Some Recent Work on Special Polytopes

Richard P. Stanley

M.I.T.
Descent polytopes

$S \subseteq [n - 1] = \{1, 2, \ldots, n - 1\}$

Descent polytope $\text{DP}_S \subset \mathbb{R}^n$:

$0 \leq x_i \leq 1$

$x_i \geq x_{i+1}$ if $i \in S$

$x_i \leq x_{i+1}$ if $i \notin S$

Same as order polytope $O(Z_S)$ of zigzag poset Z_S.

Some Recent Work on Special Polytopes – p.
Example of zigzag poset

\[n = 9, \quad S = \{3, 6, 7\} \]

\[\mathcal{O}(Z_S) = \{\text{order-preserving maps } f : Z_S \to [0, 1]\} \]
Volume and Ehrhart polynomial of DP_S follows from theory of P-partitions. In particular, let $w = a_1 \cdots a_n \in \mathfrak{S}_n$ and define

$$D(w) = \{ i : a_i > a_{i+1} \} \subseteq [n-1],$$

the **descent set** of w. Define

$$\beta_n(S) = \# \{ w \in \mathfrak{S}_n : D(w) = S \}.$$
Combinatorics of DP_S

Volume and Ehrhart polynomial of DP_S follows from theory of P-partitions. In particular, let $w = a_1 \cdots a_n \in \mathfrak{S}_n$ and define

$$D(w) = \{i : a_i > a_{i+1}\} \subseteq [n - 1],$$

the **descent set** of w. Define

$$\beta_n(S) = \#\{w \in \mathfrak{S}_n : D(w) = S\}.$$

Theorem. $\text{vol}(\text{DP}_S) = \frac{\beta_n(S)}{n!}$
The f-vector of DP_S:

$(f_0, f_1, \ldots, f_{n-1})$: f-vector of DP_S, i.e., f_i is the number of i-dimensional faces. Set $f_n = 1$.

Define the f-polynomial $F_S(t) = \sum_{i=0}^{n} f_i t^i$.

x, y: noncommuting variables

For $S \subseteq [n - 1]$ define $v_S = v_1 \cdots v_{n-1}$, where

$$v_i = \begin{cases}
 x, & \text{if } i \not\in S \\
 y, & \text{if } i \in S.
\end{cases}$$
A generating function

\[\Phi_n(x, y) := \sum_{S \subseteq [n-1]} F_S(t) v_S \]
A generating function

\[\Phi_n(x, y) := \sum_{S \subseteq [n-1]} F_S(t) v_S \]

\[\Phi(x, y) = \sum_{n \geq 1} \Phi_n(x, y) \]

\[= (2 + t) + (3 + 3t + t^2)(x + y) + \cdots. \]

E.g., \(n = 2, S = \emptyset \): \(0 \leq x_1 \leq x_2 \leq 1 \), a triangle, so coefficient of \(x \) is \(3 + 3t + t^2 \).
Theorem. \(\Phi(x, y) = \)

\[
\left(1 + \frac{t + 1}{1 - (t + 1) \left((1 - y)^{-1}x + (1 - x)^{-1}y\right)} \right) \cdot \frac{1}{1 - x - y}.
\]
Let $T = \{a_0 < \cdots < a_k\} \subseteq [0, n - 1]$. Define

$$\alpha_S(T) = \# \{ F_0 \subset F_1 \subset \cdots \subset F_k : \dim F_i = a_i \}.$$

Call α_S the flag f-vector of DP_S.
Let $T = \{a_0 < \cdots < a_k\} \subseteq [0, n - 1]$. Define

$$\alpha_S(T) = \# \{ F_0 \subset F_1 \subset \cdots \subset F_k : \dim F_i = a_i \}.$$

Call α_S the **flag f-vector** of DP_S.

Open. Is there a “nice” generating function for $\alpha_S(T)$’s (or equivalently, the flag h-vector of cd-index) generalizing Chebikin’s theorem?
Origin (Postnikov & RS): Let

\[M_n = x_{12} x_{23} \cdots x_{n-1,n}. \]

Continually apply

\[x_{ij} x_{jk} \rightarrow x_{ik} (x_{ij} + x_{jk}), \]

ending with \(P_n(x_{ij}) \).
Example.

