S_n : {permutations of $1, \ldots, n$ }

(i, j): the transposition $i \leftrightarrow j$ acting on **positions**, e.g. (1, 2)132 = 312.

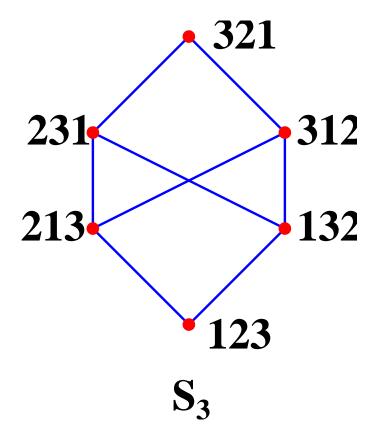
Let $w = a_1 a_2 \cdots a_n \in S_n$. Define

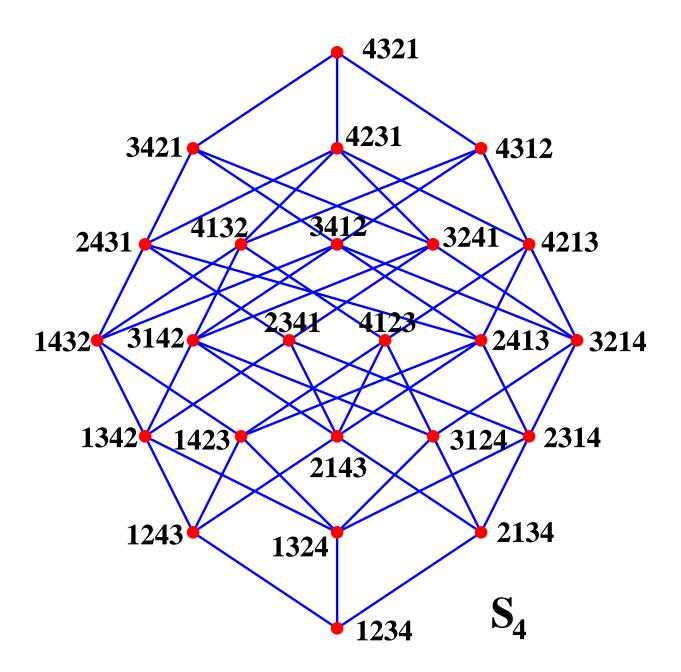
$$\ell(w) = \#\{(i,j) : i < j, \ a_i > a_j\}.$$

Define a partial order \leq on S_n , called (strong) **Bruhat order**, to be the transitive and reflexive $(w \leq w)$ closure of

$$u < (i, j)u$$
, if $\ell((i, j)u) = 1 + \ell(u)$.
 $62718453 < 64718253$
all $< \text{ or } >2.4$

 $v \prec w$: w covers v, i.e., w > v and $\ell(w) = 1 + \ell(v)$





 S_n is a graded poset, where rank $(w) = \ell(w)$. Thus the **rank-generating function** of S_n is given by

$$\mathbf{F}(\mathbf{S}_n, \mathbf{q}) := \sum_{w \in S_n} q^{\operatorname{rank}(w)}$$
$$= (1+q)(1+q+q^2) \cdots (1+q+\cdots+q^{n-1}).$$

Motivation. Let K be a field and $\mathcal{F}(K^n)$ the set of all (complete) **flags** $0 = V_0 \subset V_1 \subset V_2 \subset \cdots \subset V_n = K^n$

of subspaces of K^n (so dim $V_i = i$).

For every such flag F, there are unique vectors $v_1, \ldots, v_n \in K^n$ such that:

• $\{v_1, \ldots, v_i\}$ is a basis for V_i

• The $n \times n$ matrix with rows v_1, \ldots, v_n has the form

The positions of the **1**'s define a permutation $\mathbf{w}_{\mathbf{F}} = 316452$. The number of *'s is $\ell(w_F)$.

For $w \in S_n$ define the **Bruhat cell**

$$\mathbf{\Omega}_{\boldsymbol{w}} = \{ F \in \mathcal{F}(K^n) : w = w_F \}.$$

Thus

$$\mathcal{F}(K^n) = \bigsqcup_{w \in S_n} \Omega_w,$$

the Bruhat decomposition of $\mathcal{F}(K^n)$.

