
a = (a

0

; a

1

; a

2

; : : :)

ordinary generating funtion of

a:

a

0

+ a

1

x + a

2

x

2

+ � � � =

X

n�0

a

n

x

n

exponential generating funtion

of a:

a

0

+ a

1

x

1!

+ a

2

x

2

2!

+ � � � =

X

n�0

a

n

x

n

n!

Many others, not as important.

What is the point?

\Natural" algebrai operations on gen-

erating funtions have ombinatorial sig-

ni�ane, so we an transform ombina-

toris into algebra (and vie versa).

1



Notation:

N = f0; 1; 2; : : :g

P = f1; 2; 3; : : :g

[n℄ = f1; 2; : : : ; ng

[x

n

℄

X

a

k

x

k

= a

n

:

2



Some operations:

X

a

n

x

n

+

X

b

n

x

n

=

X

(a

n

+ b

n

)x

n

�

X

a

n

x

n

��

X

b

n

x

n

�

=

X



n

x

n

;

where 

n

=

n

X

k=0

a

k

b

n�k

.

�

X

a

n

x

n

n!

��

X

b

n

x

n

n!

�

=

X



n

x

n

n!

;

where 

n

=

n

X

k=0

�

n

k

�

a

k

b

n�k

.

3



De�ne

G(x) = 1/F(x)

if F (x)G(x) = 1 (exists if and only if

F (0) 6= 0). E.g,

1

1� ax

= 1 + ax + a

2

x

2

+ � � � :

4



Let

F (x) =

X

n�0

a

n

x

n

; G(x) =

X

n�1

b

n

x

n

(so G(0) = 0). De�ne the omposi-

tion F (G(x)) by

F (G(x)) =

X

n�0

a

n

G(x)

n

:

Makes sense formally sine omput-

ing [x

n

℄F (G(x)) involves only a �nite

sum.

5



Examples. Let G(0) = 0. Then

e

G(x)

=

X

n�0

G(x)

n

n!

�log(1�G(x)) =

X

n�1

G(x)

n

n

:

Lifting priniple: All \familiar" for-

mulas for onvergent power series on-

tinue to hold whenever they make sense

formally. E.g., if G(0) = 0 then

log(e

G(x)

) = G(x)

e

log(1+G(x))

= 1 +G(x):

6



Sets. Let n 2 N and

F

n

(x) =

X

T�[n℄

Y

i2T

x

i

;

a \list" of all subsets of [n℄. E.g.,

F

2

(x) = 1 + x

1

+ x

2

+ x

1

x

2

:

Sine for eah i 2 S either i 2 T or

i 62 T , we have

F

n

(x) = (1 + x

1

)(1 + x

2

) � � � (1 + x

n

):

De�ne

�

n

k

�

= #fT � S : #T = kg:

Put eah x

i

= x to get

(1 + x)

n

=

X

k�0

�

n

k

�

x

k

:

Illustrates tehnique of \late speializa-

tion."

7



Multisets. AmultisetM on a set

S is a set with repeated elements

from S. E.g,

f1; 1; 1; 2; 4; 4; 4; 7; 7g = f1

3

; 2; 4

3

; 7

2

g

is a multiset on [10℄. Let

�

M

(i) = # i's in M:

Let

G

n

(x) =

X

M on [n℄

n

Y

i=1

x

�

M

(i)

i

;

a \list" of all multisets on [n℄. E.g.,

G

2

(x) = 1 + x

1

+ x

2

+ x

2

1

+ x

1

x

2

+ x

2

2

+ � � �

= (1 + x

1

+ x

2

1

+ � � �)(1 + x

2

+ x

2

2

+ � � �)

=

1

(1� x

1

)(1� x

2

)

:

8



In general,

G

n

(x) =

1

(1� x

1

)(1� x

2

) � � � (1� x

n

)

:

Let

��

n

k

��

denote the number of k-element

multisets on [n℄. E.g.,

��

3

2

��

= 6:

11 22 33 12 13 23

Put x

i

= x to get

X

k�0

��

n

k

��

x

k

=

1

(1� x)

n

=

X

k�0

�

�n

k

�

(�x)

k

;

where

�

t

k

�

=

t(t� 1) � � � (t� k + 1)

k!