\[x_{12} x_{23} x_{34} \rightarrow x_{13} x_{12} x_{34} + x_{13} x_{23} x_{34} \]
\[\rightarrow x_{14} x_{13} x_{12} + x_{14} x_{34} x_{12} \]
\[+ x_{14} x_{13} x_{23} + x_{14} x_{34} x_{23} \]
\[\rightarrow x_{14} x_{13} x_{12} + x_{14} x_{34} x_{12} \]
\[+ x_{14} x_{13} x_{23} + x_{14} x_{24} x_{23} + x_{14} x_{24} x_{34} \]
\[= P_3(x_{ij}). \]
The polynomials $P_n(x_{ij})$ depend on the sequence of operations. However:

Theorem. $P_n(1;1;\ldots;1) = C_n = \frac{1}{n+1}$, a Catalan number.
Invariance of $P_n(x_{ij})$

The polynomials $P_n(x_{ij})$ depend on the sequence of operations. However:

Theorem. $P_n(1, 1, \ldots, 1) = C_n = \frac{1}{n+1} \binom{2n}{n}$, a Catalan number.
Full root polytopes

e_i: ith unit vector in \mathbb{R}^{n+1}

A_n^+: the positive roots

\[\{ e_i - e_j : 1 \leq i < j \leq n + 1 \} \]

full root polytope $\mathcal{P}(A_n^+)$: convex hull of A_n^+ and the origin in \mathbb{R}^{n+1} (Gelfand-Graev-Postnikov)
Root polytopes

T: a tree on the vertex set $[n + 1]$

root polytope $\mathcal{P}(T)$ (of type A_n): intersection of $\mathcal{P}(A_n^+)$ with the cone generated by $e_i - e_j$, where $ij \in E(T)$, $i < j$
A graph G on $[n + 1]$ is **noncrossing** if \forall vertices $i < j < k < l$ such that $ik \in E(G)$ and $jl \in E(G)$.

G is **alternating** if \forall $i < j < k$ such that $ij \in E(G)$ and $jk \in E(G)$.
A graph G on $[n + 1]$ is \textbf{noncrossing} if \forall vertices $i < j < k < l$ such that $ik \in E(G)$ and $jl \in E(G)$. G is \textbf{alternating} if \forall $i < j < k$ such that $ij \in E(G)$ and $jk \in E(G)$.

\begin{figure}
\centering
\begin{tikzpicture}
 \node [vertex] (1) at (0,0) {1};
 \node [vertex] (2) at (1,0) {2};
 \node [vertex] (3) at (2,0) {3};
 \node [vertex] (4) at (3,0) {4};
 \node [vertex] (5) at (4,0) {5};
 \node [vertex] (6) at (5,0) {6};
 \node [vertex] (7) at (6,0) {7};
 \node [vertex] (8) at (7,0) {8};

 \draw [thick] (1) .. controls (0.5,1) and (1.5,1) .. (2);
 \draw [thick] (2) .. controls (2.5,1) and (3.5,1) .. (3);
 \draw [thick] (3) .. controls (4.5,1) and (5.5,1) .. (4);
 \draw [thick] (4) .. controls (5.5,1) and (6.5,1) .. (5);
 \draw [thick] (5) .. controls (6.5,1) and (7.5,1) .. (6);
 \draw [thick] (6) .. controls (7.5,1) and (8.5,1) .. (7);
 \draw [thick] (7) .. controls (8.5,1) and (9.5,1) .. (8);
\end{tikzpicture}
\end{figure}
Some notation

\overline{G}: graph with vertex set $[n + 1]$ and edge set

$\{ij : \exists \ i i_1, i_1 i_2, \ldots, i_k j \in E(G), \ i < i_1 < \cdots < i_k < j\}$,

the **transitive closure** of G
Some notation

\overline{G}: graph with vertex set $[n + 1]$ and edge set

$\{ij : \exists i i_1, i_1 i_2, \ldots, i_k j \in E(G), i < i_1 < \cdots < i_k < j\}$,

the **transitive closure** of G

T: a noncrossing tree on $[n + 1]$

T_1, \ldots, T_k: noncrossing, alternating spanning trees of \overline{T}
Theorem. The root polytopes $\mathcal{P}(T_1), \ldots, \mathcal{P}(T_k)$ are n-simplices with disjoint interior and union $\mathcal{P}(T)$. Moreover,

$$\text{vol } \mathcal{P}(T) = \frac{f_T}{n!},$$

where f_T is the number of noncrossing alternating spanning trees of \overline{T}.
Theorem. The root polytopes $\mathcal{P}(T_1), \ldots, \mathcal{P}(T_k)$ are n-simplices with disjoint interior and union $\mathcal{P}(T)$. Moreover,

$$\text{vol } \mathcal{P}(T) = \frac{f_T}{n!},$$

where f_T is the number of noncrossing alternating spanning trees of T.