 $\overline{\Omega}_{w}$: **closed** Bruhat cell

Theorem (Ehresmann, 1934)

$$\overline{\Omega}_v \subseteq \overline{\Omega}_w \Leftrightarrow v \le w$$

(Bruhat order).

P: finite poset (partially ordered set), say with a top element $\hat{\mathbf{1}}$

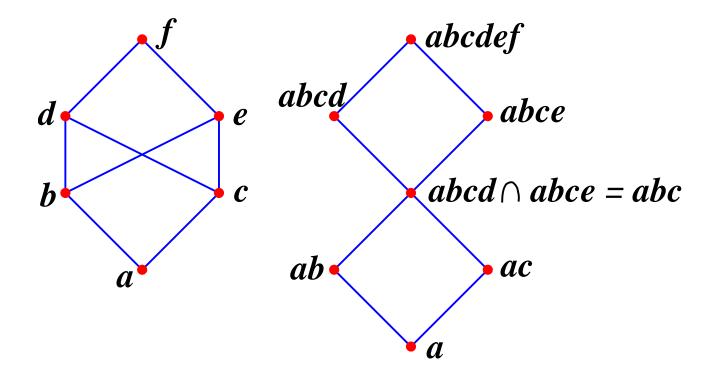
principal order ideal Λ_x for $x \in P$:

$$\mathbf{\Lambda}_{\boldsymbol{x}} = \{ y \in P : y \le x \}$$

lattice: a poset for which every two elements x, y have a greatest lower bound $(\mathbf{meet}) \ \boldsymbol{x} \land \boldsymbol{y}$ and least upper bound $(\mathbf{join}) \ \boldsymbol{x} \lor \boldsymbol{y}$

 L_P : all subsets of P which are intersections of Λ_x 's, the MacNeille completion of P. It is the "smallest" lattice containing P as a subposet and preserving any meets and joins existing in P.

E.g., $L_P \cong P \Leftrightarrow P$ is a lattice.



Theorem (Ehresmann) Let $w = a_1 \cdots a_n \in S_n$. Define

$$\mathbf{T}_{\boldsymbol{w}} = \begin{pmatrix} 1 & 2 & 3 & \cdots & n \\ b_1 & b_2 & \cdots & b_{n-1} \\ c_1 & \cdots & c_{n-2} & \cdots \\ & & a_1 \end{pmatrix},$$

where

$$(b_1, \dots, b_{n-1}) = \{a_1, \dots, a_{n-1}\}_{\text{sorted}}$$

 $(c_1, \dots, c_{n-2}) = \{a_1, \dots, a_{n-2}\}_{\text{sorted}}$
etc.

Then

$$v \le w \Leftrightarrow T_v \le T_w$$

(componentwise).

Example. v = 35124, w = 45123

$$T_v = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 \\ 1 & 2 & 3 & 5 \\ 1 & 3 & 5 \\ 3 & 5 & 5 \end{bmatrix}$$

 T_w is a (special) monotone triangle.

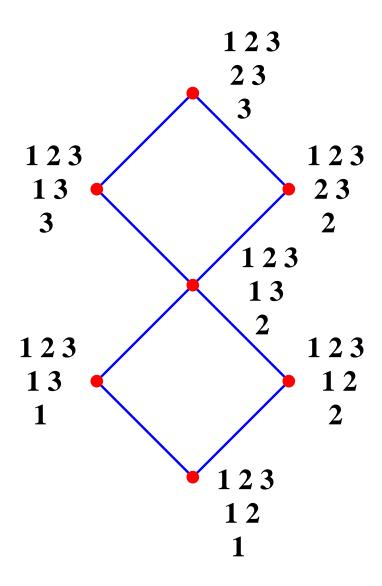
(general) monotone triangle:

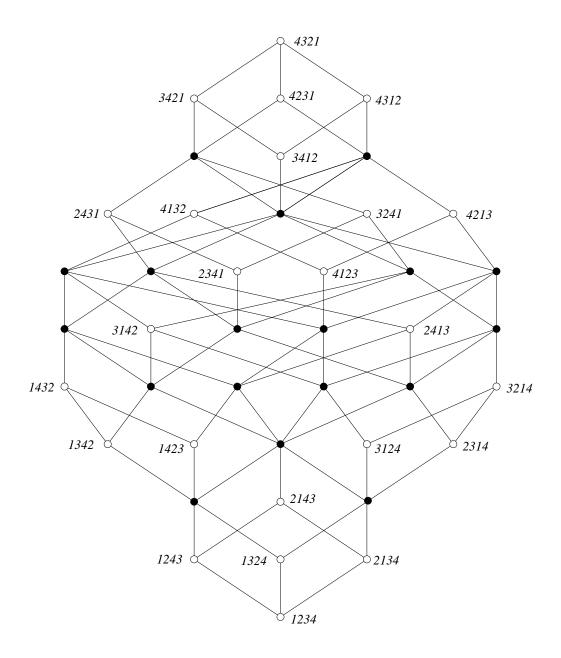
monotone triangle \leftrightarrow ASM $T_w \leftrightarrow$ permutation matrix

 \mathfrak{M}_n : set of all monotone triangles of length n, ordered componentwise

Thus S_n is a subposet of \mathfrak{M}_n .

Theorem (Lascoux-Schützenberger, 1996) \mathfrak{M}_n is the MacNeille completion of S_n .





Topology of the Bruhat order

P: finite poset

Define the **Möbius function**

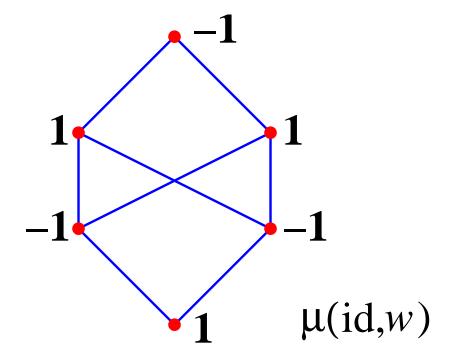
$$\mu: P \times P \to \mathbb{Z}$$

recursively by:

$$\mu(x,y) = \begin{cases} 0, \text{ unless } x \le y \\ 1, x = y \\ -\sum_{x \le z < y} \mu(x,z), x < y \end{cases}$$

Thus

$$x < y \Rightarrow \sum_{x \le z \le y} \mu(x, z) = 0.$$



Theorem (Verma, 1971) For $v \leq w$ in S_n we have

$$\mu(v, w) = (-1)^{\ell(w) - \ell(v)}.$$

For $x \leq y$ in any finite poset P, let c_i be the number of chains

$$x < x_0 < x_1 < \dots < x_i < y,$$
 with $c_{-1} = 1$.

Theorem (P. Hall, 1936)

$$\mu(x,y) = -c_{-1} + c_0 - c_1 + c_2 - \cdots$$

order complex $\Delta(x, y)$: the abstract simplicial complex on the set

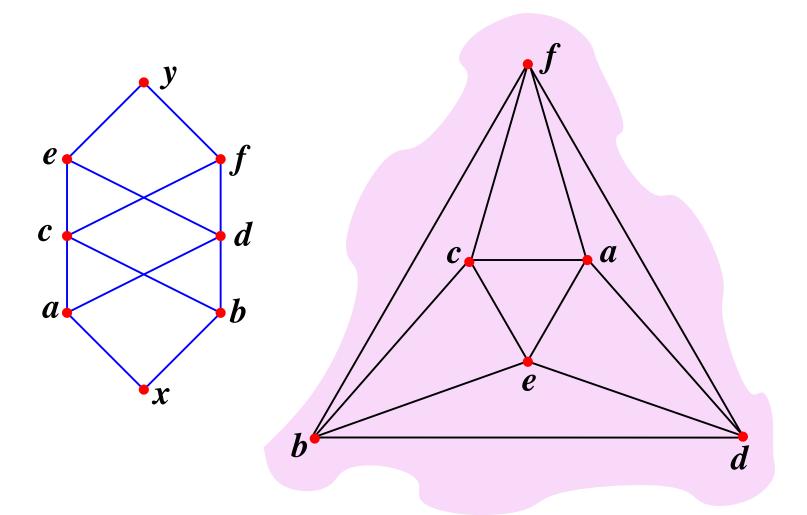
$$(x, y) = \{ z \in P : x < z < y \}$$

whose faces (simplices) are the chains in (x, y).

P. Hall's theorem restated:

$$\mu(x,y) = \tilde{\chi}(\Delta(x,y)),$$

the reduced Euler characteristic of $\Delta(x,y)$.



 $\Delta(x,y)$

Verma's theorem on μ for S_n suggests:

Conjecture. For all $v \leq w$ in S_n , $\Delta(x,y)$ is a triangulation of a sphere.

Note. Given an abstract simplicial complex Δ , it is **undecidable** whether Δ triangulates a sphere.

Basic tool: lexicographic shellability (Björner, Wachs). Let P be a finite graded poset with $\hat{0}$ and $\hat{1}$, with $\mu(x,y) = (-1)^{\operatorname{rank}(y) - \operatorname{rank}(x)} \ \forall x \leq y$

$$\mu(x,y) = (-1)^{\operatorname{rank}(y) - \operatorname{rank}(x)} \quad \forall x \le y$$

(i.e., P is **Eulerian**). Let

$$\lambda: \mathcal{E}_P \to \{1, 2, , \ldots\}$$

be a labeling of the edges of the (Hasse) diagram of P satisfying

• For all x < y, \exists a unique saturated increasing chain

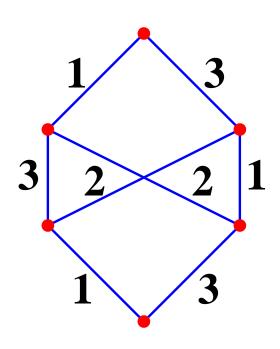
$$C: x_0 \prec x_1 \prec \cdots \prec x_r = y, \text{ i.e.,}$$

 $\lambda(x_0, x_1) \leq \lambda(x_1, x_2) \leq \cdots \leq \lambda(x_{r-1}, x_r).$

• The label sequence of C lexicographically precedes that of all other saturated chains from x to y.

Call λ an **EL-labeling**.

Theorem (Björner) Let P be a finite Eulerian poset with an EL-labeling. Then for all x < y in P, $\Delta(x, y)$ triangulates a sphere.



First EL-labeling of S_n due to Edelman (1981): Let $\tau_1, \tau_2, \dots, \tau_{\binom{n}{2}}$ be the transpositions in S_n in lexicographic order. E.g., n=4:

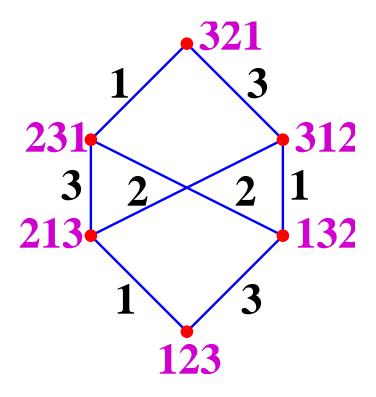
$$\tau_1 = (1, 2), \ \tau_2 = (1, 3), \tau_3 = (1, 4)$$

$$\tau_4 = (2,3), \ \tau_5 = (2,4), \tau_6 = (3,4)$$

Let $w \succ v$ in S_n . Define

$$\lambda(v, w) = j$$
 if $\tau_j v = w$.

Theorem (Edelman). λ is an EL-labeling of S_n , so $\forall v < w$ in S_n , $\Delta(v, w)$ triangulates a sphere.



Counting maximal chains in S_n

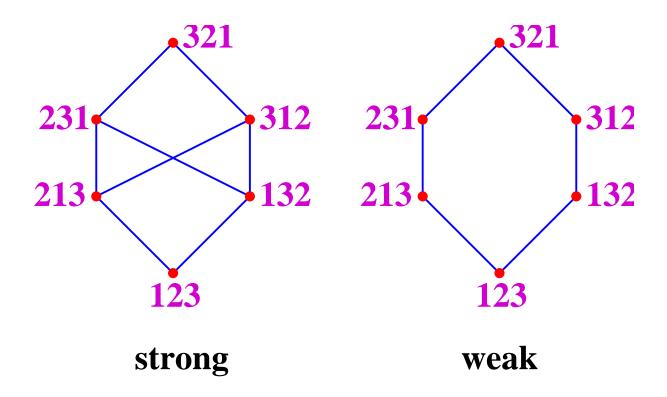
weak (Bruhat) order WS_n on

 S_n : transitive, reflexive closure of

$$u < (i, i + 1)u$$
, if $\ell((i, i+1)u) = 1 + \ell(u)$.

Compare ordinary (strong) order:

$$u < (i, j)u$$
, if $\ell((i, j)u) = 1 + \ell(u)$.



Theorem (RS, 1984). The number M_n of maximal chains of $W\mathfrak{S}_n$ (i.e., the number of ways to move from $1, 2, \ldots, n$ to $n, n-1, \ldots, 1$) by $\binom{n}{2}$ adjacent transpositions) is given by

 $M_n = \# \text{ SYT of shape } (n-1, n-2, ..., 1)$

$$= \frac{\binom{n}{2}!}{1^{n-1} 3^{n-2} 5^{n-3} \cdots (2n-3)^1}$$

Is there something analogous for S_n (strong order)?

If $(i,j)v = w \succ v$ in S_n , define the **weight**

$$\mathbf{wt}(\mathbf{v}, \mathbf{w}) = \alpha_i + \alpha_{i+1} + \cdots + \alpha_{j-1}.$$

If C: id = $v_0 \prec v_1 \prec \cdots \prec v_{\binom{n}{2}} = w_0$ is a maximal chain in S_n , define

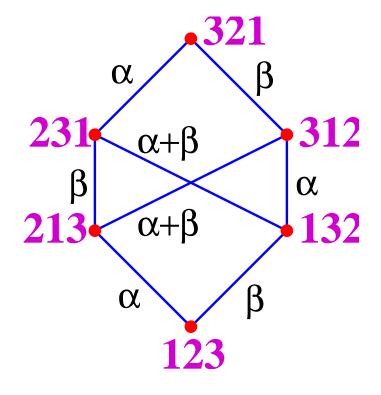
$$\mathbf{wt}(\mathbf{C}) = \mathrm{wt}(v_0, v_1) \, \mathrm{wt}(v_1, v_2) \cdots \\ \mathrm{wt}(v_{\binom{n}{2}-1}, v_{\binom{n}{2}}).$$

Theorem (Stembridge, 2001) We have

$$\sum_{C} \operatorname{wt}(C) = \frac{\binom{n}{2}!}{1^{n-1}2^{n-2}\cdots(n-1)^{1}}$$

$$\cdot \prod_{1\leq i< j\leq n} (\alpha_{i} + \alpha_{i+1} + \cdots + \alpha_{j-1}).$$

(extends to any Weyl group)



$$\sum_{C} \operatorname{wt}(C) = \alpha^{2}\beta + \alpha\beta^{2} + 2\alpha\beta(\alpha + \beta)$$
$$= 3\alpha\beta(\alpha + \beta).$$

Alternative proof (sketch). Based on Schubert polynomials. Let s_i be the adjacent transposition (or simple reflection) (i, i+1). Let $w \in S_n$ and $\ell = \ell(w)$.

reduced decomposition of w: a sequence (a_1, \ldots, a_ℓ) , $1 \le a_j \le n-1$, such that

$$w = s_{a_1} s_{a_2} \cdots s_{a_\ell}$$
.

divided difference operator ∂_i :

$$\partial_i f = \frac{f(x_i, x_{i+1}) - f(x_{i+1}, x_i)}{x_i - x_{i+1}}$$

Define $\mathbf{w_0} = n, n-1, \dots, 1 \in S_n$ (the longest permutation in S_n , of length $\binom{n}{2}$).

Let (a_1, \ldots, a_ℓ) be a reduced decomposition of $v \in S_n$. Define

$$\partial_{\mathbf{v}} = \partial_{a_1} \cdots \partial_{a_\ell}$$

(independent of choice of reduced decomposition).

