HYPERPLANE ARRANGEMENTS AND INTERVAL ORDERS

dedicated to the memory of Gian-Carlo Rota

Richard P. Stanley
Department of Mathematics
M.I.T. 2-375
Cambridge, MA 02139
rstan@math.mit.edu
http://www-math.mit.edu/~rstan

Transparencies available at:
Let P be a (finite) set of closed intervals $[a, b] \subseteq \mathbb{R}$, with $a < b$. Define a partial ordering of P by

$$[a, b] < [c, d] \text{ if } b < c.$$

Any poset (partially ordered set) isomorphic to P is an interval order.
and

unlabelled

labelled

and

give
Theorem. (Fishburn, 1970) A finite poset is an interval order if and only if it contains no induced

\[
\begin{array}{c}
\text{OK} \\
\text{not OK}
\end{array}
\]

Let \(r(\mathcal{A}) \) denote the number of regions of the hyperplane arrangement \(\mathcal{A} \).
Theorem. Let $a_1, \ldots, a_n > 0$. Let $I(a_1, \ldots, a_n)$ be the number of (labelled) interval orders such that interval I_i has length a_i. Then

$$I(a_1, \ldots, a_n) = r(\mathcal{I}(a_1, \ldots, a_n)),$$

where $\mathcal{I}(a_1, \ldots, a_n)$ is the arrangement (in \mathbb{R}^n)

$$x_i - x_j = a_i, \ i \neq j, \ 1 \leq i, j \leq n.$$

Proof.

![Diagram showing intervals and their relationships]

\[I_j < I_i \iff x_j < x_i - a_i \]

\[\iff x_i - x_j > a_i.\]
Special case:

\[\mathcal{I}_n : \quad x_i - x_j = 1, \quad i \neq j, \quad 1 \leq i, j \leq n \]

Definition. A poset is a **semiorder** or **unit interval order** if it is an interval order using intervals of length one.

Theorem. (Scott & Suppes, 1958) A finite poset is a semiorder if and only if it contains no induced

\[\begin{array}{c}
\bullet \\
\bullet \\
\bullet \\
\end{array} \quad \text{or} \quad \begin{array}{c}
\bullet \\
\bullet \\
\bullet \\
\bullet \\
\end{array} \]

Corollary. \(r(\mathcal{I}_n) \) is the number of semiorders on \(\{1, 2, \ldots, n\} \).
$\mathcal{I}_n^0: \ x_i - x_j = 0, \pm 1, \ 1 \leq i < j \leq n.$

\[
r(\mathcal{I}_n^0) = n! \cdot \# \text{ nonisomorphic semiorders with } n \text{ elements}
\]

\[
= n! C_n, \ C_n = \frac{1}{n + 1} \binom{2n}{n}
\]

(Catalan number).
Let

\[F(x) = \sum_{n \geq 0} C_n x^n = \frac{1 - \sqrt{1 - 4x}}{2x}. \]

Then

\[\sum_{n \geq 0} r(\mathcal{I}_n) \frac{x^n}{n!} = F(1 - e^{-x}). \]

(Chandon, Lemaire, & Pouget, 1978).
Now let a_1, \ldots, a_n be generic, e.g., linearly independent over \mathbb{Q}, or

$$a_1 \ll a_2 \ll \cdots \ll a_n.$$

Note. $I(a_1, \ldots, a_n)$ is independent of a_1, \ldots, a_n (though the interval orders themselves depend on a_1, \ldots, a_n) (since the intersection posets are the same).

Example. $(a_1, a_2, a_3, a_4) = (1, 2, 4, 8, 16)$

Cannot be achieved by $(a_1, a_2, a_3, a_4) = (1, 1.0001, 1.001, 1.01, 1.1)$.

