Magic Squares and Syzygies

Richard P. Stanley
Traditional magic squares

Many elegant, ingenious, and beautiful constructions, but no general theory involving all of them.
Definition. An $n \times n$ magic square with line sum r is an $n \times n$ matrix of nonnegative integers for which every row and column sums to r.
Definition. An $n \times n$ magic square with line sum r is an $n \times n$ matrix of nonnegative integers for which every row and column sums to r.

$$\begin{bmatrix}
2 & 0 & 5 \\
3 & 3 & 1 \\
2 & 4 & 1
\end{bmatrix}$$

$n = 3, \ r = 7$
Definition. An $n \times n$ magic square with line sum r is an $n \times n$ matrix of nonnegative integers for which every row and column sums to r.

\[
\begin{bmatrix}
2 & 0 & 5 \\
3 & 3 & 1 \\
2 & 4 & 1 \\
\end{bmatrix} \quad \begin{bmatrix}
2 & 2 & 2 \\
2 & 2 & 2 \\
2 & 2 & 2 \\
\end{bmatrix}
\]

$n = 3, \ r = 7 \quad n = 3, \ r = 6$
A basic question

How many $n \times n$ magic squares have line sum r?

Call this number $H_n(r)$.
A basic question

How many $n \times n$ magic squares have line sum r?

Call this number $H_n(r)$.

Trivial case: $H_n(0) = 1$.

A basic question

How many $n \times n$ magic squares have line sum r?

Call this number $H_n(r)$.

Trivial case: $H_n(0) = 1$.

\[
\begin{bmatrix}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{bmatrix}
\]
The cases $n = 1, n = 2$

$H_1(r) = 1$: $[r]$
The cases \(n = 1, n = 2 \)

\[H_1(r) = 1: \quad [r] \]

What about \(n = 2 \)? Let \(0 \leq i \leq r \).

\[
\begin{bmatrix}
i & ？ \\
？ & ？
\end{bmatrix}
\]
The cases $n = 1$, $n = 2$

$H_1(r) = 1$: $[r]$

What about $n = 2$? Let $0 \leq i \leq r$.

\[
\begin{bmatrix}
 i & r - i \\
 r - i & ?
\end{bmatrix}
\]
The cases $n = 1, n = 2$

$H_1(r) = 1$: $[r]$

What about $n = 2$? Let $0 \leq i \leq r$.

\[
\begin{bmatrix}
i & r - i \\
r - i & i
\end{bmatrix}
\]
The cases $n = 1, n = 2$

$H_1(r) = 1$: $[r]$

What about $n = 2$? Let $0 \leq i \leq r$.

$$\begin{bmatrix}
 i & r - i \\
 r - i & i
\end{bmatrix}$$

Hence $H_2(r) = r + 1$ ($r + 1$ choices for $0 \leq i \leq r$).
The case $r = 1$

If every row and column of an $n \times n$ magic square M sums to 1, then M has one 1 in every row and column and 0’s elsewhere, i.e., M is a permutation matrix.
The case $r = 1$

If every row and column of an $n \times n$ magic square M sums to 1, then M has one 1 in every row and column and 0’s elsewhere, i.e., M is a permutation matrix.

n choices for where to put 1 in the first row. Then $n - 1$ choices for 1 in the second row. Then $n - 2$ choices for 1 in the third row. Etc.
The case $r = 1$

If every row and column of an $n \times n$ magic square M sums to 1, then M has one 1 in every row and column and 0’s elsewhere, i.e., M is a **permutation matrix**.

n choices for where to put 1 in the first row.
Then $n - 1$ choices for 1 in the second row.
Then $n - 2$ choices for 1 in the third row.
Etc.

