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| Visible facets

P: a d-dimensional convex polytope in R?
Certain facets of P are visible from points v € R,



| Visible facets

P: a d-dimensional convex polytope in R?
Certain facets of P are visible from points v € R,

no ff_ic_ets are
visible

® greenfacetsarevisble

—




I The visibility arrangement

aff (S): the affine span of a subset S c R
visibility arrangement

vis(P) = {aff (I") : I is a facet of P}

—



I The visibility arrangement

aff (S): the affine span of a subset S c R
visibility arrangement
vis(P) = {aff (F') : F is a facet of P}

Regions of vis(P) correspond to sets of facets
that are visible from some point v € R,

—



| An example




| Number of regions

v(P): number of regions of vis(P), i.e., the
number of visibility sets of P

x A(q): characteristic polynomial of the
arrangement A

Zaslavsky’s theorem. Number of regions of A Is
(—1)"xa(=1).

—



| Number of regions

v(P): number of regions of vis(P), i.e., the
number of visibility sets of P

x.A(q): characteristic polynomial of the
arrangement A

Zaslavsky’s theorem. Number of regions of A Is
(—1)"xa(=1).

In general, v(P) and x.isp)(¢) are hard to

compute.



| A simple example




| A simple example

For any facet ', can see either F', —F', or neither.

—



| The 2-cube




| Line shellings

Let p € int(P) (interior of P)

Line shelling based at p: let L be a directed line
from p. Let F}, F5, ..., F}. be the order in which
facets become visible along L, followed by the
order in which they become invisible from oo
along the other half of L.

Assume L Is sufficiently generic so that no two
facets become visible or invisible at the same

time.



| Example of a line shelling




| The line shelling arrangment

Is(P, p): hyperplanes are

» affine span of p with aff(Fy) N aff(Fy) # 0,
where F;, F, are distinct facets

o if aff(Fy) N aff(Fy) = 0, then the hyperplane
through p parallel to Fi, F5

—



I The line shelling arrangment

Is(P, p): hyperplanes are

» affine span of p with aff(Fy) N aff(Fy) # 0,
where F;, F, are distinct facets

o if aff(Fy) N aff(Fy) = 0, then the hyperplane
through p parallel to Fi, F5

Line shellings at p are in bijection with regions of

Is(P, p).
—



A nongeneric example

2N
p IS not generic: ap = bp (10 line shellings at p) |



I A generic example

7

One hyperplane for every pair of facets (12 line |
shellings at p)



| Geometric lattices

L: geometric lattice , e.qg., the intersection poset
of a central hyperplane arrangement

|attice of flats |



| Upper truncation

T*(L): L with top % levels (excluding the
maximum element) removed, called the kth
truncation of L.

lattice L of flats of four TYL) |
Independent points



| Upper truncation (cont.)

T*(L) is still a geometric lattice (easy).




| Lower truncation

What if we remove the bottom £ levels of L
(excluding the minimal element)? Not a
geometric lattice If rank Is at least three.



| Lower truncation

What if we remove the bottom £ levels of L
(excluding the minimal element)? Not a
geometric lattice If rank Is at least three.

Want to “fill in” the £th lower truncation with as
many new elements as possible without adding
new elements of rank one, increasing the rank of
L, or altering the partial order relation of L.

—



L ower truncation Is “bad”

lattice L of flats of four not a geometric lattice

Independent points



An example of “filling In”

D1(By)



| The Dilworth truncation

Matroidal definition: Let M be a matroid on a
set £ ofrankn, and let1 < k < n. The kth

Dilworth truncation Dy (M) has ground set
(.%,). and independent sets

E
7= {]C (k+1> . rank (pLEJ],p) > 4T 4k

V)£ T C 1},



| Geometric lattices

Dy (M) “transfers” to Dy (L), where L is a
geometric lattice.

rank(L) = n = Dy(L) is a geometric lattice of
rank n — k whose atoms are the elements of L of
rank k£ + 1.

