a — (ao, ai, ag, .. )

ordinary generating function of

a:
ap + a1 + aox’ + -+ - = Zana:n
n>0
exponential generating function
of a:
2 n
x x x
a0+a11'+a22' -:Zanm

n>0
Many others, not as important.

What is the point?

“Natural” algebraic operations on gen-
erating functions have combinatorial sig-
nificance, so we can transform combina-
torics into algebra (and vice versa).
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Notation:

N = {0,1,2,...}
P={1,23..}
m] = {1,2,...,n)

("] Z apz” = an.



Some operations:

Z anz’ + Z bnx't = Z(an + by )"
(Z ana:n> (Z bn:cn> = Z cnx’,

n
where ¢, = Z arb,_1.
k=0
n n n
(Z CM?,%) (Z bn%) — Z CTL%7

n

where ¢y, = Z (Z) arby, 1.
k=0



Define
G(z) =1/F(x)

if F(x)G(x ) = 1 (exists if and only if

F(0) #0). E
1

:1+a:z:+a2x2+---
l —ax




F(x) = Z ant”, G(r) = Z bnx'"

n>0 n>1

(so G(0) = 0). Define the composi-
tion F(G(z)) by

F(G(z) =) anG(z)".

n>0

Makes sense formally since comput-
ing ("] F(G(x)) involves only a finite
Sum.



Examples. Let G(0) = 0. Then

n!
n>0
~log(1 - G(x) = Y Gf) .
n>1

Lifting principle: All “familiar” for-
mulas for convergent power series con-
tinue to hold whenever they make sense

formally. E.g., if G(0) = 0 then

log(e“'%)) = G(x)
610g(1+G(aﬁ)) _ 1—1—G($).



Sets. Let n € N and

Z [

n| 1€l
a “list” of all subsets of n|. E.g.,

FQ(CIZ) =1+x1+ 29+ 2729.

Since for each 2 € S either ¢+ € T or
1 € T, we have

Fp(x) = (1+21)(1+x2)--- (14 2n).
Define

(Z) — #{T CS: #T =k,

Put each z; = x to get

n
|+ 2)" = k.
1tay =% ( k)
k>0
[llustrates technique of “late specializa-

tion.”



Multisets. A multiset M on a set

S is a set with repeated elements
from S. E.g,

{1,1,1,2,4,4,4,7,7} = {1°,2,43, 72
is a multiset on [10]. Let

vpar(2) = # i’sin M.
Let

Z H«%’”M

M on [n]1=1
a “list” of all multlsets on [n]. E.g.,

GQ(CU) — 1—|-5131+£E2+x%—|—x15132—|—:1:%+~o
= (1+zi4+27+--)14zo+x5+ -
1 2

1
(1 —21)(1 —ax9)

8
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In general,
1

=o)L =) (1= )
Let ((Z’)) denote the number of k-element
multisets on [n]. E.g., ((;)) = 6:

11 22 33 12 13 23

Gpl(x) =

Put x; = x to get

> () ===
- ¥ ()

k>0

where

(;)_t(t—l)--}cgt—kJrl)







Combinatorial or bijective proof

-

be a k-multiset on [n]. Let b; = a; +
v — 1. Then

1< <by<---<bp.<n+k—1,

and conversely (i.e., a; = b; — i + 1).
Thus

M-
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RATIONAL GENERATING
FUNCTIONS

A generating function F'(z) = ) apx”
is rational if there are polynomials P(x), Q(x)
such that
_ P(z)
Q(z)
ie., F(z)Q(x) = P(x). Can assume
Q) =1

F(z)

12



E.g..

Zanxn - 1—1aa:'

n>0

More generally,

(1 —1aaj)d = (;d><_“$>n

n>0

_ Z(n+d—1> o

n>0

Note: (njﬁfl) is a polynomial in n of
degree d — 1.

13



Fundamental theorem on ratio-
nal generating functions.
Fi:EOq,...,OszC, Ozd#o.

Let f :N — C. TFAE:

o Y f(n)a" = P(x)/Q(x),

n>0

where Q(z) = 1+ oz +- - -+ agz?,
P(z) € Clz],

deg(P) < deg(Q) = d.
e f['or all n > 0,
f(n+d)+aq f(n+d—1)+ - +ayf(n) =

(linear recurrence with constant
coefficients).

14



e f[or alln > 0,

k
fn) =Y Pin)nf"
1=1
where
k
l+aqz+- - °—|—Ozd$d = H(l_%$>di7
1=1

the ~y;’s are distinct, and

Pz(n) c (C[n], deg(PZ-) < dj.

Idea of proof. Use partial fractions
to write P(xz)/Q(x) as linear combina-
tion of terms (1 — v;x)¢, e < d;.