:

9



X

k�0

��

n

k

��

x

k

=

1

(1� x)

n

=

X

k�0

�

�n

k

�

(�x)

k

;

Hene

��

n

k

��

= (�1)

k

�

�n

k

�

=

�

n + k � 1

k

�

(example of reiproity).

10



Combinatorial or bijetive proof

that

��

n

k

��

=

�

n + k � 1

k

�

Let

1 � a

1

� a

2

� � � � � a

k

� n

be a k-multiset on [n℄. Let b

i

= a

i

+

i� 1. Then

1 � b

1

< b

2

< � � � < b

k

� n + k � 1;

and onversely (i.e., a

i

= b

i

� i + 1).

Thus

��

n

k

��

=

�

n + k � 1

k

�

:

11



RATIONAL GENERATING

FUNCTIONS

A generating funtionF (x) =

P

a

n

x

n

is rational if there are polynomialsP (x); Q(x)

suh that

F (x) =

P (x)

Q(x)

;

i.e., F (x)Q(x) = P (x). Can assume

Q(0) = 1.

12



E.g.,

X

n�0

a

n

x

n

=

1

1� ax

:

More generally,

1

(1� ax)

d

=

X

n�0

�

�d

n

�

(�ax)

n

=

X

n�0

�

n + d� 1

d� 1

�

a

n

x

n

:

Note:

�

n+d�1

d�1

�

is a polynomial in n of

degree d� 1.

13



Fundamental theorem on ratio-

nal generating funtions.

Fix �

1

; : : : ; �

d

2 C , �

d

6= 0.

Let f : N ! C . TFAE:

�

X

n�0

f (n)x

n

= P (x)=Q(x);

where Q(x) = 1+�

1

x+ � � �+�

d

x

d

,

P (x) 2 C [x℄;

deg(P ) < deg(Q) = d:

� For all n � 0,

f (n+d)+�

1

f (n+d�1)+� � �+�

d

f (n) = 0

(linear reurrene with onstant

oeÆients).

14



� For all n � 0,

f (n) =

k

X

i=1

P

i

(n)

n

i

;

where

1+�

1

x+� � �+�

d

x

d

=

k

Y

i=1

(1�

i

x)

d

i

;

the 

i

's are distint, and

P

i

(n) 2 C [n℄; deg(P

i

) < d

i

:

Idea of proof. Use partial frations

to write P (x)=Q(x) as linear ombina-

tion of terms (1� 

i

x)

e

, e < d

i

.

15



What if degP � degQ? Then write

(uniquely)

P (x)

Q(x)

= L(x) +

R(x)

Q(x)

;

where L(x); R(x) 2 C [x℄ and

degR(x) < degQ(x):

Thus L(x) reords the \exeptional val-

ues" (�nitely many) where the funda-

mental theorem fails.

16



Example (the transfer-matrix method).

Let f(n) be the number of sequenes

a

1

� � � a

n

, a

i

= 1; 2; 3, with no a

i

a

i+1

=

11 or 23. Thus

f (n) = # paths of length n� 1 in:

1 3

2

Adjaeny matrix: A =

2

6

4

0 1 1

1 1 0

1 1 1

3

7

5

.

17



Thus

�

A

k

�

ij

is the number of paths

of length k from i to j, so

f (n) =

3

X

i;j=1

�

A

n�1

�

ij

:

)

X

n�0

f (n + 1)x

n

=

3

X

i;j=1

0

�

X

n�0

A

n

x

n

1

A

ij

=

3

X

i;j=1

(I � xA)

�1

ij

:

18



Let (B : j; i) denote the matrix B

with row j and olumn i removed. Then

B

�1

ij

= (�1)

i+j

det(B; j; i)

det(B)

;

so

X

n�0

f (n + 1)x

n

=

P

(�1)

i+j

det(I � xA : j; i)

det(I � xA)

=

3 + x� x

2

1� 2x� x

2

+ x

3

:

19



EXPONENTIAL

GENERATING FUNCTIONS

Given f : N ! C , write

E

f

(x) =

X

n�0

f (n)

x

n

n!

