HYPERPLANE ARRANGEMENTS AND INTERVAL ORDERS

dedicated to the memory of Gian-Carlo Rota

Richard P. Stanley
Department of Mathematics
M.I.T. 2-375
Cambridge, MA 02139
rstan@math.mit.edu
http://www-math.mit.edu/~rstan

Transparencies available at:

http://www-math.mit.edu/~rstan/trans.html

Let P be a (finite) set of closed intervals $[a, b] \subset \mathbb{R}$, with a < b. Define a partial ordering of P by

$$[a, b] < [c, d]$$
 if $b < c$.

Any poset (partially ordered set) isomorphic to P is an **interval order**.

$$\begin{array}{c} 1 \\ \hline 2 \\ \hline 2 \\ \end{array} \quad \text{and} \quad \begin{array}{c} 2 \\ \hline 1 \\ \end{array} \quad \text{give} \quad \begin{array}{c} 1 \\ \end{array} \quad \begin{array}{c} 2 \\ \end{array}$$

Theorem. (Fishburn, 1970) A finite poset is an interval order if and only if it contains no induced

Let $\mathbf{r}(\mathcal{A})$ denote the number of regions of the hyperplane arrangement \mathcal{A} .

Theorem. Let $a_1, \ldots, a_n > 0$. Let $I(a_1, \ldots, a_n)$ be the number of (labelled) interval orders such that interval I_i has length a_i . Then

$$I(a_1, \ldots, a_n) = r(\mathcal{I}(a_1, \ldots, a_n)),$$

where $\mathcal{I}(a_1, \ldots, a_n)$ is the arrangement
(in \mathbb{R}^n)

$$x_i - x_j = a_i, i \neq j, 1 \leq i, j \leq n.$$

Proof.

$$x_i - a_i \quad x_i \quad x_i - a_i \quad x_i$$

$$I_j < I_i \iff x_j < x_i - a_i$$

 $\iff x_i - x_j > a_i.$

Special case:

$$\mathcal{I}_{\mathbf{n}}: x_i - x_j = 1, i \neq j, 1 \leq i, j \leq n$$

Definition. A poset is a **semiorder** or **unit interval order** if it is an interval order using intervals of length one.

Theorem. (Scott & Suppes, 1958) A finite poset is a semiorder if and only if it contains no induced

Corollary. $r(\mathcal{I}_n)$ is the number of semiorders on $\{1, 2, \ldots, n\}$.

$$\mathcal{I}_{\mathbf{n}}^{\mathbf{0}}: x_i - x_j = 0, \pm 1, \ 1 \leq i < j \leq n.$$
 $r(\mathcal{I}_n^0) = n! \cdot \# \text{ nonisomorphic}$
semiorders with n elements
$$= n! \, C_n, \ C_n = \frac{1}{n+1} \binom{2n}{n}$$
(Catalan number).

Let

$$F(x) = \sum_{n\geq 0} C_n x^n$$
$$= \frac{1 - \sqrt{1 - 4x}}{2x}.$$

Then

$$\sum_{n\geq 0} r(\mathcal{I}_n) \frac{x^n}{n!} = F(1 - e^{-x}).$$

(Chandon, Lemaire, & Pouget, 1978).

Now let a_1, \ldots, a_n be generic, e.g., linearly independent over \mathbb{Q} , or

$$a_1 \ll a_2 \ll \cdots \ll a_n$$
.

Note. $I(a_1, \ldots, a_n)$ is independent of a_1, \ldots, a_n (though the interval orders themselves depend on a_1, \ldots, a_n) (since the intersection posets are the same).

Example. $(a_1, a_2, a_3, a_4) = (1, 2, 4, 8, 16)$

Cannot be achieved by $(a_1, a_2, a_3, a_4) = (1, 1.0001, 1.001, 1.01, 1.1).$

Let
$$h_n = I(a_1, \ldots, a_n)$$
.