9
Let $h_n = I(a_1, \ldots, a_n)$.

Theorem. Define

$$y = 1 + x + 5 \frac{x^2}{2!} + 46 \frac{x^3}{3!} + \cdots$$

by

$$1 = y(2 - e^{xy}).$$

Let

$$z = \sum_{n \geq 0} h_n \frac{x^n}{n!}$$

$$= 1 + x + 3 \frac{x^2}{2!} + 19 \frac{x^3}{3!} + 195 \frac{x^4}{4!} + \cdots.$$

Then

$$\frac{z'}{z} = y^2, \quad z(0) = 1.$$
Proof. Whitney, Zaslavsky \implies

$$h_n = \sum_{B} (-1)^{\text{cycle dim}} 2^{\# \text{blocks}},$$

where B ranges over all bipartite graphs with vertices $1, 2, \ldots, n$.

\[= 195\]

Etc.
The Linial Arrangement

\[\mathcal{L}_n : \quad x_i - x_j = 1, \quad 1 \leq i < j \leq n \]
\[r(\mathcal{L}_1) = 1 \]
\[r(\mathcal{L}_2) = 2 \]
\[r(\mathcal{L}_3) = 7 \]
\[r(\mathcal{L}_4) = 36 \]
\[r(\mathcal{L}_5) = 246 \]
\[r(\mathcal{L}_6) = 2104 \]
\[r(\mathcal{L}_7) = 21652 \]
\[r(\mathcal{L}_8) = 260720 \]
\[r(\mathcal{L}_9) = 3598120 \]
\[r(\mathcal{L}_{10}) = 56010096 \]
\[r(\mathcal{L}_{11}) = 971055240 \]
\[r(\mathcal{L}_{12}) = 18558391936 \]
Theorem. $r(\mathcal{L}_n)$ is the number of posets on \{1, 2, \ldots, n\} obtained by intersecting a semiorder (unit interval order) with the chain

$$1 < 2 < \cdots < n.$$
Theorem (A. Postnikov). Let
\[a < b < c < d. \]

The obstructions to being an intersection of a semiorder with the chain
\[1 < 2 < \cdots < n \]
are the induced posets

\[
\begin{array}{ccc}
 \bullet & \bullet & \bullet \\
 a & b & c \\
 \bullet & \bullet & \bullet \\
 d & \bullet & \bullet \\
 \bullet & \bullet & \bullet \\
 a & \bullet & \bullet \\
 \bullet & \bullet & \bullet \\
 c & \bullet & \bullet \\
 \bullet & \bullet & \bullet \\
 d & \bullet & \bullet \\
 \bullet & \bullet & \bullet \\
 b & \bullet & \bullet \\
 \bullet & \bullet & \bullet \\
 a & \bullet & \bullet \\
 \end{array}
\]
Theorem (Athanasiadis, Postnikov)

Let

\[y = \sum_{n \geq 0} r(\mathcal{L}_n) \frac{x^n}{n!}. \]

Then

\[y = \exp \frac{x}{2}(1 + y) \]

\[r(\mathcal{L}_n) = \frac{1}{2n} \sum_{k=0}^{n} \binom{n}{k}(k+1)^{n-1}. \]
Define

\[[a, a + 2] < [b, b + 2] \text{ if } a + 1 < b \]
\[[a, a + 2] < [b, b + 2] \text{ if } a + 2 < b. \]

A **double semiorder** (easily generalized to \(k \)-interval orders and \(k \)-semiorders) is the “double poset” obtained from a (finite) set of intervals of length two and the two relations \(<\) and \(<\).
Theorem. (a) The double semiorders on $1, 2 \ldots, n$ are in one-to-one correspondence with the regions of the arrangement

$I_{n,2} : x_i - x_j = \pm 1, \pm 2, \ 1 \leq i < j \leq n.$

(b) Let

$I_{n,2}^0 : x_i - x_j = 0, \pm 1, \pm 2, \ 1 \leq i < j \leq n.$

Then

\[r(I_{n,2}^0) = n! \cdot \# \text{ nonisomorphic double semiorders with } n \text{ elements} \]

\[= n! \frac{1}{2n + 1} \binom{3n}{n} \]
(c) Let
\[
G(x) = \sum_{n \geq 0} r(\mathcal{I}_{n,2}^0) \frac{x^n}{n!} = \sum_{n \geq 0} \frac{1}{2n + 1} \binom{3n}{n} x^n.
\]
Then
\[
\sum_{n \geq 0} r(\mathcal{I}_{n,2}) \frac{x^n}{n!} = G(1 - e^{-x}).
\]

Compare:
\[
F(x) = \sum_{n \geq 0} r(\mathcal{I}_n^0) \frac{x^n}{n!} = \sum_{n \geq 0} \frac{1}{n + 1} \binom{2n}{n} x^n
\]
\[
\sum_{n \geq 0} r(\mathcal{I}_n) \frac{x^n}{n!} = F(1 - e^{-x}).
\]
Reference: