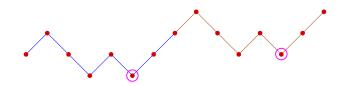
By induction, β' has a unique cyclic shift, say beginning with b_k , that is a strict ballot sequence.

Easy to check: the cyclic shift of β beginning with b_k is a strict ballot sequence, and no other cyclic shift has this property. \square





rightmost minimum



Proof that $C(n) = \frac{1}{n+1} {2n \choose n}$

• There are $\binom{2n}{n}$ sequences with 1 occurring n+1 times and -1 occurring n times, beginning with a 1.

Proof that $C(n) = \frac{1}{n+1} {2n \choose n}$

- There are $\binom{2n}{n}$ sequences with 1 occurring n+1 times and -1 occurring n times, beginning with a 1.
- There are n + 1 cyclic shifts of such a sequence beginning with a 1.

Proof that $C(n) = \frac{1}{n+1} {2n \choose n}$

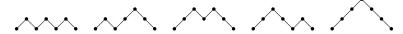
- There are $\binom{2n}{n}$ sequences with 1 occurring n+1 times and -1 occurring n times, beginning with a 1.
- There are n + 1 cyclic shifts of such a sequence beginning with a 1.
- Exactly one of these cyclic shifts is a strict ballot sequence (previous lemma).

Proof that
$$C(n) = \frac{1}{n+1} {2n \choose n}$$

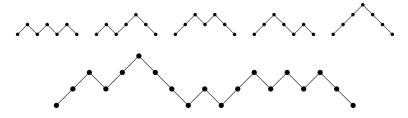
- There are $\binom{2n}{n}$ sequences with 1 occurring n+1 times and -1 occurring n times, beginning with a 1.
- There are n + 1 cyclic shifts of such a sequence beginning with a 1.
- Exactly one of these cyclic shifts is a strict ballot sequence (previous lemma).

$$\bullet \Rightarrow C(n) = \frac{1}{n+1} \binom{2n}{n} = \frac{1}{2n+1} \binom{2n+1}{n} \quad \Box$$

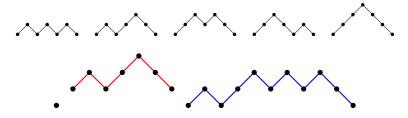
25. Dyck paths of length 2n, i.e., lattice paths from (0,0) to (2n,0) with steps (1,1) and (1,-1), never falling below the x-axis



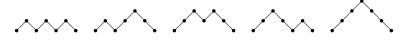
25. Dyck paths of length 2n, i.e., lattice paths from (0,0) to (2n,0) with steps (1,1) and (1,-1), never falling below the x-axis



25. Dyck paths of length 2n, i.e., lattice paths from (0,0) to (2n,0) with steps (1,1) and (1,-1), never falling below the x-axis



25. Dyck paths of length 2n, i.e., lattice paths from (0,0) to (2n,0) with steps (1,1) and (1,-1), never falling below the x-axis



Walther von Dyck (1856-1934)

Bijection with ballot sequences



For each upstep, record 1. For each downstep, record -1.

312-avoiding permutations

116. Permutations $a_1 a_2 \cdots a_n$ of $1, 2, \ldots, n$ for which there does not exist i < j < k and $a_j < a_k < a_i$ (called 312-avoiding) permutations)

123 132 213 231 321

312-avoiding permutations

116. Permutations $a_1 a_2 \cdots a_n$ of $1, 2, \ldots, n$ for which there does not exist i < j < k and $a_j < a_k < a_i$ (called 312-avoiding) permutations)

123 132 213 231 321

34251768

116. Permutations $a_1 a_2 \cdots a_n$ of $1, 2, \ldots, n$ for which there does not exist i < j < k and $a_j < a_k < a_i$ (called 312-avoiding) permutations)

123 132 213 231 321

3425 768

```
116. Permutations a_1 a_2 \cdots a_n of 1, 2, \ldots, n for which there does not exist i < j < k and a_j < a_k < a_i (called 312-avoiding) permutations)
```

3425 768 (note **red**<**blue**)

116. Permutations $a_1 a_2 \cdots a_n$ of $1, 2, \ldots, n$ for which there does not exist i < j < k and $a_j < a_k < a_i$ (called 312-avoiding) permutations)

3425 768 (note **red**<**blue**)

part of the subject of pattern avoidance

Another example of pattern avoidance:

115. Permutations $a_1 a_2 \cdots a_n$ of $1, 2, \ldots, n$ with longest decreasing subsequence of length at most two (i.e., there does not exist i < j < k, $a_i > a_j > a_k$), called **321-avoiding** permutations

123 213 132 312 231

Another example of pattern avoidance:

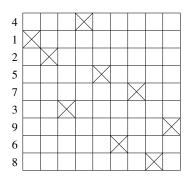
115. Permutations $a_1 a_2 \cdots a_n$ of $1, 2, \ldots, n$ with longest decreasing subsequence of length at most two (i.e., there does not exist i < j < k, $a_i > a_j > a_k$), called **321-avoiding** permutations

123 213 132 312 231

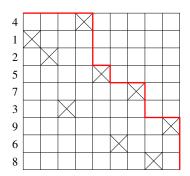
more subtle: no obvious decomposition into two pieces

w = 412573968

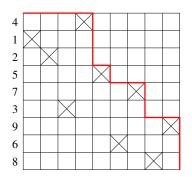
$$w = 412573968$$



$$w = 412573968$$



$$w = 412573968$$



An unexpected interpretation

```
92. n-tuples (a_1, a_2, \dots, a_n) of integers a_i \ge 2 such that in the sequence 1a_1a_2\cdots a_n1, each a_i divides the sum of its two neighbors
```

```
14321 13521 13231 12531 12341
```

remove largest; insert bar before the element to its left; continue until only 1's remain; then replace bar with 1 and an original number with -1, except last two

1 2 5 3 4 1

remove largest; insert bar before the element to its left; continue until only 1's remain; then replace bar with 1 and an original number with -1, except last two

1 | 2 5 3 4 1

remove largest; insert bar before the element to its left; continue until only 1's remain; then replace bar with 1 and an original number with -1, except last two

remove largest; insert bar before the element to its left; continue until only 1's remain; then replace bar with 1 and an original number with -1, except last two

remove largest; insert bar before the element to its left; continue until only 1's remain; then replace bar with 1 and an original number with -1, except last two

|1||2 5 |3 4 1

remove largest; insert bar before the element to its left; continue until only 1's remain; then replace bar with 1 and an original number with -1, except last two

remove largest; insert bar before the element to its left; continue until only 1's remain; then replace bar with 1 and an original number with -1, except last two

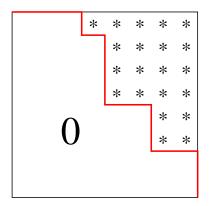
tricky to prove

A8. Algebraic interpretations

(a) Number of two-sided ideals of the algebra of all $(n-1)\times(n-1)$ upper triangular matrices over a field

A8. Algebraic interpretations

(a) Number of two-sided ideals of the algebra of all $(n-1) \times (n-1)$ upper triangular matrices over a field



Diagonal harmonics

(i) Let the symmetric group \mathfrak{S}_n act on the polynomial ring $A = \mathbb{C}[x_1, \ldots, x_n, y_1, \ldots, y_n]$ by $w \cdot f(x_1, \ldots, x_n, y_1, \ldots, y_n) = f(x_{w(1)}, \ldots, x_{w(n)}, y_{w(1)}, \ldots, y_{w(n)})$ for all $w \in \mathfrak{S}_n$. Let I be the ideal generated by all invariants of positive degree, i.e.,

$$I = \langle f \in A : w \cdot f = f \text{ for all } w \in \mathfrak{S}_n, \text{ and } f(0) = 0 \rangle.$$

Diagonal harmonics (cont.)

Then C_n is the dimension of the subspace of A/I affording the sign representation, i.e.,

$$C_n = \dim\{f \in A/I : w \cdot f = (\operatorname{sgn} w)f \text{ for all } w \in \mathfrak{S}_n\}.$$

Diagonal harmonics (cont.)

Then C_n is the dimension of the subspace of A/I affording the sign representation, i.e.,

$$C_n = \dim\{f \in A/I : w \cdot f = (\operatorname{sgn} w)f \text{ for all } w \in \mathfrak{S}_n\}.$$

Very deep proof by Mark Haiman, 1994.

