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Let P be a (finite) set of closed inter-
vals |a,b] C R, with a < b. Define a
partial ordering of P by

la,b] <lc,d] if b<c

Any poset (partially ordered set) iso-
morphic to P is an interval order.
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Theorem. (Fishburn, 1970) A fi-

nite poset s an interval order if and
only if i1t contains no induced

OK not OK

Let r(A) denote the number of re-
oions of the hyperplane arrangement A.



Theorem. Let ay,...,ap > 0. Let
I(ay,...,ayp) be the number of (labelled)

interval orders such that interval I;
has length a;. Then

I(ay,...,an) =1r(Z(ay,...,an)),

where L(aq, ..., an) is the arrangement
(in R™)
ri—x;=a; 1 #£J, 1< 0,5 <n.
Proof.
. . . .




Special case:

Iy ri—rj =1, 1 # 7, 1<4,j<n

Definition. A posetisasemiorder
or unit interval order if it is an in-
terval order using intervals of length one.

Theorem. (Scott & Suppes, 1958)
A finite poset is a semiorder if and
only if i1t contains no induced

IIor..

Corollary. r(Z,) is the number of
semiorders on {1,2,...,n}.



I wi—w;=0,%1, 1<i<j<n.

r(ZV) = n! - # nonisomorphic

semiorders with n elements
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Let

Then
N r(Tn)— = F(1—e79).
= n!

(Chandon, Lemaire, & Pouget, 1978).



Now let ay,...,a, be generic, e.g.,
linearly independent over Q, or

] << a9 << - << Ap.-
Note. I(ay,...,an) is independent
of aj,...,ay (though the interval or-

ders themselves depend on aq, ..., an)
(since the intersection posets are the same).

Example. (a1, a9,a3,a4) = (1,2,4,8,16)
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Cannot be achieved by (ay, as, az, ay) =
(1,1.0001, 1.001,1.01, 1.1).
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Let hp =1(ay,...,an).

Theorem. Define

72 x5

y—1+x+5§+46§

by
1 =y(2—e").

s

n>0

Let

W
|

72 o 4
=1 3— 19— 195—
+ T+ 51 - 3 T A

Then
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Proof. Whitney, Zaslavsky =

hy, = Z(_l)cycle dim Z#blocks’
B
where B ranges over all bipartite graphs

with vertices 1,2, ..., n.

P AP A By o By 74

11 + 62 +124 + 34 +12.8 + 48 - 32
=195

Fitc.
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The Linial Arrangement

Ln: wp—xj=1, 1<i<j<n

L3
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Theorem. r(Ly) is the number of
posets on {1,2,...,n} obtained by in-
tersecting a semiorder (unit interval
order) with the chain

<2< <n.
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Theorem (A. Postnikov). Let
a<b<c<d.

The obstructions to being an inter-
section of a semiorder with the chain

<2<+ <n

are the induced posets
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Theorem (Athanasiadis, Postnikov)

Let
xn
Y = Z T<£n>ﬁ'
n>0
Then
X
y = exp5(l+y)
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Define

a,a+2] < |b,b+2]ifa+1<b
a,a+2] < [bb+2]ifa+2<b.

A double semiorder (easily gener-
alized to k-interval orders and k-semiorders)
is the “double poset” obtained from a
(finite) set of intervals of length two and
the two relations < and <.
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Theorem. (a) The double semiorders
onl,2....,n are mn one-to-one corre-
spondence with the regions of the ar-
rangement

Tno: wi—x; =21, 2, 1 <1 <j<n.
(b) Let

T m—a;=0,£1,£2, 1<i<j<n.
Then

7“(1.272) = n! - # nonisomorphic double
semiorders with n elements

1 3n
= nl
2n+1\n
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Glr) = S r(zl )"

n!
n>0

1 3
=S
2n+1\n

n>0
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