15



What if deg P > deg ()7 Then write
(uniquely)
P(z) R(z)
Q(z) Q(z)’
where L(z), R(z) € Clz] and

deg R(z) < deg Q(x).

= L(x) +

Thus L(x) records the “exceptional val-
ues” (finitely many) where the funda-
mental theorem fails.

16



Example (the transfer-matrix method).
Let f(n) be the number of sequences
ai---an, a; =1,2,3, with no a;a;, 1 =
11 or 23. Thus

f(n) = # paths of length n — 1 in:
2

011
Adjacency matrix: A= |110].
111

17



Thus (Ak> 18 the number of paths

i]
of length k from ¢ to 7, so
3
fln)= Y (4m)
i =1 /

3

Y e = Y (4
n>0 1,7=1 \n=>0

]
3

= Y (I —z4);

1,7=1

18



Let (B : j,t) denote the matrix B
with row 7 and column ¢ removed. Then
i+jdet(B; J, i)

det(B)

1
B, =(=1)

Z fin+1)z" = > (=1)"* det(] — zA: j, i)

det(I — xA)

3+ — 2

n>0

19



EXPONENTIAL
GENERATING FUNCTIONS

Given f : N — C, write

Bp) =Y fin)

n>0

Proposition. Giwen f,qg : N — C,
define h : N — C by

h(#X) = Y f(#8)g(#T),
(S.T)

where #X < oo and S, T C X such
that

SUT =X, SNT=10.
Then
Et(x)Eg(x) = Ep(x).

20



Proof. Let #X = n. There are (})
pairs (S,T) with #S5 = k and #T =
n — k. Hence

21



Example. Find the number h(n) of
ways to let [n] = SUT with SNT = 0,
choose a subset of S, and choose an
element of T. Here f(n) = 2™ and

g(n) =n. Thus

" 9
Ep(x) =y 2'— =e™
S
xn
Ey(z) = Z n— = re’
=
3T

whence h(n) = n3" 1.

22



[terate previous proposition:

Proposition. Fixk € P and f1,..., fi:
N — C. Deﬁneh'N—>C by

= fi#S1) - fe(#5%),

where USi = X and S;NS; =0 if
v # 7. Then

Eyp(x) = Ey(z)--- By (z).

23



A partition of a finite set .S is a col-
lection { By, ..., B} of subsets (called
blocks) of S such that

UB; =S, B;#0, BiNB; =0ifi # 7.

Write II(S) for the set of partitions of
S.

Partitions of [3]:
1—2-3 12—-3 13—2 1-23 123

24



Exponential formula. Given f :
P — C, define h : N — C by

h<0>
Zf #B1)--- f(#By), #5>0,

where ™ = {Bl, ..., B}y € 11(S). Then
Ep(z) = ePr®).

Proof. Set f(0) = 0. For fixed k
let

g(#S) = > [(#B1)--- [(#By).

where { By, ..., By} € TI(.S). Thus
Eg(v) = E4(z)".

25



Since T; # (0, all k! orderings of 17, ..., T},
are distinct. Thus for fixed £, if

hip(#S) = > f#By) - f(#By),

{Bl,...,Bk}€H<S)

1 1
then By, (x) = -5 B, (z) = EEf@;)’f.

Hence
Ey(z) = 14+ ) Ep (x)
k>1

- ZEf( i = Fr@) o
k!

26



Examples. (a) Let II,, = II(|n])
and B(n) = #II, (Bell number).
If f(2) =1 Vi then

B(n)= Y f(#B1)-- f(#By).

{31 ..... Bk}GHn
Thus
" x"
D Bln)— =exp) —
n>0 n>1

27



(b) Let f(n) be the number of con-

nected graphs on the vertex set |n].
Thus h(n) is the total number of graphs

on |[n|, so h(n ) —2(2). Hence
Z f(n)— = log Z 2 nv
n>1 n>0

(Note that these series diverge for all

xr #0.)

28



(¢) Let tz.(n) be the number of per-
mutations w of [n] satisfying wk = 1.
Thus every cycle length d of w satisfies
d|k. We can choose w by partitioning
in] into blocks of sizes d|k and placing
a cycle on each such block in (d — 1)!

way. Hence
" xd
Z tk(”)ﬁ = exp Z(d - 1)!a
n>0 d|k

d
-

d|k

29



TREES

A rooted tree is a connected graph
without cycles with one distinguished
vertex (the root).

/N

30



Let r(n) be the number of rooted trees
on the vertex set [n]. E.g., r(3) =9:

o de 2¢ 2¢ 3¢ 3o 1 2 3
I AN ANAN
3 312231 3 1 2

31



To obtain a rooted tree T" on [n], choose
a root r in n ways, choose a partition
m € II([n] — {r}), place a rooted tree
T; on each block of m, and “join” 7 to
the roots of each Tj.