Generalizations & refinements

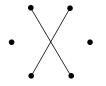
A12. k-triangulation of n-gon: maximal collections of diagonals such that no k+1 of them pairwise intersect in their interiors

k = 1: an ordinary triangulation

superfluous edge: an edge between vertices at most k steps apart (along the boundary of the n-gon). They appear in all k-triangulations and are irrelevant.

An example

Example. 2-triangulations of a hexagon (superfluous edges omitted):



Some theorems

Theorem (Nakamigawa, Dress-Koolen-Moulton). All k-triangulations of an n-gon have k(n-2k-1) nonsuperfluous edges.

Some theorems

Theorem (Nakamigawa, Dress-Koolen-Moulton). All k-triangulations of an n-gon have k(n-2k-1) nonsuperfluous edges.

Theorem (Jonsson, Serrano-Stump). The number $T_k(n)$ of k-triangulations of an n-gon is given by

$$T_k(n) = \det [C_{n-i-j}]_{i,j=1}^k$$

= $\prod_{1 \le i \le j \le n-2k} \frac{2k+i+j-1}{i+j-1}$.

Representation theory?

Note. The number $T_k(n)$ is the dimension of an irreducible representation of the symplectic group Sp(2n-4).

Representation theory?

Note. The number $T_k(n)$ is the dimension of an irreducible representation of the symplectic group Sp(2n-4).

Is there a direct connection?

Number theory

A61. Let b(n) denote the number of 1's in the binary expansion of n. Using Kummer's theorem on binomial coefficients modulo a prime power, show that the exponent of the largest power of 2 dividing C_n is equal to b(n+1)-1.

Number theory

A61. Let b(n) denote the number of 1's in the binary expansion of n. Using Kummer's theorem on binomial coefficients modulo a prime power, show that the exponent of the largest power of 2 dividing C_n is equal to b(n+1)-1.

Kummer's theorem. Let **p** be prime, $0 \le k \le n$. Then the exponent of the largest power of p dividing $\binom{n}{k}$ is equal to the number of carries in adding k and n - k.

Sums of three squares

Let f(n) denote the number of integers $1 \le k \le n$ such that k is the sum of three squares (of nonnegative integers). Well-known:

$$\lim_{n\to\infty}\frac{f(n)}{n}=\frac{5}{6}.$$

Sums of three squares

Let f(n) denote the number of integers $1 \le k \le n$ such that k is the sum of three squares (of nonnegative integers). Well-known:

$$\lim_{n\to\infty}\frac{f(n)}{n}=\frac{5}{6}.$$

A63. Let g(n) denote the number of integers $1 \le k \le n$ such that C_k is the sum of three squares. Then

$$\lim_{n\to\infty}\frac{g(n)}{n}=??.$$

Sums of three squares

Let f(n) denote the number of integers $1 \le k \le n$ such that k is the sum of three squares (of nonnegative integers). Well-known:

$$\lim_{n\to\infty}\frac{f(n)}{n}=\frac{5}{6}.$$

A63. Let g(n) denote the number of integers $1 \le k \le n$ such that C_k is the sum of three squares. Then

$$\lim_{n\to\infty}\frac{g(n)}{n}=\frac{7}{8}.$$

Why?

Theorem. A positive integer n is not the sum of three squares if and only if $n = 4^k(8m + 7)$.

Why?

Theorem. A positive integer n is not the sum of three squares if and only if $n = 4^k(8m + 7)$.

• Probability that $C_n = 4^k(2r+1)$ is $\frac{1}{2}$.

Why?

Theorem. A positive integer n is not the sum of three squares if and only if $n = 4^k(8m + 7)$.

- Probability that $C_n = 4^k(2r+1)$ is $\frac{1}{2}$.
- All congruence classes of $r \mod 4$ are equally likely (as $n \to \infty$). Thus the probability is $\frac{1}{4}$ that $r \equiv 3 \pmod 4$ (so $2r + 1 \equiv 7 \pmod 8$).

Why?

Theorem. A positive integer n is not the sum of three squares if and only if $n = 4^k(8m + 7)$.

