Sn: {permutations of 1,...,n}

(2,7): the transposition ¢ <> j acting
on positions, e.g. (1,2)132 = 312.

Let w = ajao---ap € Sy,. Define
b(w) = #{(i.4) : i <J, ;> aj).
Define a partial order < on 5, called

(strong) Bruhat order, to be the tran-
sitive and reflexive (w < w) closure of

u < (i, 7)u, if £((3,5)u) =1+ £(u).

6211/8/453 < 64718253
all < or >2.4

v < w: w covers v, l.e., w > v and

lw) =14 4(v)



321

23 31z

213 132

123






Sp, is a graded poset, where rank(w) =
¢(w). Thus the rank-generating func-
tion of .5, is given by

F(Sn,q) — Z qrank(w)
wWES,

= (14q)(14g+q") - - (14g+ - +¢" 7).



Motivation. Let K be a field and
F(K™) the set of all (complete) flags

0o=VycVicWc---cV,=K"
of subspaces of K™ (so dim V; = 1).

For every such flag ', there are unique
vectors vy, ..., vy € K™ such that:

o {vy,...,v;} is a basis for V



e The nxn matrix with rows vy, ..., vy
has the form

*xx 1 000
100000
O0x0x x1
0x0100
0x0010
010000

The positions of the 1’s define a per-
mutation wgr = 316452. The number
of ¥'s is f(wp).



For w € S,, define the Bruhat cell
Quw ={F € F(K") : w=wp}.
Thus
FK" = | | Qu,
WESn
the Bruhat decomposition of F(K™).



.: closed Bruhat cell
Theorem (Ehresmann, 1934)
Qv C ﬁw S v <w
(Bruhat order).



P: finite poset (partially ordered set),
say with a top element 1

principal order ideal A for x € P:

Apr={ye P :y<uz}

lattice: a poset for which every two el-
ements x, y have a greatest lower bound
(meet) A y and least upper bound
(join) x V y

L p: all subsets of P which are inter-
sections of A,’s, the MacNeille com-
pletion of P. It is the “smallest” lat-
tice containing P as a subposet and pre-
serving any meets and joins existing in
P.

kg, Lp= P & P is a lattice.



abcdef

abc abce

abcdn abce = abc

ab ac



Theorem (Ehresmann) Letw = a1 ---ay, €

Sn. Define
1 2 3 n
by bo bn—1
wa — C1 ) Cn—2 )
ai

where

(bla ceey bn—l) — {ala e 7an—1}sorted
(Cla SR Cn—2> — {ala ceey an—Z}sorted

etc.
Then

v< w1, <1y

(componentwise).



Example. v = 35124, w = 45123

Tw is a (special) monotone trian-
gle.



(general) monotone triangle:
1 2 3 4 5

monotone triangle <> ASM
1y <> permutation matrix



DM,,: set of all monotone triangles of
length n, ordered componentwise

Thus S, 1s a subposet of 9,,.

Theorem (Lascoux-Schiitzenberger, 1996)
M, is the MacNeille completion of
Sn,.



123

23
3
123 123
13 23
3 2
123
13
2
123 123
13 12
1 2
123
12






Topology of the Bruhat order

P: finite poset

Define the Mobius function

pw:P xP—7Z

recursively by:

0, unless x <y
I, z=vy

ple,y) =49 S ulez), z <y

r<z<y
Thus

r<y= Z p(x, z) = 0.
r<z<y



-1 -1

1 K(idw)

Theorem (Verma, 1971) For v < w
i Sy, we have

(v, w) = (1) w)=4w),



For x < y in any finite poset P, let
c; be the number of chains

rT<rp<r << <Y,
with c_1 = 1.
Theorem (P. Hall, 1936)
p(x,y) =—c_1+cg—cr+ey—-+-
order complex A(x,y): the ab-
stract simplicial complex on the set
(x,y)={2z€P :z<z<y}
whose faces (simplices) are the chains in
(z,).
P. Hall’s theorem restated:
uz, y) = xX(A(z,y)),

the reduced Euler characteristic
of A(z,y).






Verma’s theorem on p for .Sy, suggests:

Conjecture. For all v < w in Sy,
A(x,y) is a triangulation of a sphere.

Note. Given an abstract simplicial
complex A, it is whether
A triangulates a sphere.



Basic tool: lexicographic shella-

bility (Bjorner, Wachs). Let P be a
finite graded poset with 0 and 1, with

u(z,y) = (_1>rank(y)—rank(x) Vo <y
(i.e., P is Eulerian). Let
A:Ep—{1,2,,...}

be a labeling of the edges of the (Hasse)
diagram of P satisfying

e For all z < y, d a unique saturated
increasing chain

C <21 < <xp =1, le.,
Mg, 71) < Mz, 22) < - < AN@p—1, Tr)-
e The label sequence of C' lexicograph-

ically precedes that of all other sat-
urated chains from x to y.