32



Let

R(z) = Zr(n)%
n>1 '
R(z) _ z”
e\ = %f(n)n,

Thus f(n) is the number of forests
of rooted trees on [n], so zelt®) is
the exponential generating function for
choosing a 1-element subset of [n] (the
root) and placing a forest of rooted trees
on the remaining elements. Since this
structure 1s equivalent to a rooted tree

on |n|, we have

R(z) = zell(®).

33



Given

F(x) = a1z 4 asx’ + -+, a; # 0,
define F(x)<_1> by

F(F\Y(2) = FUU(F(2) =2
(exists and is unique). Then

R(z) = zeltl®)
= R(x) = (a:e_x)<_1>.

How to find the coefficients r(n)/n! of
(ze—%)(—1)7

34



Bijective proof (Joyal). A dou-
ble rooted tree is a tree with one
vertex labelled s (start) and one ver-
tex (possibly the same) labelled e (end).
The number of double rooted trees on
in]isn-r(n). Let T be such a tree, and
let P be the unique path from s to e.

1 3 6 9 11 12 16

35



The vertices from s to e form a per-
mutation of its elements written in in-
creasing order. Write this permutation
in cycle form as a directed graph:

1 3 6 9 11 12
12 6 16 9 3 1

6 16 Al 3
[ :
3 11 12

36



Attach the subtrees of the path P back
to their attached vertices and directed
into the cycles:

@8
14 2
16
6 1
0
s 12 N\
10¢ 4

37



We obtain a digraph on [n] for which
every vertex has outdegree one, 1.e., the
graph of a function f : [n] — [n]. Con-
versely, every such f comes from a unique
double rooted tree T'.

#of f:[n]— [n]: n"

= # double-rooted trees on [n]: n"

= r(n) =n""1

38



Can we generalize this argument to
find coefficients of other F <_1>(x)?

Lagrange inversion formula. Let
F(x) =az +asx* +---, a; #0.
Let k,n € Z. Then

39



Proof. A combinatorial proof can be
given based on counting trees. Proof of
Lagrange:

Consider Laurent series

n>ngEZ
For instance,
- 1
F(z)F  (ajz 4 agx? + - )k
1

40



Key fact:

1, d
e 12 ) =0
Set P\ ()F = Zpi:cz, S0
1>k
" =" pF(z)
1>k
Apply %:
kTt = Zz’piF(x)i_lF’(x)
1>k
kivk_l o z—n—lF/
= P - > ipiF(x) (z)

41



Take [z~ 1] on both sides. Since

1 d
1 —ndx
the coefficient of ™1 of the right-hand
side 1s

2~ Unp F'(z) — v Yy al + 2a9x + - - -
nF<£IZ') " a1x + aoT® + - -

Fla) ™" F(2) = F(z)™", i #n,

= NPn.
Hence
kL _
o g = e = eI @),

which 1s equivalent to

[z FD )k = k2" ( ’ >n =

42



R(z) = (ze) 70 =3 " r(n)

n>1

nl’

Thus if rg(n) is the number of forests

of k rooted trees on |n], then
n

1 X
HR@?)IC =) Tk(n)m-

n>k
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By Lagrange inversion,

SO

nlz"R(z)F = klx

ri(n)

= k|x

n—k'< L
" \gxe 7

n—ki _nx

knn—k

(n — k)’

44




ALGEBRAIC FUNCTIONS

A power series F'(x) = ag+ajx+- - - is
algebraic if 9 a polynomial L(u,v) #
0 such that

L(xz,F(z))=0.

Examples. (a) Rational functions F'(z) =
P(x)/Q(x) are algebraic, since

Q(x)F(x) — P(x) = 0.

b) Easy to check that

(”2) (1) ()

=2 ()" -7

45




(c) Let F(x) = 3,0 (22" Then
(272 — 4)F(x)° + 3F(z) + 1 = 0.
(d) Not algebraic:

> () S

n>0 n>0

Theorem. Let F'(z) = ), ~( f(n)z"
be algebraic. Then dd > 1 and polyno-
mials Fy(n), ..., Pj(n) (not all 0) such
that for all n > 0
Fa(n)f(n+d)+ Pg_1(n)f(n+d—1)

+ -+ Py(n)f(n) =0.
One says F'(z) is D-finite and f(n) is
P-recursive.
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Proof (sketch). Let L(u, v) be a nonzero
polynomial such that L(z, F(x)) = 0.
Thus