Theorem. Define

$$y = 1 + x + 5\frac{x^2}{2!} + 46\frac{x^3}{3!} + \cdots$$

by

$$1 = y(2 - e^{xy}).$$

Let

$$z = \sum_{n \ge 0} h_n \frac{x^n}{n!}$$

$$= 1 + x + 3\frac{x^2}{2!} + 19\frac{x^3}{3!} + 195\frac{x^4}{4!} + \cdots$$

Then

$$\frac{z'}{z} = y^2, \quad z(0) = 1.$$

Proof. Whitney, Zaslavsky \Longrightarrow

$$h_n = \sum_B (-1)^{\text{cycle dim }} 2^{\text{\#blocks}},$$

where B ranges over all bipartite graphs with vertices $1, 2, \ldots, n$.

Etc.

The Linial Arrangement

$$\mathcal{L}_{\mathbf{n}}: \quad x_i - x_j = 1, \quad 1 \le i < j \le n$$

$$r(\mathcal{L}_1) = 1$$

 $r(\mathcal{L}_2) = 2$
 $r(\mathcal{L}_3) = 7$
 $r(\mathcal{L}_4) = 36$
 $r(\mathcal{L}_5) = 246$
 $r(\mathcal{L}_6) = 2104$
 $r(\mathcal{L}_7) = 21652$
 $r(\mathcal{L}_8) = 260720$
 $r(\mathcal{L}_9) = 3598120$
 $r(\mathcal{L}_{10}) = 56010096$
 $r(\mathcal{L}_{11}) = 971055240$
 $r(\mathcal{L}_{12}) = 18558391936$

Theorem. $r(\mathcal{L}_n)$ is the number of posets on $\{1, 2, ..., n\}$ obtained by intersecting a semiorder (unit interval order) with the chain

$$1 < 2 < \dots < n.$$

Theorem (A. Postnikov). Let

$$a < b < c < d$$
.

The obstructions to being an intersection of a semiorder with the chain

$$1 < 2 < \cdots < n$$

are the induced posets

Theorem (Athanasiadis, Postnikov)

Let

$$y = \sum_{n \ge 0} r(\mathcal{L}_n) \frac{x^n}{n!}.$$

Then

$$y = \exp\frac{x}{2}(1+y)$$

$$r(\mathcal{L}_n) = \frac{1}{2^n} \sum_{k=0}^n \binom{n}{k} (k+1)^{n-1}.$$

Define

$$[a, a + 2] < [b, b + 2] \text{ if } a + 1 < b$$

 $[a, a + 2] < [b, b + 2] \text{ if } a + 2 < b.$

A double semiorder (easily generalized to k-interval orders and k-semiorders) is the "double poset" obtained from a (finite) set of intervals of length two and the two relations < and <.

Theorem. (a) The double semiorders on $1, 2, \ldots, n$ are in one-to-one correspondence with the regions of the arrangement

$$\mathcal{I}_{\mathbf{n},\mathbf{2}}: x_i - x_j = \pm 1, \pm 2, 1 \le i < j \le n.$$

(b) Let

$$\mathcal{I}_{\mathbf{n},\mathbf{2}}^{\mathbf{0}}: x_i - x_j = 0, \pm 1, \pm 2, \ 1 \le i < j \le n.$$

Then

 $r(\mathcal{I}_{n,2}^0) = n! \cdot \# \text{ nonisomorphic double}$ semiorders with n elements

$$= n! \frac{1}{2n+1} \binom{3n}{n}$$

(c) Let

$$G(x) = \sum_{n\geq 0} r(\mathcal{I}_{n,2}^0) \frac{x^n}{n!}$$
$$= \sum_{n\geq 0} \frac{1}{2n+1} {3n \choose n} x^n.$$

Then

$$\sum_{n \ge 0} r(\mathcal{I}_{n,2}) \frac{x^n}{n!} = G(1 - e^{-x}).$$

Compare:

$$F(x) = \sum_{n \ge 0} r(\mathcal{I}_n^0) \frac{x^n}{n!} = \sum_{n \ge 0} \frac{1}{n+1} {2n \choose n} x^n$$
$$\sum_{n \ge 0} r(\mathcal{I}_n) \frac{x^n}{n!} = F(1 - e^{-x}).$$

Reference:

R. Stanley, Hyperplane arrangements, interval orders, and trees, $Proc.\ Nat.\ Acad.\ Sci.\ {\bf 93}\ (1996),\ 2620–2625.$