Thus $H_n(1) = n(n - 1)(n - 2) \cdots 1 = n!$.
Let $0 \leq k \leq n$. Define

$$\binom{n}{k} = \frac{n(n - 1)(n - 2) \cdots (n - k + 1)}{k!}.$$
Binomial coefficients

Let \(0 \leq k \leq n\). Define

\[
\binom{n}{k} = \frac{n(n-1)(n-2)\cdots(n-k+1)}{k!}.
\]

Examples.

\[
\binom{n}{2} = \frac{n(n-1)}{2} = \frac{1}{2}(n^2 - n)
\]

\[
\binom{n+2}{3} = \frac{(n+2)(n+1)n}{6} = \frac{1}{6}(n^3 + 3n^2 + 2n).
\]
Binomial coefficients

Let $0 \leq k \leq n$. Define

$$\binom{n}{k} = \frac{n(n - 1)(n - 2) \cdots (n - k + 1)}{k!}.$$

Examples. \(\binom{n}{2} = \frac{n(n - 1)}{2} = \frac{1}{2}(n^2 - n)\)

\(\binom{n + 2}{3} = \frac{(n + 2)(n + 1)n}{6} = \frac{1}{6}(n^3 + 3n^2 + 2n)\).

In general, \(\binom{n+j}{k}\) is a polynomial in \(n\), degree \(k\).
Let’s get serious

Theorem (Birkhoff-von Neumann, 1946, 1952). Every $n \times n$ magic square with row and column sum r is a sum of r permutation matrices (of size $n \times n$).
Let’s get serious

Theorem (Birkhoff-von Neumann, 1946, 1952).

Every $n \times n$ magic square with row and column sum r is a sum of r permutation matrices (of size $n \times n$).

\[
\begin{bmatrix}
2 & 0 & 1 \\
1 & 1 & 1 \\
0 & 2 & 1
\end{bmatrix}
= \\
\begin{bmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{bmatrix}
+ \\
\begin{bmatrix}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{bmatrix}
+ \\
\begin{bmatrix}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{bmatrix}
\]
Every 3×3 magic square with row and column sum r is a sum of r 3×3 permutation matrices (six such matrices).
Every 3×3 magic square with row and column sum r is a sum of r 3×3 permutation matrices (six such matrices).

If all these sums were different, then from *Combinatorics 101* we would have

$$H_3(r) = \binom{r+5}{5}.$$
Every 3×3 magic square with row and column sum r is a sum of r 3×3 permutation matrices (six such matrices).

If all these sums were different, then from Combinatorics 101 we would have

$$H_3(r) = \binom{r + 5}{5}.$$

However, the sums are not all different!
A relation

\[
\begin{bmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{bmatrix}
+ \begin{bmatrix}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{bmatrix}
+ \begin{bmatrix}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{bmatrix}
=
\begin{bmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{bmatrix}
+ \begin{bmatrix}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{bmatrix}
+ \begin{bmatrix}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{bmatrix}
=
\begin{bmatrix}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{bmatrix}
\]
Such a relation is called a **syzygy**.
Such a relation is called a syzygy.

from suzugos (συζυγοζ), “yoked together”
Astronomical significance
The relation (syzygy) between the six 3×3 permutation matrices means that our first approximation $H_3(r) = \binom{r+5}{5}$ is an overcount. Get a “second approximation”

$$H_3(r) = \binom{r + 5}{5} - \binom{r + 2}{5}$$

$$= \frac{1}{8}(r^4 + 6r^3 + 15r^2 + 18r + 8)$$

$$= \frac{1}{8}(r + 1)(r + 2)(r^2 + 3r + 4).$$
No further corrections!

No further syzygies, so this is correct!
No further corrections!

No further syzygies, so this is correct!

First proved by Percy Alexander MacMahon (1854–1929) c. 1916, as part of his syzygetic method. First real result on $H_n(r)$.
Conjecture (1966). For any n, $H_n(r)$ is a polynomial in r of degree $(n - 1)^2$. Moreover,

$$H_n(-1) = H_n(-2) = \cdots = H_n(-n + 1) = 0$$

$$H_n(r) = (-1)^{n-1} H_n(-n - r).$$
Conjecture (1966). For any \(n \), \(H_n(r) \) is a polynomial in \(r \) of degree \((n - 1)^2 \). Moreover,

\[
H_n(-1) = H_n(-2) = \cdots = H_n(-n + 1) = 0
\]

\[
H_n(r) = (-1)^{n-1} H_n(-n - r).
\]

Example. \(H_3(r) = \frac{1}{8}(r + 1)(r + 2)(r^2 + 3r + 4) \)
What about 4×4 magic squares?
What about 4×4 magic squares?

There are 24 4×4 permutation matrices, giving a first approximation $\binom{r+23}{23}$.
What about 4×4 magic squares?

There are 24 4×4 permutation matrices, giving a first approximation $\binom{r+23}{23}$.

Now, however, there are 178 “independent” syzygies with varying numbers of terms.
These 178 syzygies have relations among them, called second-order syzygies.
Not the end of the story · · ·

These 178 syzygies have relations among them, called second-order syzygies.

There are 1837 second-order syzygies.
These 178 syzygies have relations among them, called **second-order syzygies**.

There are 1837 second-order syzygies.

Then 7416 third-order
These 178 syzygies have relations among them, called second-order syzygies.

There are 1837 second-order syzygies.

Then 7416 third-order, 16440 fourth order
Not the end of the story · · ·

These 178 syzygies have relations among them, called second-order syzygies.

There are 1837 second-order syzygies.

Then 7416 third-order, 16440 fourth order, 25144
These *178* syzygies have relations among them, called **second-order syzygies**.

There are *1837* second-order syzygies.

Then *7416* third-order, *16440* fourth order, *25144*, *35562*
These 178 syzygies have relations among them, called second-order syzygies.

There are 1837 second-order syzygies.

The 7416 third-order, 16440 fourth order, 25144, 35562, 42204
These 178 syzygies have relations among them, called second-order syzygies.

There are 1837 second-order syzygies.

Then 7416 third-order, 16440 fourth order, 25144, 35562, 42204, 35562
These 178 syzygies have relations among them, called second-order syzygies.

There are 1837 second-order syzygies.

Then 7416 third-order, 16440 fourth order, 25144, 35562, 42204, 35562, 25144
These **178** syzygies have relations among them, called **second-order syzygies**.

There are **1837** second-order syzygies.

Then **7416** third-order, **16440** fourth order, **25144**, 35562, 42204, 35562, 25144, 16440
These 178 syzygies have relations among them, called second-order syzygies.

There are 1837 second-order syzygies.

Then 7416 third-order, 16440 fourth order, 25144, 35562, 42204, 35562, 25144, 16440, 7416
These 178 syzygies have relations among them, called second-order syzygies.

There are 1837 second-order syzygies.

Then 7416 third-order, 16440 fourth order, 25144, 35562, 42204, 35562, 25144, 16440, 7416, 1837
These \textcolor{red}{178} syzygies have relations among them, called \textcolor{blue}{second-order syzygies}.

There are \textcolor{red}{1837} second-order syzygies.

Then \textcolor{red}{7416} third-order, \textcolor{red}{16440} fourth order, \textcolor{red}{25144}, \textcolor{red}{35562}, \textcolor{red}{42204}, \textcolor{red}{35562}, \textcolor{red}{25144}, \textcolor{red}{16440}, \textcolor{red}{7416}, \textcolor{red}{1837}, \textcolor{red}{178}
These **178** syzygies have relations among them, called **second-order syzygies**.

There are **1837** second-order syzygies.

Then **7416** third-order, **16440** fourth order, **25144**, **35562**, **42204**, **35562**, **25144**, **16440**, **7416**, **1837**, **178**, and finally ending in **one** 14th order syzygy!
To define syzygies rigorously requires commutative algebra.

David Hilbert (1862–1943): proved famous Hilbert syzygy theorem (1890).
To define syzygies rigorously requires **commutative algebra**.

David Hilbert (1862–1943): proved famous **Hilbert syzygy theorem** (1890).

For $n \times n$ magic squares, guarantees that the syzygy process will come to an end in at most $n!$ steps.
To define syzygies rigorously requires **commutative algebra**.

David Hilbert (1862–1943): proved famous **Hilbert syzygy theorem** (1890).

For $n \times n$ magic squares, guarantees that the syzygy process will come to an end in at most $n!$ steps.

This implies that $H_n(r)$ is indeed a polynomial in r, at least for r sufficiently large. Extra tweaking needed for all r.
More refined results

More sophisticated algebra (Cohen-Macaulay rings, Auslander-Buchsbaum theorem): the chain of syzygies ends in exactly $n! - n^2 + 2n - 2$ steps.
More refined results

More sophisticated algebra (Cohen-Macaulay rings, Auslander-Buchsbaum theorem): the chain of syzygies ends in exactly $n! - n^2 + 2n - 2$ steps.

Number of syzygies at each step for $n = 4$:
1, 178, 1837, 7416, 16440, 25144, 35562, 42204, 35562, 25144, 16440, 7416, 1837, 178, 1
More refined results

More sophisticated algebra (Cohen-Macaulay rings, Auslander-Buchsbaum theorem): the chain of syzygies ends in exactly \(n! - n^2 + 2n - 2 \) steps.

Number of syzygies at each step for \(n = 4 \):

1, 178, 1837, 7416, 16440, 25144, 35562, 42204, 35562, 25144, 16440, 7416, 1837, 178, 1

Note symmetry! (Sequence is palindromic.)
Key reason for symmetry: let J be the $n \times n$ all 1’s matrix. Then M is an $n \times n$ magic square with row and column sums r if and only if $M + J$ is an $n \times n$ magic square with positive entries and row and column sums $r + n$.
Key reason for symmetry: let J be the $n \times n$ all 1’s matrix. Then M is an $n \times n$ magic square with row and column sums r if and only if $M + J$ is an $n \times n$ magic square with positive entries and row and column sums $r + n$.

Symmetry implies the remainder of the Anand-Dumir-Gupta conjecture:

\[H_n(-1) = H_n(-2) = \cdots = H_n(-n+1) = 0 \]

\[H_n(r) = (-1)^{n-1} H_n(-n - r). \]
over 5.7×10^{34} syzygies!
over 5.7×10^{34} syzygies!

Mankind may never know the exact number.
Another approach

Every 3×3 magic square has exactly one of the forms:

$$\begin{bmatrix}
 a + e & b + d & c \\
 c + d & a & b + e \\
 b & c + e & a + d
\end{bmatrix}, \quad \begin{bmatrix}
 a & b + d & c + e + 1 \\
 c + d & a + e + 1 & b \\
 b + e + 1 & c & a + d
\end{bmatrix},$$

$$\begin{bmatrix}
 a + d + 1 & b & c + e + 1 \\
 c & a + e + 1 & b + d + 1 \\
 b + e + 1 & c + d + 1 & a
\end{bmatrix},$$

where $a, b, c, d, e \geq 0$.

Magic Squares and Syzygies – p. 23
This gives:

\[H_3(r) = \binom{r + 4}{4} + \binom{r + 3}{4} + \binom{r + 2}{4}. \]
This gives:

\[H_3(r) = \binom{r+4}{4} + \binom{r+3}{4} + \binom{r+2}{4}. \]

This type of argument can be done for any \(n \), using a geometric approach (shellability).
Further formulas

This gives:

\[H_3(r) = \binom{r + 4}{4} + \binom{r + 3}{4} + \binom{r + 2}{4}. \]

This type of argument can be done for any \(n \), using a geometric approach (shellability).

Regard an \(n \times n \) magic square as lying in the \(n^2 \)-dimensional space \(\mathbb{R}^{n^2} \).
For 4×4 magic squares we get

\[
1 \left(\begin{array}{c} r + 9 \\ 9 \end{array} \right) + 14 \left(\begin{array}{c} r + 8 \\ 9 \end{array} \right) + 87 \left(\begin{array}{c} r + 7 \\ 9 \end{array} \right) + 148 \left(\begin{array}{c} r + 6 \\ 9 \end{array} \right) + 87 \left(\begin{array}{c} r + 5 \\ 9 \end{array} \right) + 14 \left(\begin{array}{c} r + 4 \\ 9 \end{array} \right) + 1 \left(\begin{array}{c} r + 3 \\ 9 \end{array} \right)
\]
For 4×4 magic squares we get

$$1 \left(\begin{array}{c} r + 9 \\ 9 \end{array} \right) + 14 \left(\begin{array}{c} r + 8 \\ 9 \end{array} \right) + 87 \left(\begin{array}{c} r + 7 \\ 9 \end{array} \right) + 148 \left(\begin{array}{c} r + 6 \\ 9 \end{array} \right)$$

$$+ 87 \left(\begin{array}{c} r + 5 \\ 9 \end{array} \right) + 14 \left(\begin{array}{c} r + 4 \\ 9 \end{array} \right) + 1 \left(\begin{array}{c} r + 3 \\ 9 \end{array} \right)$$