—



| Geometric lattices

Dy (M) “transfers” to Dy (L), where L is a
geometric lattice.

rank(L) = n = Dy(L) is a geometric lattice of
rank n — k whose atoms are the elements of L of
rank k£ + 1.

Detalls not explained here.

—



| First Dilworth truncation of B,,

L = B,,, the boolean algebra of rank n (lattice of
flats of the matroid F;, of n independent points)

D1 (B,) is a geometric lattice of rank n — 1 whose
atoms are the 2-element subsets of an n-set.

—



| First Dilworth truncation of B,,

L = B,,, the boolean algebra of rank n (lattice of
flats of the matroid F;, of n independent points)

D1 (B,) is a geometric lattice of rank n — 1 whose
atoms are the 2-element subsets of an n-set.

Dy (B,,) = II,, (lattice of partitions of an n-set)

Dy (F,) is the braid arrangement =, = x;,

1 <1< <n



I Back to vis(P) and 1s(P, p)

A. an arrangement in R with hyperplanes
vi-x=a; 0#+v,eR", o, eR, 1<i<m.

semicone sc(A) of A: arrangement in R™*! (with
new coordinate y) with hyperplanes

Vi« L = Y, 1§Z§m

—



I Back to vis(P) and 1s(P, p)

A. an arrangement in R with hyperplanes
vi-x=a; 0#+v,eR", o, eR, 1<i<m.

semicone sc(A) of A: arrangement in R™*! (with
new coordinate y) with hyperplanes

Vi« L = Y, 1§Z§m

NOTE (for cognoscenti): do not confuse sc(.A)
with the cone c¢(.A), which has the additional

hyperplane y = 0. |



I Example of a semicone

X=3y X=y
sc(A)

x=0



| Main result

Theorem. Let p € int(P) be generic. Then

LlS(P,p) = Dl (LSC(ViS(P)) ) -



| Main result

Theorem. Let p € int(P) be generic. Then

LIS(P,p) = Dl (LSC(ViS(P)) ) .

Proof omitted here, but straightforward.



| The n-cube

Let P be an n-cube. Can one describe in a
reasonable way Liyp ) and/or xisp ) (q)?



| The n-cube

Let P be an n-cube. Can one describe in a
reasonable way Liyp ) and/or xisp ) (q)?

Let P have vertices (ai,...,a,), a; =0, 1. If

p=(%2,...,3), then Is(P, p) is isomorphic to the

Coxeter arrangement of type B,,, with

Xispp) (@) = (@—=1)(g—=3)---(¢g—(2n—1))

r(Is(P,p)) = 2"nl



| The 3-cube




| The 3-cube




| The 3-cube

Let p be generic. Then

(@) = qlg— 1)(¢* — 14g+ 53), r =136 =2°-17.

—



| The 3-cube

Let p be generic. Then

(@) = qlg— 1)(¢* — 14g+ 53), r =136 =2°-17.

Total number of line shellings of the 3-cube Is |
288. Total number of shellings is 480.



| Three asides

1. Let f(n) be the total number of shellings of
the n-cube. Then




| Three asides

1. Let f(n) be the total number of shellings of
the n-cube. Then

x" 1
2=

"n!

2. Total number of line shellings of the n-cube Is
212,

—



| Three asides

1. Let f(n) be the total number of shellings of
the n-cube. Then

" 1
Zf(n)a =1 S 20

“nl

2. Total number of line shellings of the n-cube Is
212,

3. Total number of line shellings of the n-cube
where the line L passes through the center Is
2"nl.



| Two more asides

4. Every shelling of the n-cube (), can be
realized as a line shelling of a polytope
combinatorially equivalent to C,, (M. Develin).




| Two more asides

4. Every shelling of the n-cube (), can be
realized as a line shelling of a polytope
combinatorially equivalent to C,, (M. Develin).

5. Total number of line shellings of the n-cube
where the line L passes through a generic

point p: open.