(several generalizations)
Example

\[\text{vol } \mathcal{P}(T) = \frac{2}{3!} \]
Yang-Baxter algebras

Proof of theorem: $B(A_n)$: quasi-classical Yang-Baxter algebra (Anatol Kirillov). It is an associative algebra over $\mathbb{Q}[\beta]$ (β a central indeterminate) generated by

$$\{x_{ij} : 1 \leq i < j \leq n + 1\},$$

with relations

$$x_{ij} x_{jk} = x_{ik} x_{ij} + x_{jk} x_{ik} + \beta x_{ik},$$
$$x_{ij} x_{kl} = x_{kl} x_{ij}, \text{ if } i, j, k, l \text{ are distinct.}$$
$S(A_n)$: subdivision algebra (Meszaros). It is made commutative, i.e.,

$$x_{ij} x_{kl} = x_{kl} x_{ij} \text{ for all } i, j, k, l.$$
Reduction rule

Treat the first relation as a **reduction rule**:

\[x_{ij} x_{jk} \rightarrow x_{ik} x_{ij} + x_{jk} x_{ik} + \beta x_{ik}. \]
Treat the first relation as a **reduction rule**:

\[x_{ij} x_{jk} \rightarrow x_{ik} x_{ij} + x_{jk} x_{ik} + \beta x_{ik}. \]
A **reduced form** of the monomial m in $\mathcal{B}(A_n)$ or $S(A_n)$ is a polynomial obtained from m by applying successive reductions until no longer possible.
A reduced form of the monomial m in $\mathcal{B}(A_n)$ or $S(A_n)$ is a polynomial obtained from m by applying successive reductions until no longer possible.

For $S(A_n)$ and $\beta = 0$, same as reduction of Postnikov and RS.
A reduction redux

\[x_{12}x_{23}x_{34} \rightarrow x_{13}x_{12}x_{34} + x_{13}x_{23}x_{34} \]

\[\rightarrow x_{14}x_{13}x_{12} + x_{14}x_{34}x_{12} \]

\[\quad + x_{14}x_{13}x_{23} + x_{14}x_{34}x_{23} \]

\[\rightarrow x_{14}x_{13}x_{12} + x_{14}x_{34}x_{12} \]

\[\quad + x_{14}x_{13}x_{23} + x_{14}x_{24}x_{23} + x_{14}x_{24}x_{34} \]

\[= P_3(x_{ij}). \]
Reduced form of a graph monomial

\(G \): graph on vertex set \([n + 1]\)

\[m_G = \prod_{ij \in E(G)} x_{ij} \in S(A_n) \]
Reduced form of a graph monomial

Theorem. Let T be a noncrossing tree on $[n + 1]$ and P_T a reduced form of m_G. Then

$$P_T(x_{ij} = 1, \beta = 0) = f_T,$$

the number of noncrossing alternating spanning trees of \overline{T}.
Relation to root polytopes

The monomials appearing in the reduced form $P_T(x_{ij}, \beta = 0)$ correspond to the facets in a triangulation of $P(A_n)$.
The monomials appearing in the reduced form $P_T(x_{ij}, \beta = 0)$ correspond to the facets in a triangulation of $\mathcal{P}(A_n)$.

\[x_{12}x_{23} \rightarrow x_{12}x_{13} + x_{23}x_{13} \]
Interior faces of $\mathcal{P}(A_n)$

The interior faces (not necessarily facets) of $\mathcal{P}(A_n)$ correspond to the terms in the reduced form of $P_T(x_{ij}, \beta)$.
The interior faces (not necessarily facets) of $\mathcal{P}(A_n)$ correspond to the terms in the reduced form of $P_T(x_{ij}, \beta)$.

$$x_{12}x_{23} \rightarrow x_{12}x_{13} + x_{23}x_{13} + \beta x_{13}$$

Some Recent Work on Special Polytopes – p. 25
In the ring $\mathcal{B}(A_n)$, the reduced form of any monomial m is **unique** (up to commutations).

Proof uses noncommutative Gröbner bases.
In the ring $\mathcal{B}(A_n)$, the reduced form of any monomial m is **unique** (up to commutations). Proof uses noncommutative Gröbner bases.

Similar results to $S(A_n)$ for a combinatorial interpretation of the monomials appearing in a reduced form.
Noncommutative version

In the ring $\mathcal{B}(A_n)$, the reduced form of any monomial m is **unique** (up to commutations).

Proof uses noncommutative Gröbner bases.