Define the **Schubert polynomial** \mathfrak{S}_w by

$$\mathfrak{S}_{\boldsymbol{w}} = \partial_{w^{-1}w_0}(x_1^{n-1}x_2^{n-2}\cdots x_{n-1}).$$

 \mathfrak{S}_w is homogeneous of degree $\ell(w)$ in x_1, \ldots, x_{n-1} .

$$\mathfrak{S}_{w_0} = x_1^{n-1} x_2^{n-2} \cdots x_{n-1}$$

Example.
$$w = 4132 = s_2 s_3 s_2 s_1$$

$$w_0 = s_2 s_3 s_2 s_1 s_3 s_4$$

$$w^{-1}w_0 = s_3 s_4$$

$$\mathfrak{S}_{4132} = \partial_3 \partial_4 x_1^3 x_2^2 x_3$$

$$= \partial_3 x_1^3 x_2^2$$

$$= x_1^2 x_2 + x_1^3 x_3.$$

Note. $\mathfrak{S}_{s_i} = x_1 + x_2 + \dots + x_i$.

Monk's rule. $\mathfrak{S}_{s_r}\mathfrak{S}_w = \sum \mathfrak{S}_{(j,k)w}$, summed over all transpositions (j,k) such that

$$1 \leq j \leq r < k$$

$$\ell((j,k)w) = \ell(w) + 1 \text{ (i.e., } (j,k)w \succ w).$$

For $w \in S_n$ let

$$N(w) = \sum_{C} \operatorname{wt}(C),$$

where C ranges over all saturated chains

$$id = v_0 \prec v_1 \prec \cdots \prec v_\ell = w.$$

Iteration of Monk's rule gives:

$$(\alpha_1 \mathfrak{S}_{s_1} + \alpha_2 \mathfrak{S}_{s_2} + \dots + \alpha_{n-1} \mathfrak{S}_{s_{n-1}})^{\ell}$$

$$= \sum_{\substack{w \in S_n \\ \ell(w) = \ell}} N(w) \mathfrak{S}_w.$$

Let

$$\boldsymbol{\beta_i} = \alpha_i + \alpha_{i+1} + \dots + \alpha_{n-1},$$

SO

$$\alpha_1 \mathfrak{S}_{s_1} + \alpha_2 \mathfrak{S}_{s_2} + \dots + \alpha_{n-1} \mathfrak{S}_{s_{n-1}}$$

= $\beta_1 x_1 + \beta_2 x_2 + \dots + \beta_{n-1} x_{n-1}$

Lemma. Fix $v \in S_n$. Then the nonzero polynomials $\partial_v \mathfrak{S}_w$ are linearly independent.

Let
$$\Psi_i f = f(\beta_i \leftarrow \beta_{i+1})$$
. Then e.g.

$$0 = \partial_i \Psi_i (\beta_1 x_1 + \dots + \beta_{n-1} x_{n-1})^{\binom{n}{2}}$$

$$= \sum_{\ell(w) = \binom{n}{2}} \Psi_i N(w) \partial_i \mathfrak{S}_w.$$

But $\partial_i \mathfrak{S}_{w_0} \neq 0$, so

$$\Psi_i N(w_0) = 0.$$

Thus $(\beta_i - \beta_{i+1})|N(w_0)$. Similarly,

$$(\beta_i - \beta_j)|N(w_0) \ \forall 1 \le i < j \le n$$

Since deg $N(w_0) = \binom{n}{2}$, we get

$$N(w_0) = C_n \prod_{1 \le i < j \le n} (\alpha_i + \alpha_{i+1} + \dots + \alpha_{j-1}).$$

To show:

$$C_n = 1^{n-1}2^{n-2}\cdots(n-1)^1.$$

Follows from: for every permutation $b_1 \cdots b_{\binom{n}{2}}$ of $\{1^{n-1}, 2^{n-2}, \dots, (n-1)^1\}$, there is a unique maximal chain

$$id = v_0 \prec v_1 \prec \cdots \prec v_{\binom{n}{2}} = w_0$$

in S_n such that $\forall i$,

$$v_i = (b_i, c_i)v_{i-1}$$
, for some $c_i > b_i$.

Example.
$$n = 4, (b_1, \dots, b_6) = 211312$$

$$1234$$

$$1324$$

3 1 4

14

2 **4** 1

2 3 1