—



| Two conseqguences

» The number of line shellings from a generic
p € int(P) depends only on which sets of
facet normals of P are linearly independent,
l.e., matroid structure of vis(P).



| Two consequences

» The number of line shellings from a generic
p € int(P) depends only on which sets of
facet normals of P are linearly independent,
i.e., matroid structure of vis(P).

Recall Minkowski’'s theorem : There exists a
convex d-polytope with outward facet normals

v, ..., U, and corresponding facet

(d — 1)-dimensional volumes ¢y, . .., ¢, if and only
If the v,’s span a d-dimensional space and

Zcivi = 0. |



| Second.consequence

» P: d-polytope with m facets, p € int(P)

c(n, k). signless Stirling number of first kind
(number of w € G,, with k cycles)

hen

Is(P,p) < 2(c(m,m —d+ 1)+ c(m,m —d+ 3)

+c(m,m —d+5)+--)

(best possible).



| Proof.

Immediate from
T'’D, = D, T’

(upper and lower truncation commute).



| Proof.

Immediate from
T’ Dy, = D;, T’
(upper and lower truncation commute).

Here we apply D77 to the boolean algebra B,
and use DB, = 11,,.

—



| Many further directions

We can extend the
result

Listp py = D1(Lyigp))
to any (hyperplane) arrangement.



| Many further directions

We can extend the

result
Lls(P,p) = Dy (LViS(P))

to any (hyperplane) arrangement.
A any (finite) arrangement in R”
p. any point notonany H € A

L: sufficiently generic directed line through p

—



| Valid orders

H,, H,,...,H;: order in which hyperplanes are
crossed by L coming in from oo



| Valid orders

H,, H,,...,H;: order in which hyperplanes are
crossed by L coming in from oo

Call this a valid order of (A, p).



|_Anexample
. \

valid order: 3,4, 1, 2,5




| The valid order arrangment

vo(A, p): hyperplanes through p and every
Intersection of two hyperplanes in A, together
with all hyperplanes through p parallel to (at
least) two hyperplanes of A



I The valid order arrangment

vo(A, p): hyperplanes through p and every
Intersection of two hyperplanes in A, together
with all hyperplanes through p parallel to (at
least) two hyperplanes of A




I The valid order arrangment

vo(A, p): hyperplanes through p and every
Intersection of two hyperplanes in A, together
with all hyperplanes through p parallel to (at
least) two hyperplanes of A

-




| The Dilworth truncation of A4

The regions of vo(.A, p) correspond to valid
orders of hyperplanes by lines through p (easy).

Theorem. Let p be generic. Then

Lyoap) = L, (se(A))-



| The Dilworth truncation of A4

The regions of vo(.A, p) correspond to valid
orders of hyperplanes by lines through p (easy).

Theorem. Let p be generic. Then

Lyoap) = L, (se(A))-

Note that right-hand side is independent of p.

—



| m-planes

Rather than a line through p, pick an m-plane P
through m generic points py, ..., p,,. For
“sufficiently generic” P, get a “maximum size”
Induced arrangement

Ap={HNP : He A}
n P.

Define vo(.A; p1, ..., pmn) to consist of all
hyperplanes passing through pq, ..., p, and

every Intersection of m 4+ 1 hyperplanes of A
(including “intersections at oo”). |



| mth Dilworth truncation

Theorem. If pi,...,p,, are generic, then

LVO(ABZ?la---apm) = LDm(SC(‘A)) '



| mth Dilworth truncation

Theorem. If pi,...,p,, are generic, then

LVO(A;plr"?pm) = LDm (sc(A))-

Proof Is straightforward.



| Non-generic base points

For simplicity, consider only the original case
m = 1. Recall:

Lyoap) = LD, (se(A))-

What If p IS not generic?



| Non-generic base points

For simplicity, consider only the original case
m = 1. Recall:

Lyoap) = LD, (se(A))-
What If p IS not generic?

Then we get “smaller” arrangements than the
generic case.