Similar results to $S(A_n)$ for a combinatorial interpretation of the monomials appearing in a reduced form.

Many generalizations . . .
Matching polytopes

Ricky Liu, graduate student, M.I.T.

\(G = (V, E) \): a graph; \(n = \# E \)

\(M_G \): matching polytope of \(G \), i.e.,

\[
M_G = \left\{ w : E \rightarrow \mathbb{R}_{\geq 0} \mid \forall v \in V \sum_{e \in \text{out}(v)} w(e) \leq 1 \right\} \subseteq \mathbb{R}^n.
\]
Vertices of M_G

Matching M: a set of vertex-disjoint edges. If $L \subseteq E$, define $\chi_L \in M_G$ by

$$
\chi_L(e) = \begin{cases}
1, & e \in L \\
0, & e \notin L.
\end{cases}
$$

Note. M_G has integer vertices if and only if G is bipartite. In that case, the vertices are χ_M, where M is a matching of G.

Some Recent Work on Special Polytopes – p. 28
Vertices of M_G

matching M: a set of vertex-disjoint edges

If $L \subseteq E$, define $\chi_L \in M_G$ by

$$\chi_L(e) = \begin{cases}
1, & e \in L \\
0, & e \notin L.
\end{cases}$$

Note. M_G has integer vertices if and only if G is bipartite. In that case, the vertices are χ_M, where M is a matching of G.

Corollary. G bipartite \Rightarrow

$$V(G) := n! \cdot \text{vol}(M_G) \in \mathbb{Z}$$
\(H = \text{graph, } u, v \in V(H), u \neq v \)

\(G \): adjoin pendant edges \(uu' \), \(vv' \) (so \(u' \), \(v' \) are endpoints)

\(G_1 \): adjoin pendant edge \(uu' \) and an edge \(uv \)

\(G_2 \): adjoin pendant edge \(vv' \) and an edge \(uv \)
Leaf recurrence

\[f(G) = f(G_1) + f(G_2) \]

Some Recent Work on Special Polytopes – p. 30
Leaf recurrence

\[f : \mathcal{F} \rightarrow \mathbb{R} \] satisfies the leaf recurrence if

\[f(G) = f(G_1) + f(G_2). \]
Volume of M_G

Theorem. There is a unique $f : \mathcal{F} \rightarrow \mathbb{R}$:

For the star $T = K_n; 1$, we have $f(T) = 1$.

If G_1 and G_2 are disjoint, $\#V(G_1) = m$, and $\#V(G_2) = n - m$, then $f(G_1 + G_2) = n - m f(G_1) f(G_2)$.

f satisfies the leaf recurrence.

Then $f(G) = V(G)$.

Some Recent Work on Special Polytopes – p. 31
Volume of M_G

Theorem. There is a unique $f : \mathcal{F} \to \mathbb{R}$:

- For the star $T = K_{n,1}$, we have $f(T) = 1$.

If G_1 and G_2 are disjoint, $\#V(G_1) = m$, and $\#V(G_2) = n$, then

\[f(G_1 + G_2) = n \cdot m \cdot f(G_1) \cdot f(G_2) \]

$satisfies the leaf recurrence. Then $f(G) = V(G)$.

Some Recent Work on Special Polytopes – p. 31
Volume of M_G

Theorem. There is a unique $f : \mathcal{F} \to \mathbb{R}$:

- For the star $T = K_{n,1}$, we have $f(T) = 1$.
- If G_1 and G_2 are disjoint, $\#V(G_1) = m$, and $\#V(G_2) = n - m$, then

$$f(G_1 + G_2) = \binom{n}{m} f(G_1) f(G_2).$$
Theorem. There is a unique $f : \mathcal{F} \to \mathbb{R}$:

- For the star $T = K_{n,1}$, we have $f(T) = 1$.
- If G_1 and G_2 are disjoint, $\#V(G_1) = m$, and $\#V(G_2) = n - m$, then
 $$f(G_1 + G_2) = \binom{n}{m} f(G_1) f(G_2).$$
- f satisfies the leaf recurrence.
Volume of M_G

Theorem. There is a unique $f : \mathcal{F} \to \mathbb{R}$:

- For the star $T = K_{n,1}$, we have $f(T) = 1$.
- If G_1 and G_2 are disjoint, $\#V(G_1) = m$, and $\#V(G_2) = n - m$, then
 \[f(G_1 + G_2) = \binom{n}{m} f(G_1) f(G_2). \]
- f satisfies the leaf recurrence.

Then $f(G) = V(G)$.