:

Proposition. Given f; g : N ! C ,

de�ne h : N ! C by

h(#X) =

X

(S;T )

f (#S)g(#T );

where #X < 1 and S; T � X suh

that

S [ T = X; S \ T = ;:

Then

E

f

(x)E

g

(x) = E

h

(x):

20



Proof. Let #X = n. There are

�

n

k

�

pairs (S; T ) with #S = k and #T =

n� k. Hene

h(n) =

n

X

k=0

�

n

k

�

f (k)g(n� k)

=

�

x

n

n!

�

E

f

(x)E

g

(x): 2

21



Example. Find the number h(n) of

ways to let [n℄ = S[T with S\T = ;,

hoose a subset of S, and hoose an

element of T . Here f (n) = 2

n

and

g(n) = n. Thus

E

f

(x) =

X

n�0

2

n

x

n

n!

= e

2x

E

g

(x) =

X

n�0

n

x

n

n!

= xe

x

) E

h

(x) = xe

3x

=

X

n�0

n3

n�1

x

n

n!

;

whene h(n) = n3

n�1

.

22



Iterate previous proposition:

Proposition. Fix k 2 P and f

1

; : : : ; f

k

:

N ! C . De�ne h : N ! C by

h(#X) =

X

f

1

(#S

1

) � � � f

k

(#S

k

);

where [S

i

= X and S

i

\ S

j

= ; if

i 6= j. Then

E

h

(x) = E

f

1

(x) � � �E

f

k

(x):

23



A partition of a �nite set S is a ol-

letion fB

1

; : : : ; B

k

g of subsets (alled

bloks) of S suh that

[B

i

= S; B

i

6= ;; B

i

\B

j

= ; if i 6= j:

Write �(S) for the set of partitions of

S.

Partitions of [3℄:

1� 2� 3 12� 3 13� 2 1� 23 123

24



Exponential formula. Given f :

P ! C , de�ne h : N ! C by

h(0) = 1

h(#S) =

X

�

f (#B

1

) � � � f (#B

k

); #S > 0;

where � = fB

1

; : : : ; B

k

g 2 �(S). Then

E

h

(x) = e

E

f

(x)

:

Proof. Set f (0) = 0. For �xed k

let

g

k

(#S) =

X

(B

1

;:::;B

k

)

f (#B

1

) � � � f (#B

k

);

where fB

1

; : : : ; B

k

g 2 �(S). Thus

E

g

k

(x) = E

f

(x)

k

:

25



Sine T

i

6= ;, all k! orderings of T

1

; : : : ; T

k

are distint. Thus for �xed k, if

h

k

(#S) =

X

fB

1

;:::;B

k

g2�(S)

f (#B

1

) � � � f (#B

k

);

then E

h

k

(x) =

1

k!

E

g

k

(x) =

1

k!

E

f

(x)

k

.

Hene

E

h

(x) = 1 +

X

k�1

E

h

k

(x)

=

X

E

f

(x)

k

k!

= e

E

f

(x)

: 2

26



Examples. (a) Let �

n

= �([n℄)

and B(n) = #�

n

(Bell number).

If f (i) = 1 8i then

B(n) =

X

fB

1

;:::;B

k

g2�

n

f (#B

1

) � � � f (#B

k

):

Thus

X

n�0

B(n)

x

n

n!

= exp

X

n�1

x

n

n!

= exp(e

x

� 1);

27



(b) Let f (n) be the number of on-

neted graphs on the vertex set [n℄.

Thus h(n) is the total number of graphs

on [n℄, so h(n) = 2

(

n

2

)

. Hene

X

n�1

f (n)

x

n

n!

= log

X

n�0

2

(

n

2

)

x

n

n!

:

(Note that these series diverge for all

x 6= 0.)

28



() Let t

k

(n) be the number of per-

mutations w of [n℄ satisfying w

k

= 1.

Thus every yle length d of w satis�es

djk. We an hoose w by partitioning

[n℄ into bloks of sizes djk and plaing

a yle on eah suh blok in (d � 1)!

way. Hene

X

n�0

t

k

(n)

x

n

n!

= exp

X

djk

(d� 1)!

x

d

d!

= exp

X

djk

x

d

d

:

29



TREES

A rooted tree is a onneted graph

without yles with one distinguished

vertex (the root).

30



Let r(n) be the number of rooted trees

on the vertex set [n℄. E.g., r(3) = 9:

1

2

1

2

3

1

3

2

2

1

3

2

3

1

3

1

2

1

2 3

2

1 3 1 2

33
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To obtain a rooted tree T on [n℄, hoose

a root r in n ways, hoose a partition

� 2 �([n℄ � frg), plae a rooted tree

T

i

on eah blok of �, and \join" r to

the roots of eah T

i

.

32



Let

R(x) =

X

n�1

r(n)

x

n

n!

e

R(x)

=

X

n�0

f(n)

x

n

n!

:

Thus f (n) is the number of forests

of rooted trees on [n℄, so xe

R(x)

is

the exponential generating funtion for

hoosing a 1-element subset of [n℄ (the

root) and plaing a forest of rooted trees

on the remaining elements. Sine this

struture is equivalent to a rooted tree

on [n℄, we have

R(x) = xe

R(x)

:

33



Given

F (x) = a

1

x + a

2

x

2

+ � � � ; a

1

6= 0;

de�ne F (x)

h�1i

by

F (F

h�1i

(x)) = F

h�1i

(F (x)) = x

(exists and is unique). Then

R(x) = xe

R(x)

) R(x) = (xe

�x

)

h�1i

:

How to �nd the oeÆients r(n)=n! of

(xe

�x

)

h�1i

?

34



Bijetive proof (Joyal). A dou-

ble rooted tree is a tree with one

vertex labelled s (start) and one ver-

tex (possibly the same) labelled e (end).

The number of double rooted trees on

[n℄ is n �r(n). Let T be suh a tree, and

let P be the unique path from s to e.

175

10

15

4

14

12 6 16 9 1 11

2

8

13 7

1 11
3

12 16963

es

35



The verties from s to e form a per-

mutation of its elements written in in-

reasing order. Write this permutation

in yle form as a direted graph:

1    3    6    9    11    12    16
12   6   16   9     3      1     11

3

6 16

11

1

12
9

36



Attah the subtrees of the path P bak

to their attahed verties and direted

into the yles:

6

3
11

16
14

8

2
1

12

5

10

17

4

15

13 7

9

37



We obtain a digraph on [n℄ for whih

every vertex has outdegree one, i.e., the

graph of a funtion f : [n℄! [n℄. Con-

versely, every suh f omes from a unique

double rooted tree T .

# of f : [n℄! [n℄: n

n

) # double-rooted trees on [n℄: n

n

) r(n) = n

n�1

38



Can we generalize this argument to

�nd oeÆients of other F

h�1i

(x)?

Lagrange inversion formula. Let

F (x) = a

1

x + a

2

x

2

+ � � � ; a

1

6= 0:

Let k; n 2 Z. Then

n[x

n

℄F

h�1i

(x)

k

= k[x

n�k

℄

�

x

F (x)

�

n

:

39



Proof. A ombinatorial proof an be

given based on ounting trees. Proof of

Lagrange:

Consider Laurent series

G(x) =

X

n�n

0

2Z

b

n

x

n

:

For instane,

1

F (x)

k

=

1

(a

1

x + a

2

x

2

+ � � �)

k

=

1

x

k

(a

1

+ a

2

x + � � �)

k

= x

�k

(d

0

+ d

1

x � � �)

= d

0

x

�k

+ d

1

x

�k+1

+ � � � :

40



Key fat:

[x

�1

℄

d

dx

G(x) = 0

Set F

h�1i

(x)

k

=

X

i�k

p

i

x

i

, so

x

k

=

X

i�k

p

i

F (x)

i

:

Apply

d

dx

:

kx

k�1

=

X

i�k

ip

i

F (x)

i�1

F

0

(x)

)

kx

k�1

F (x)

n

=

X

i�k

ip

i

F (x)

i�n�1

F

0

(x):

41



Take [x

�1

℄ on both sides. Sine

F (x)

i�n�1

F

0

(x) =

1

i� n

d

dx

F (x)

i�n

; i 6= n;

the oeÆient of x

�1

of the right-hand

side is

[x

�1

℄np

n

F

0

(x)

F (x)

= [x

�1

℄np

n

�

a

1

+ 2a

2

x + � � �

a

1

x + a

2

x

2

+ � � �

�

= [x

�1

℄np

n

�

1

x

+ � � �

�

= np

n

:

Hene

[x

�1

℄

kx

k�1

F (x)

n

= np

n

= n[x

n

℄F

h�1i

(x)

k

;

whih is equivalent to

n[x

n

℄F

h�1i

(x)

k

= k[x

n�k

℄

�

x

F (x)

�

n

: 2
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Let

R(x) = (xe

�x

)

h�1i

=

X

n�1

r(n)

x

n

n!