Call A an EL-labeling.



Theorem (Bjorner) Let P be a finite
FEulerian poset with an EL-labeling.
Then for all x <y in P, Alzx,y) tri-
angulates a sphere.



First EL-labeling of .S, due to Edel-
man (1981): Let 71, 72,.. ., (™ be
the transpositions in .Sy, in lexicographic
order. E.g., n = 4:

1 =(1,2), m=(1,3),73 =(1,4)

T4 =(2,3), 75=1(2,4),76 = (3,4)
Let w > v in Sy. Define

AMv,w)=j if jv=w.

Theorem (Edelman). X ¢s an EL-
labeling of Sy, so Yv < w in Sy,
A(v,w) triangulates a sphere.



321

3
23 31z
3 1
213 132
1 3

123



Counting maximal chains in S

weak (Bruhat) order WS, on

Sn: transitive, reflexive closure of
u < (2,2 + 1)u, if £((3,1+1)u) = 1+£4(u).
Compare ordinary (strong) order:

u < (2,7)u, if ((z,75)u) =1+ £(u).

321 321

231 312 231 312

213 132 213 132

123 123

strong weak



Theorem (RS, 1984). The number
My, of maximal chains of W&y, (i.e.,
the number of ways to move from1,2,...,n
ton,n—1,...,1) by (g) adjacent trans-
positions) is given by

My, = # SYT of shape (n —1,n —2,...,1)
(5)!
1n—1 3n—2 5n—3 . (ZTL _ 3)1

Is there something analogous for Sy, (strong
order)?




If (¢,j)v = w > v in Sy, define the
weight

wt(v, w) = o; + ajpq + -+ .

HC:id=vg<vy<:-- <v(g)=w0
is a maximal chain in \Sj,, define

wt(C) = wt(vg, v1) wt(vy, v9) - - -
WY ()1 9())

Theorem (Stembridge, 2001) We have

S i) )
C

- qn—1lon—2, .. (n _ 1)1

] (w+aipi+-+aj)
1<i<y<n

(extends to any Weyl group)



> wt(C) = B+ aB” +2a8(a + )
C
= 3af(a+ ).



(sketch). Based

on Schubert polynomials. Let s;
be the adjacent transposition (or
simple reflection) (i,i+1). Let w €

Sp and £ = f(w).

reduced decomposition of w: a se-
quence (ag,...,ap), 1 < a; < n—1,
such that

w = Sa13a2 c e Saz.
divided difference operator 9;:
5. f = 10 Ti)) = F(@it1, %)
- f =
Ly — Li41

Define wg =n,n—1,...,1 € S, (the
longest permutation in Sy, of length (5)).




Let (ai,...,ap) be areduced decompo-
sition of v € S;,. Define

av:aal"'aag

(independent of choice of reduced de-
composition).

Define the Schubert polynomial G,
by

_ n—1,_n—2

Sy is homogeneous of degree £(w) in
LlyeeesyLp—1-

n—1 n—2
GwO:xl 5 e Ty



Example. w = 4132 = 59535951

W) = 898359515354
w Wy = 8354

03 04 x%x%xg

R
N
—_
o
DO

|

3 2
83 331332

= x%xg + 33%333.



Note. &5, =21 + 29+ -+ + ;.

Monk’s rule. 65,6, = > S kw

summed over all transpositions (7, k) such
that
1< <r<k

(5, k)w) = L(w)+1 (ie., (4, k)w = w).
For w € 5, let

N(w) =) wt(C),
C

where C' ranges over all saturated chains

d=vy<v1 < <vy=w.



Iteration of Monk’s rule gives:

(041631 + 042632 + -+ Ozn_lﬁssn_l)g

weESH
l(w)=C

Let
Bi=oa;+aj+ - +ap_1,
SO
@16 + a08s, + -+ 165,
= 0121 + Powo + - -+ + Op—1Tp—1



Lemma. Fixv € 5,. Then the
nonzero polynomials 0y, Sy, are linearly
independent.

Let W;f = f(B; < Bix1). Thene.g.
0 = (P11 + - + Bp—1@p—1)\?

= ) UN(w)9;Cu.

f(w)=(3)
But 0;Gy, # 0, so
U, N(wg) = 0.

Thus (8; — Bi+1)|N(wp). Similarly,

(B;i = B;)|N(wp) V1<i<j<n
Since deg N (wp) = (5), we get

Nwp)=Cn [ (etair+ - —+aj_1).
1<i<y<n



Cp=1""1o"=2. . (n — DL

Follows from: for every permutation

by« by of {17=1 2n=2 (n—1)1},
there 1s a unique maximal chain

d=vyg < v <--- —<v(g):w0
in .Sy, such that Vi,

V; = (bi, Ci)vi—la for some ¢; > b;.



Example. n = 4, (by,...,bg) =

211312
1234

1324
2314
3214
3241
4231
4321