We obtain a polyhedral subdivision of R"
depending on which arrangement corresponds to

; o



| An example

Numbers are number of line shellings from points

In the interior of the face. |



| Order polytopes

P ={t,...,ts}: aposet (partially ordered set)

Order polytope of P:

{(x1,...,xd)ERd 0<z; <x; <1ift; <15}

|



| Generalized chromatic polynomials

G finite graph with vertex set V

P—{1,23, ...}
o:V — 2 such that #o(v) < 0o, Yo € V

Xc,o(q), ¢ € P: number of proper colorings
f:V —4{1,2,...,q} such that

flv) € o(v), Yo eV

—



| Generalized chromatic polynomials

G finite graph with vertex set V

P—{1,23, ...}
o:V — 2 such that #o(v) < 0o, Yo € V

Xc.o(q), ¢ € P: number of proper colorings
f:V —4{1,2,...,q} such that

flv) € o(v), Yo eV

Each f is a list coloring , but the definition of
Yc.o(q) seems to be new. |



I The arrangement. Ag

d=#V =#{v,..., v}
Ac.o: the arrangement in R? given by

r; = xj, if v;v;1s an edge

v, = «j,if a; € o(v;)



I The arrangement. Ag

d=#V =#{v,..., v}
Ac.o: the arrangement in R? given by

r; = xj, if v;v;1s an edge

v, = «j,if a; € o(v;)

Theorem (easy). x4..(q) = xa.+(q) for g >0

—



| Consequences

Since x¢.»(q) Is the characteristic polynomial of a
hyperplane arrangement, it has such properties
as a deletion-contraction recurrence , broken
circuit theorem , Tutte polynomial , etc.



I vis(O(P)) and Ay

Theorem (easy). Let H be the Hasse diagram of
P, considered as a graph. Define o: H — P by

1,2}, v = 1isolated point
1
{1}, v minimal, not maximal

o(v) =

{2}, v maximal, not minimal

0, otherwise.

Then vis(O(P)) = Ap..

—



| Rank one posets

Suppose that P has rank at most one (no
three-element chains).

H (P) = Hasse diagram of P, with vertex set V
For W C V, let Hy, = restriction of H to W

xc(q): chromatic polynomial of the graph G

—



| Rank one posets

Suppose that P has rank at most one (no
three-element chains).

H (P) = Hasse diagram of P, with vertex set V
For W C V, let Hy, = restriction of H to W
xc(q): chromatic polynomial of the graph G

Theorem.

0(O(P) = (=1)"" > Xy (—3)

WcCVv |



| Supersolvable and free

Recall that the following three properties are
equivalent for the usual graphic arrangement Ag.

o A is supersolvable (not defined here).

—



| Supersolvable and free

Recall that the following three properties are
equivalent for the usual graphic arrangement Ag.

o A is supersolvable (not defined here).

o Aq is free in the sense of Terao (not defined
here).

—



| Supersolvable and free

Recall that the following three properties are
equivalent for the usual graphic arrangement Ag.

o A is supersolvable (not defined here).

» A. Is free In the sense of Terao (not defined
here).

# (' Is achordal graph, i.e., can order vertices
v, ..., 0q SO that v, connects to previous
vertices along a cligue. (Numerous other

characterizations.) |



| Generalize to(G, o)

Theorem (easy). Suppose that we can order the
vertices of G as vy, . .., v, such that:

# v, connects to previous vertices along a
cliqgue (so G Is chordal).

» If 1 < jand v; Is adjacent to v;, then
O'(Z}j) Q O'(?JZ').

Then Ag , IS supersolvable.

—



| Open guestions

»# |s this sufficient condition for supersolvabllity
also necessary?

» [s it necessary for freeness? (In general,
supersolvable = free.)

—



| Open guestions

»# |s this sufficient condition for supersolvabllity
also necessary?

» [s it necessary for freeness? (In general,
supersolvable =- free.)

» Are there characterizations of supersolvable
arrangements A, analogous to the known
characterizations of supersolvable A;?

—



| The last slide



| The last slide i
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