(352 cases in all)
For 4×4 magic squares we get

\[1 \left(\binom{r+9}{9} \right) + 14 \left(\binom{r+8}{9} \right) + 87 \left(\binom{r+7}{9} \right) + 148 \left(\binom{r+6}{9} \right) + 87 \left(\binom{r+5}{9} \right) + 14 \left(\binom{r+4}{9} \right) + 1 \left(\binom{r+3}{9} \right)\]

(352 cases in all)

For $n = 5$ there are 4718075 cases!
For 4×4 magic squares we get

$$1 \binom{r + 9}{9} + 14 \binom{r + 8}{9} + 87 \binom{r + 7}{9} + 148 \binom{r + 6}{9}$$

$$+ 87 \binom{r + 5}{9} + 14 \binom{r + 4}{9} + 1 \binom{r + 3}{9}$$

(352 cases in all)

For $n = 5$ there are 4718075 cases!

Note symmetry of $(1, 14, 87, 148, 87, 14, 1)$. Equivalent to previous symmetry phenomena.
Symmetry property useful for computation.
Symmetry property useful for computation.

Example. $H_4(r)$ is a polynomial of degree 9. Ten values are needed to compute $H_4(r)$, say $H_4(0) = 1, H_4(1) = 24, H_4(2), \ldots, H_4(9)$.
Symmetry property useful for computation.

Example. $H_4(r)$ is a polynomial of degree 9. Ten values are needed to compute $H_4(r)$, say $H_4(0) = 1$, $H_4(1) = 24$, $H_4(2)$, \ldots, $H_4(9)$.

But $H_4(-1) = H_4(-2) = H_4(-3) = 0$, $H_4(0) = -H_4(-4)$, $H_4(1) = -H_4(-5)$, $H_4(2) = -H_4(-6)$, $H_4(3) = -H_4(-7)$.

Thus only need to compute $H_4(0) = 1$, $H_4(1) = 24$, $H_4(2)$, $H_4(3)$.
(1, 14, 87, 148, 87, 14, 1)

Note $1 \leq 14 \leq 87 \leq 148$ (unimodality).
Unimodality

\[(1, 14, 87, 148, 87, 14, 1) \]

Note \(1 \leq 14 \leq 87 \leq 148 \) (unimodality).

True for any \(n \).

Very deep proof: toric varieties, intersection homology, hard Lefschetz theorem,
$H_9(r)$ is a polynomial of degree 64 and thus has 64 complex zeros (or roots) z, i.e., $H_9(z) = 0$.
$H_9(r)$ is a polynomial of degree 64 and thus has 64 complex zeros (or roots) z, i.e., $H_9(z) = 0$.

Zeros of $H_9(n)$
Holey magic squares: some entries (or holes) are specified to be 0.
First variation

Holey magic squares: some entries (or holes) are specified to be 0.

Example.

\[
\begin{bmatrix}
* & * & 0 & * \\
* & * & 0 & * \\
0 & 0 & * & * \\
* & * & * & * \\
\end{bmatrix}
\]
$H_{n,S}(r)$: number of $n \times n$ magic squares with line sum r and hole set S.
$H_{n,S}(r)$: number of $n \times n$ magic squares with line sum r and hole set S.

Example.

$$\begin{bmatrix} 0 & * & * \\ * & 0 & * \\ * & * & 0 \end{bmatrix}$$
$H_{n,S}(r)$: number of $n \times n$ magic squares with line sum r and hole set S.

Example.

\[
\begin{bmatrix}
0 & * & * \\
* & 0 & * \\
* & * & 0
\end{bmatrix}
\]

$0 \leq i \leq r: \begin{bmatrix}
0 & i & r-i \\
r-i & 0 & i \\
i & r-i & 0
\end{bmatrix}$,

so $H_{3,S}(r) = r + 1$.
If a magic square with holes is written as a sum of permutation matrices P, then each P still has these holes.
If a magic square with holes is written as a sum of permutation matrices P, then each P still has these holes.

Thus Birkhoff-von Neumann, syzygy, and shellability arguments still apply:

Theorem. $H_{n,S}(r)$ is a polynomial in r.
An example

\[M = \begin{bmatrix} * & * & 0 & * \\ * & * & 0 & * \\ 0 & 0 & * & * \\ * & * & * & * \end{bmatrix} \]
An example

\[M = \begin{bmatrix}
 \ast & \ast & 0 & \ast \\
 \ast & \ast & 0 & \ast \\
 0 & 0 & \ast & \ast \\
 \ast & \ast & \ast & \ast
\end{bmatrix} \]

\[H_{4, S}(r) = \frac{1}{24} (r + 1)(r + 2)(r + 3)(r^2 + 3r + 4) \]

\[= 1 \binom{r + 5}{5} + 2 \binom{r + 4}{5} + 2 \binom{r + 3}{5}. \]
An example

\[M = \begin{bmatrix}
 * & * & 0 & * \\
 * & * & 0 & * \\
 0 & 0 & * & * \\
 * & * & * & *
\end{bmatrix} \]

\[H_{4, S}(r) = \frac{1}{24} (r + 1)(r + 2)(r + 3)(r^2 + 3r + 4) \]

\[= \binom{r + 5}{5} + 2 \binom{r + 4}{5} + 2 \binom{r + 3}{5}. \]

Note. The sequence \((1, 2, 2)\) is not symmetric!
Minimal positive magic squares

\[H_{4,S}(r) = 1 \binom{r + 5}{5} + 2 \binom{r + 4}{5} + 2 \binom{r + 3}{5}. \]
Minimal positive magic squares

\[H_{4,S}(r) = 1 \binom{r + 5}{5} + 2 \binom{r + 4}{5} + 2 \binom{r + 3}{5}. \]

There are two minimal positive magic squares:

\[
\begin{bmatrix}
1 & 2 & 0 & 1 \\
2 & 1 & 0 & 1 \\
0 & 0 & 3 & 1 \\
1 & 1 & 1 & 1
\end{bmatrix}
\quad
\begin{bmatrix}
2 & 1 & 0 & 1 \\
1 & 2 & 0 & 1 \\
0 & 0 & 3 & 1 \\
1 & 1 & 1 & 1
\end{bmatrix}
\]
\[H_{4,S}(r) = 1 \binom{r + 5}{5} + 2 \binom{r + 4}{5} + 2 \binom{r + 3}{5}. \]
Reciprocity

\[H_{4,S}(r) = 1 \binom{r + 5}{5} + 2 \binom{r + 4}{5} + 2 \binom{r + 3}{5}. \]

In fact: let \(\bar{H}_{4,S}(r) \) be the number of positive (except for the holes \(S \)) \(4 \times 4 \) magic squares with hole set \(S \) and line sum \(r \).
Reciprocity

\[H_{4,S}(r) = 1 \binom{r + 5}{5} + 2 \binom{r + 4}{5} + 2 \binom{r + 3}{5}. \]

In fact: let \(\bar{H}_{4,S}(r) \) be the number of positive (except for the holes \(S \)) 4 \times 4 magic squares with hole set \(S \) and line sum \(r \).

\[\bar{H}_{4,S}(r) = 2 \binom{r + 1}{5} + 2 \binom{r}{5} + 1 \binom{r - 1}{5}. \]
Reciprocity

\[H_{4,S}(r) = 1 \binom{r + 5}{5} + 2 \binom{r + 4}{5} + 2 \binom{r + 3}{5} . \]

In fact: let \(\bar{H}_{4,S}(r) \) be the number of **positive** (except for the holes \(S \)) \(4 \times 4 \) magic squares with hole set \(S \) and line sum \(r \).

\[\bar{H}_{4,S}(r) = 2 \binom{r + 1}{5} + 2 \binom{r}{5} + 1 \binom{r - 1}{5} . \]

(1, 2, 2) and (2, 2, 1) are reverses!
Second variation

\(S_n(r) \): number of \(n \times n \) symmetric magic squares with line sums equal to \(r \)
Second variation

$S_n(r)$: number of $n \times n$ symmetric magic squares with line sums equal to r

\[
\begin{bmatrix}
1 & 2 & 0 & 5 \\
2 & 2 & 3 & 1 \\
0 & 3 & 4 & 1 \\
5 & 1 & 1 & 1 \\
\end{bmatrix}
\]
Second variation

\[S_n(r) \]: number of \(n \times n \) symmetric magic squares with line sums equal to \(r \)

\[
\begin{bmatrix}
1 & 2 & 0 & 5 \\
2 & 2 & 3 & 1 \\
0 & 3 & 4 & 1 \\
5 & 1 & 1 & 1
\end{bmatrix}
\]
Not a polynomial!

\[S_3(r) = \begin{cases} \frac{1}{8}(2r^3 + 9r^2 + 14r + 8), & r \text{ even} \\ \frac{1}{8}(2r^3 + 9r^2 + 14r + 7), & r \text{ odd} \end{cases} \]
Not a polynomial!

\[S_3(r) = \begin{cases}
\frac{1}{8}(2r^3 + 9r^2 + 14r + 8), & r \text{ even} \\
\frac{1}{8}(2r^3 + 9r^2 + 14r + 7), & r \text{ odd}
\end{cases} \]

Theorem. For any \(n \geq 1 \) there exist polynomials \(P_n(r) \) and \(Q_n(r) \) such that

\[S_n(r) = \begin{cases}
P_n(r), & r \text{ even} \\
Q_n(r), & r \text{ odd.}
\end{cases} \]
Birkhoff-von Neumann fails

False that every symmetric magic square M is a sum of symmetric permutation matrices:

$$
\begin{bmatrix}
0 & 1 & 1 \\
1 & 0 & 1 \\
1 & 1 & 0
\end{bmatrix} = ?
$$
Why r even and r odd

However $2M$ is sum of symmetric magic squares of row and column sum two:

$$M = P_1 + \cdots + P_k \quad \text{(permutation matrices)}$$

$$\Rightarrow 2M = M + M^t$$

$$= (P_1 + P_1^t) + \cdots + (P_k + P_k^t).$$
Third variation

\(I_n(r) \): number of \(n \times n \times n \) magic cubes (rows, columns, and pillars sum to \(r \)
$I_n(r)$: number of $n \times n \times n$ magic cubes (rows, columns, and pillars sum to r)

No analogue of Birkhoff-von Neumann theorem. Very general results give:

Theorem. For every $n \geq 1$ there is a p (depending on n) and polynomials
$T_{n,0}(r), \ldots, T_{n,p-1}(r)$ such that

$$I_n(r) = T_{n,i}(r) \text{ if } r \equiv i \pmod{p}.$$
Third variation

\(I_n(r) \): number of \(n \times n \times n \) magic cubes (rows, columns, and pillars sum to \(r \))

No analogue of Birkhoff-von Neumann theorem. Very general results give:

Theorem. For every \(n \geq 1 \) there is a \(p \) (depending on \(n \)) and polynomials \(T_{n,0}(r), \ldots, T_{n,p-1}(r) \) such that

\[
I_n(r) = T_{n,i}(r) \text{ if } r \equiv i \pmod{p}.
\]

Value of \(p \) not known in general.
$I_3(r) = \frac{1}{4480} \left(18r^8 + 216r^7 + 1218r^6 + 4158r^5 + 9387r^4 + 14364r^3 + 14612r^2 + 10032r + 4480 \right),$

r even
$$I_3(r) = \frac{1}{4480} \left(18r^8 + 216r^7 + 1218r^6 + 4158r^5
ight.$$

$$+ 9387r^4 + 14364r^3 + 14612r^2 + 10032r + 4480 \right), \quad r \text{ even}$$

$$I_3(r) = \frac{1}{4480} \left(\cdots + 8142r + 1645 \right), \quad r \text{ odd}$$
$I_3(r) = \frac{1}{4480} (18r^8 + 216r^7 + 1218r^6 + 4158r^5$

$+ 9387r^4 + 14364r^3 + 14612r^2 + 10032r + 4480), \quad r \text{ even}$

$I_3(r) = \frac{1}{4480} (\cdots + 8142r + 1645), \quad r \text{ odd}$

$4 \times 4 \times 4: \ p = ?$
The last slide 😞

That’s all Folks!