:

Thus if r

k

(n) is the number of forests

of k rooted trees on [n℄, then

1

k!

R(x)

k

=

X

n�k

r

k

(n)

x

n

n!

:
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By Lagrange inversion,

n[x

n

℄R(x)

k

= k[x

n�k

℄

�

x

xe

�x

�

n

= k[x

n�k

℄e

nx

=

kn

n�k

(n� k)!

;

so

r

k

(n) =

k

n

n!

(n� k)!k!

n

n�k

=

�

n� 1

k � 1

�

n

n�k

:
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ALGEBRAIC FUNCTIONS

A power series F (x) = a

0

+a

1

x+� � � is

algebrai if 9 a polynomial L(u; v) 6=

0 suh that

L(x; F (x)) = 0:

Examples. (a) Rational funtionsF (x) =

P (x)=Q(x) are algebrai, sine

Q(x)F (x)� P (x) = 0:

(b) Easy to hek that

�

�1=2

n

�

=

�

�

1

4

�

n

�

2n

n

�

;

so

F (x) :=

X

n�0

�

2n

n

�

x

n

=

1

p

1� 4x

:
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() Let F (x) =

P

n�0

�

3n

n

�

x

n

. Then

(27x� 4)F (x)

3

+ 3F (x) + 1 = 0:

(d) Not algebrai:

X

n�0

�

2n

n

�

2

x

n

;

X

n�0

(3n)!

n!

3

x

n

:

Theorem. Let F (x) =

P

n�0

f (n)x

n

be algebrai. Then 9 d � 1 and polyno-

mials P

0

(n); : : : ; P

d

(n) (not all 0) suh

that for all n � 0

P

d

(n)f (n + d) + P

d�1

(n)f (n + d� 1)

+ � � � + P

0

(n)f (n) = 0:

One says F (x) is D-�nite and f (n) is

P-reursive.
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Proof (sketh). LetL(u; v) be a nonzero

polynomial suh that L(x; F (x)) = 0.

Thus

L

u

(x; F (x)) + F

0

(x)L

v

(x; F (x)) = 0

) F

0

(x) = �

L

u

(x; F (x))

L

v

(x; F (x))

2 C (x; F (x)):

Similarly all higher derivativesF

(i)

(x) 2

C (x; F (x)). Sine F (x) is algebrai

dim

C (x)

C (x; F (x)) <1:

ThusF (x); F

0

(x); F

00

(x); : : : are linearly

dependent over C (x). Write down this

linear dependene relation, lear denom-

inators, and equate oeÆients of x

n

to

get an equation

P

d

(n)f (n+d)+� � �+P

0

(n)f (n) = 0: 2
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Example. Let f(m,n) be the num-

ber of paths from (0; 0) to (m;n) with

steps (1; 0); (0; 1); (1; 1) (Delannoy num-

ber). Thus

X

m;n�0

f (m;n)x

m

y

n

=

X

k�0

(x + y + xy)

k

=

1

1� x� y � xy

:
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Then

y :=

X

n�0

f (n; n)x

n

= [t

0

℄

1

1� xt�

1

t

� x

= [t

0

℄

1

� � �

�

t

t� �

�

t

t� �

�

;

where � =

1

2

(1 � x �

p

1� 6x + x

2

),

� =

1

2

(1� x +

p

1� 6x + x

2

). Hene

y = [t

0

℄

1

p

1� 6x + x

2

 

t�

�1

1� t�

�1

+

1

1� t

�1

�

!

=

1

p

1� 6x + x

2

;

and we get for g(n) = f (n; n),

(n+2)g(n+2)�3(2n+3)g(n+1)+(n+1)g(n) = 0

(hallenging to prove diretly!).
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k-ARY PLANE TREES

A k-ary plane tree is a rooted tree

for whih every non-endpoint vertex has

k ylially ordered subtrees.

Let f

k

(n) denote the number of k-

ary plane trees with n verties and

y = F

k

(x) =

X

n�0

f

k

(n)x

n

:

Then y = x + xy

k

, so

y =

�

x

1 + x

k

�

h�1i

:

By Lagrange inversion,

n[x

n

℄y = [x

n�1

℄(1 + x

k

)

n

) f

k

(n) =

(

1

n

�

n

j

�

; n = kj + 1

0; otherwise.
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Speial ase: k = 2 (plane binary

trees). Then

f

2

(2n + 1) =

1

n + 1

�

2n

n

�

;

a Catalan number C

n

.

66 ombinatorial interpretations ofC

n

:

Exerise 6.19 of Enumerative Combi-

natoris, vol. 2.

36 additional interpretations (as of 22

Deember 2002):

www-math.mit.edu/�rstan/e
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Examples.

� triangulations of a onvex (n+2)-gon

into n triangles by n � 1 diagonals

that do not interset in their interiors

� binary parenthesizations of a string

of n + 1 letters

(xx�x)x x(xx�x) (x�xx)x x(x�xx) xx�xx

� lattie paths from (0; 0) to (n; n) with

steps (0; 1) or (1; 0), never rising above

the line y = x

r r r r

r

r

r

r r r

r r

r

r

r r

r r r

r

r

r r r

r

r r

r

r r

r r

r r

r
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� n noninterseting hords joining 2n

points on the irumferene of a ir-

le

r r

r r

r r

r r

r r

r r

r r

r r

r r

r r

r r

r r

r r

r r

r r

�

�

�

�

�

�

A

A

A

A

�

�

�

�

�

�

�

�

�

�

�

�

�

�

� permutations a

1

a

2

� � � a

n

of [n℄ with

longest dereasing subsequene of length

at most two (i.e., there does not exist

i < j < k, a

i

> a

j

> a

k

)

123 213 132 312 231

� ways to stak oins in the plane, the

bottom row onsisting of n onseu-

tive oins

Æ

��

Æ

��

Æ

��

Æ

��

Æ

��

Æ

��

Æ

��

Æ

��

Æ

��

Æ

��

Æ

��

Æ

��

Æ

��

Æ

��

Æ

��

Æ

��

Æ

��

Æ

��

Æ

��

Æ

��

Æ

��

Æ

��
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� n-tuples (a

1

; a

2

; : : : ; a

n

) of integers

a

i

� 2 suh that in the sequene

1a

1

a

2

� � � a

n

1, eah a

i

divides the sum

of its two neighbors

14321 13521 13231 12531 12341
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Bijetive proof that there areC

n

=

1

n+1

�

2n

n

�

plane binary trees with 2 n + 1

verties: do a depth-�rst (preorder) searh

through the tree, labeling down edges 1,

up edges�1, and ignoring the last edge.

1

1

1

1

−

−

−

− 1

1

− 1

−

1 1 − 1 1 − 1 − − − 1 1 − 1 −

1
−
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This onverts trees to sequenes of n+ 1

1's and n �1's suh that every partial

sum is positive.

Claim. For any sequene a

1

a

2

� � � a

2n+1

of n+1 1's and n �1's, there is exatly

one value of i for whih every partial

sum of a

i

a

i+1

� � � a

2n+1

a

1

a

2

� � � a

i�1

is

positive.
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Claim. For any sequene a

1

a

2

� � � a

2n+1

of n+1 1's and n �1's, there is exatly

one value of i for whih every partial

sum of a

i

a

i+1

� � � a

2n+1

a

1

a

2

� � � a

i�1

is

positive.

Proof (naive). Indution on n. Clear

for n = 0. Assume for n � 1. Given

� = a

1

� � � a

2n+1

, an always �nd a

j

=

1, a

j+1

= �1 (subsripts modulo 2n +

1). Remove a

j

; a

j+1

from �, giving

� = b

1

� � � b

2n�1

. By the indution hy-

pothesis there is a unique i for whih

b

i

� � � b

i�1

has all partial sums positive.

If b

i

= a

k

, then k is the unique integer

for whih a

k

� � � a

k�1

has every partial

sum positive. 2
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There are

�

2n+1

n

�

sequenes of n + 1

1's and n �1's. All their 2n+ 1 \yli

shifts" are distint sine gd(n; n+1) =

1. Thus the number of plane binary

trees with 2n + 1 verties is

1

2n + 1

�

2n + 1

n

�

=

1

n + 1

�

2n

n

�

= C

n

:
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