- Probability that $C_n = 4^k(2r+1)$ is $\frac{1}{2}$.
- All congruence classes of $r \mod 4$ are equally likely (as $n \to \infty$). Thus the probability is $\frac{1}{4}$ that $r \equiv 3 \pmod 4$ (so $2r + 1 \equiv 7 \pmod 8$).

$$1 - \frac{1}{2} \cdot \frac{1}{4} = \frac{7}{8}$$

$$\sum_{n\geq 0}\frac{1}{C_n}=??$$

$$\sum_{n\geq 0} \frac{1}{C_n} = ??$$

$$1 + 1 + \frac{1}{2} + \frac{1}{5} = 2.7$$

$$\sum_{n \ge 0} \frac{1}{C_n} = 2 + \frac{4\sqrt{3}\pi}{27}$$

$$1+1+\frac{1}{2}+\frac{1}{5}=2.7$$

$$\sum_{n\geq 0} \frac{1}{C_n} = 2 + \frac{4\sqrt{3}\pi}{27}$$
$$1 + 1 + \frac{1}{2} + \frac{1}{5} = 2.7$$

$$2 + \frac{4\sqrt{3}\pi}{27} = 2.806133\cdots$$

Why?

A65.(a)

$$\sum_{n\geq 0} \frac{x^n}{C_n} = \frac{2(x+8)}{(4-x)^2} + \frac{24\sqrt{x}\sin^{-1}\left(\frac{1}{2}\sqrt{x}\right)}{(4-x)^{5/2}}.$$

Why?

A65.(a)

$$\sum_{n\geq 0} \frac{x^n}{C_n} = \frac{2(x+8)}{(4-x)^2} + \frac{24\sqrt{x}\sin^{-1}\left(\frac{1}{2}\sqrt{x}\right)}{(4-x)^{5/2}}.$$

Sketch of solution. Calculus exercise: let

$$y = 2\left(\sin^{-1}\frac{1}{2}\sqrt{x}\right)^2.$$

Then
$$y = \sum_{n \ge 1} \frac{x^n}{n^2 \binom{2n}{n}}$$
.

Recall

$$y = 2\left(\sin^{-1}\frac{1}{2}\sqrt{x}\right)^2 = \sum_{n\geq 1}\frac{x^n}{n^2\binom{2n}{n}}.$$

Recall

$$y = 2\left(\sin^{-1}\frac{1}{2}\sqrt{x}\right)^2 = \sum_{n\geq 1}\frac{x^n}{n^2\binom{2n}{n}}.$$

$$\frac{d}{dx}y = \sum_{n \ge 1} \frac{x^{n-1}}{n\binom{2n}{n}}$$

Recall

$$y = 2\left(\sin^{-1}\frac{1}{2}\sqrt{x}\right)^2 = \sum_{n\geq 1}\frac{x^n}{n^2\binom{2n}{n}}.$$

$$x\frac{d}{dx}y = \sum_{n \ge 1} \frac{x^n}{n\binom{2n}{n}}$$

Recall

$$y = 2\left(\sin^{-1}\frac{1}{2}\sqrt{x}\right)^2 = \sum_{n\geq 1}\frac{x^n}{n^2\binom{2n}{n}}.$$

$$\frac{d}{dx}x\frac{d}{dx}y = \sum_{n\geq 1} \frac{x^{n-1}}{\binom{2n}{n}}$$

Recall

$$y = 2\left(\sin^{-1}\frac{1}{2}\sqrt{x}\right)^2 = \sum_{n>1}\frac{x^n}{n^2\binom{2n}{n}}.$$

$$x^{2} \frac{d}{dx} x \frac{d}{dx} y = \sum_{n \ge 1} \frac{x^{n+1}}{\binom{2n}{n}}$$

Recall

$$y = 2\left(\sin^{-1}\frac{1}{2}\sqrt{x}\right)^2 = \sum_{n>1}\frac{x^n}{n^2\binom{2n}{n}}.$$

$$\frac{d}{dx}x^{2}\frac{d}{dx}x\frac{d}{dx}y = \sum_{n\geq 1} \frac{(n+1)x^{n}}{\binom{2n}{n}}$$

Recall

$$y = 2\left(\sin^{-1}\frac{1}{2}\sqrt{x}\right)^2 = \sum_{n>1}\frac{x^n}{n^2\binom{2n}{n}}.$$

Note that:

$$\frac{d}{dx}x^{2}\frac{d}{dx}x\frac{d}{dx}y = \sum_{n\geq 1} \frac{(n+1)x^{n}}{\binom{2n}{n}}$$
$$= -1 + \sum_{n\geq 0} \frac{x^{n}}{C_{n}},$$

etc.

The last slide

The last slide

The last slide