Some Recent Work on Special Polytopes – p. 31
Theorem. The previous theorem can be used to compute $V(F)$ for any forest F.
\mathcal{B}: the set of unit squares in \mathbb{R}^2 with centers (i, j), $i, j \geq 1$. Denote also by (i, j) the unit square with center (i, j).
\mathcal{B}: the set of unit squares in \mathbb{R}^2 with centers (i, j), $i, j \geq 1$. Denote also by (i, j) the unit square with center (i, j).

Diagram D: a finite subset of \mathcal{B}
\(\mathcal{B} \): the set of unit squares in \(\mathbb{R}^2 \) with centers \((i, j)\), \(i, j \geq 1\). Denote also by \((i, j)\) the unit square with center \((i, j)\).

Diagram \(D \): a finite subset of \(\mathcal{B} \)

```
13

31 32 33

16

25

35 36
```
Row and column stabilizers

\(D \): diagram with \(n \) boxes, ordered in some way

\(\mathfrak{S}_n \) acts on \(D \)
Row and column stabilizers

D: diagram with n boxes, ordered in some way

\mathfrak{S}_n acts on D

R_D (C_D): subgroup of \mathfrak{S}_n stabilizing each row (column) of D

$$R(D) = \sum_{w \in R_D} w, \quad C(D) = \sum_{w \in C_D} \text{sgn}(w)w$$
The Specht module S^D (over \mathbb{C}) is the left ideal

$$S^D = \mathbb{C}[\mathfrak{S}_n]C(D)R(D)$$

of $\mathbb{C}[\mathfrak{S}_n]$.
The Specht module S^D (over \mathbb{C}) is the left ideal

$$S^D = \mathbb{C}[\mathfrak{S}_n] C(D) R(D)$$

of $\mathbb{C}[\mathfrak{S}_n]$.

Note. S^D affords a representation of \mathfrak{S}_n by left multiplication.
Note. If D is the (Young) diagram of a partition λ of n, then S^D is irreducible. Conversely, if S^D is irreducible, then $S^D \cong S^{D'}$ for the diagram D' of some partition.
Note. If \(D \) is the (Young) diagram of a partition \(\lambda \) of \(n \), then \(S^D \) is irreducible. Conversely, if \(S^D \) is irreducible, then \(S^D \cong S^{D'} \) for the diagram \(D' \) of some partition.
Let $V(F) = A \cup B$, so that all edges are between A and B. Label the A-vertices $1, \ldots, m$ and B-vertices $1, \ldots, n$. Let

$$D(F) = \{(i, j) : ij \in E(F), i \in A, j \in B\}.$$
The diagram of a forest \(F \)

Let \(V(F) = A \cup B \), so that all edges are between \(A \) and \(B \). Label the \(A \)-vertices \(1, \ldots, m \) and \(B \)-vertices \(1, \ldots, n \). Let

\[
D(F) = \{(i, j) : ij \in E(F), \ i \in A, \ j \in B\}.
\]
The Specht module of $D(F)$

Note. $S^{D(F)}$ is independent (up to isomorphism) of the labeling.
The Specht module of $D(F)$

Note. $S^{D(F)}$ is independent (up to isomorphism) of the labeling.

Theorem. $\dim S^{D(F)} = V(F)$
The Specht module of $D(F)$

Note. $S^{D(F)}$ is independent (up to isomorphism) of the labeling.

Theorem. $\dim S^{D(F)} = V(F)$

Note for experts. The diagrams $D(F)$ are **not** %-avoiding diagrams in the sense of Reiner and Shimozono.
Decomposition of $S^D(F)$

How does the Specht module $S^D(F)$ decompose into irreducible representations of \mathfrak{S}_n?
How does the Specht module $S^D(F)$ decompose into irreducible representations of \mathbb{S}_n?

Recall the leaf recurrence

$$f(G) = f(G_1) + f(G_2)$$

with initial conditions $f(K_{n,1}) = 1$.
Theorem. For a forest F, $f(F)$ is well-defined, and

$$f(F) = \text{ch } S^D(F).$$
Theorem. For a forest F, $f(F)$ is well-defined, and

$$f(F) = \text{ch}\, S^D(F).$$

In other words, if

$$f(F) = \sum_{\lambda \vdash n} c_\lambda s_\lambda,$$

where s_λ is a Schur function, then c_λ is the multiplicity of the irreducible representation of \mathfrak{S}_n indexed by λ in $S^D(F)$.
The Ehrhart polynomial of M_F? Does it have any representation-theoretic significance?