Lu(z, F(x)) + F'(z) Ly(z, F(z)) = 0
L[z, F(z))
Ly(z, F(z))
Similarly all higher derivatives F(/)(z) €
C(x, F(x)). Since F(x) is algebraic
dimg,) C(z, F(z)) < oo.
Thus F(z), F'(z), F"(x), ... are linearly

dependent over C(z). Write down this
linear dependence relation, clear denom-

= F'(z) =

e C(x, F(x)).

inators, and equate coefficients of " to
get an equation

Pyn)f(n+d)+---+FPy(n)f(n) =0. O

47



Example. Let f(m,n) be the num-
ber of paths from (0,0) to (m,n) with
steps (1,0),(0,1),(1,1) (Delannoy num-
ber). Thus

Z f(m,n)x"y" = Z(a? +y+ ay)”

m,n>0 k>0
1

l—x—y—uay

48



Then
y=>Y fln,n)a" =]

n>0

_ o1 t ot
_[t]ﬁ—a(t—a t—ﬁ)’

where o = %(1—:1:—\/1—6$+5172)7
5:%(1—x+\/1—6x+x2). Hence

y - [to] 1 ( ta~! N 1 )
Vi—6z+a2? \1—ta™!  1-t715
B 1
V1= 6x+ a2
and we get for g(n) = f(n,n),

1
l—xt—%—x

(n+2)g(n+2)—3(2n+3)g(n+1)+(n+1)g(n) = 0
(challenging to prove directly!).

49



E-ARY PLANE TREES

A k-ary plane tree is a rooted tree
for which every non-endpoint vertex has
k cyclically ordered subtrees.

Let fi.(n) denote the number of k-
ary plane trees with n vertices and

y=Fp(x) =) frln)a".

n>0

Then y = x + zyk, SO

.\ D)
y:<1+xk> |

By Lagrange inversion,
nfa"y = "1+ 2b)"

Lmy o L
>mm>{“9% o

0, otherwise.
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Special case: k = 2 (plane binary
trees). Then

fo(2n+1) = nil(?),

a Catalan number C,,.

66 combinatorial interpretations of Cy,:
Exercise 6.19 of Enumerative Combi-
natorics, vol. 2.

36 additional interpretations (as of 22
December 2002):
www-math.mit.edu/~rstan/ec
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Examples.

e triangulations of a convex (n+2)-gon
into n triangles by n — 1 diagonals
that do not intersect in their interiors

N oV DO

e binary parenthesizations of a string
of n + 1 letters

e lattice paths from (0, 0) to (n,n) with
steps (0, 1) or (1, 0), never rising above
the line y = x

BRI N N
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e 1 nonintersecting chords joining 2n
points on the circumference of a cir-
cle

AR NSNS

— N/ \\ . / /

e permutations ajas - - - an of [n| with
longest decreasing subsequence of length

at most two (i.e., there does not exist
i<j<k,ai>aj>ak)

123 213 132 312 231

e ways to stack coins in the plane, the
bottom row consisting of n consecu-

tive coins

@
OO0 OOQO OOOO OOOOO OOOOO
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e n-tuples (ay, a9, ...,an) of integers
a; > 2 such that in the sequence

lajas - - - apl, each a; divides the sum
of its two neighbors

14321 13521 13231 12531 12341
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Bijective proof that there are Cy, =
n+r1 (27;7’ ) plane binary trees with 2 n + 1
vertices: do a depth-first (preorder) search
through the tree, labeling down edges 1,

up edges —1, and ignoring the last edge.

11-11-1---1

%)



This converts trees to sequences of n + 1
1’s and n —1’s such that every partial
sum 1s positive.

Claim. For any sequence a1a - - - a9p11
of n+1 1’s and n —1’s, there is exactly
one value of ¢ for which every partial
sum of a;a;1 -+ a9p101G9 - a;_1 18
positive.
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Claim. For any sequence a1a - - - a9p11
of n+1 1’s and n —1’s, there is exactly
one value of ¢ for which every partial
sum of a;a;1- - a9p1101G9 - a;_1 18
positive.

Proof (naive). Induction on n. Clear
for n = 0. Assume for n — 1. Given
Q= aj--- a1, can always find a; =
1, aj41 = —1 (subscripts modulo 2n +
1). Remove aj,aj41 from «, giving
8 =by---bo,_1. By the induction hy-
pothesis there is a unique ¢ for which
b; - - - b;_1 has all partial sums positive.
If b; = aj., then k is the unique integer
for which ay. - - - az_1 has every partial
sum positive. O
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There are (2”’; 1) sequences of n + 1
1's and n —1’s. All their 2n + 1 “cyclic
shifts” are distinct since ged(n,n+1) =
1. Thus the number of plane binary

trees with 2n + 1 vertices is

1 2n + 1 1 n
_ :On.
2n + 1 n n+1\n

58



