Smith Normal Form and Combinatorics

Richard P. Stanley
Smith normal form

A: $n \times n$ matrix over commutative ring R (with 1)

Suppose there exist $P, Q \in \text{GL}(n, R)$ such that

$$PAQ := B = \text{diag}(d_1, d_1d_2, \ldots, d_1d_2 \cdots d_n),$$

where $d_i \in R$. We then call B a Smith normal form (SNF) of A.
Smith normal form

A: $n \times n$ matrix over commutative ring R (with 1)

Suppose there exist $P, Q \in \text{GL}(n, R)$ such that

$$PAQ := B = \text{diag}(d_1, d_1d_2, \ldots, d_1d_2 \cdots d_n),$$

where $d_i \in R$. We then call B a Smith normal form (SNF) of A.

NOTE. (1) Can extend to $m \times n$.

(2) unit $\cdot \det(A) = \det(B) = d_1^n d_2^{n-1} \cdots d_n$.

Thus SNF is a refinement of \det.
Row and column operations

Can put a matrix into SNF by the following operations.

- Add a multiple of a row to another row.
- Add a multiple of a column to another column.
- Multiply a row or column by a unit in R.
Row and column operations

Can put a matrix into SNF by the following operations.

- Add a multiple of a row to another row.
- Add a multiple of a column to another column.
- Multiply a row or column by a unit in R.

Over a field, SNF is row reduced echelon form (with all unit entries equal to 1).
Existence of SNF

PIR: principal ideal ring, e.g., \(\mathbb{Z}, K[x], \mathbb{Z}/m\mathbb{Z} \).

If \(R \) is a PIR then \(A \) has a unique SNF up to units.
Existence of SNF

PIR: principal ideal ring, e.g., \mathbb{Z}, $K[x]$, $\mathbb{Z}/m\mathbb{Z}$.

If R is a PIR then A has a unique SNF up to units.

Otherwise A “typically” does not have a SNF but may have one in special cases.
Not known in general for which rings R does every matrix over R have an SNF.
Not known in general for which rings R does every matrix over R have an SNF.

Necessary condition: R is a **Bézout ring**, i.e., every finitely generated ideal is principal.

Example. ring of entire functions and ring of all algebraic integers (not PIR’s)
Not known in general for which rings R does every matrix over R have an SNF.

Necessary condition: R is a **Bézout ring**, i.e., every finitely generated ideal is principal.

Example. ring of entire functions and ring of all algebraic integers (not PIR’s)

Open: every matrix over a Bézout domain has an SNF.
R: a PID

A: an $n \times n$ matrix over R with rows $v_1, \ldots, v_n \in R^n$

$\text{diag}(e_1, e_2, \ldots, e_n)$: SNF of A
Algebraic interpretation of SNF

\(R \): a PID

\(A \): an \(n \times n \) matrix over \(R \) with rows

\[v_1, \ldots, v_n \in R^n \]

\(\text{diag}(e_1, e_2, \ldots, e_n) \): SNF of \(A \)

Theorem.

\[R^n / (v_1, \ldots, v_n) \cong (R/e_1 R) \oplus \cdots \oplus (R/e_n R). \]
Algebraic interpretation of SNF

\(\mathbb{R} \): a PID

\(\mathbb{A} \): an \(n \times n \) matrix over \(\mathbb{R} \) with rows \(v_1, \ldots, v_n \in \mathbb{R}^n \)

\(\text{diag}(e_1, e_2, \ldots, e_n) \): SNF of \(\mathbb{A} \)

\textbf{Theorem.}

\[\mathbb{R}^n / (v_1, \ldots, v_n) \cong (\mathbb{R}/e_1\mathbb{R}) \oplus \cdots \oplus (\mathbb{R}/e_n\mathbb{R}) . \]

\(\mathbb{R}^n / (v_1, \ldots, v_n) \): \textbf{(Kasteleyn) cokernel} of \(\mathbb{A} \)
An explicit formula for SNF

\(\mathbb{R} \): a PID

\(A \): an \(n \times n \) matrix over \(\mathbb{R} \) with \(\det(A) \neq 0 \)

\(\text{diag}(e_1, e_2, \ldots, e_n) \): SNF of \(A \)
An explicit formula for SNF

\mathcal{R}: a PID

A: an $n \times n$ matrix over \mathcal{R} with $\det(A) \neq 0$

$\text{diag}(e_1, e_2, \ldots, e_n)$: SNF of A

Theorem. $e_1 e_2 \cdots e_i$ is the gcd of all $i \times i$ minors of A.

minor: determinant of a square submatrix.

Special case: e_1 is the gcd of all entries of A.
An example

Reduced Laplacian matrix of K_4:

$$A = \begin{bmatrix} 3 & -1 & -1 \\ -1 & 3 & -1 \\ -1 & -1 & 3 \end{bmatrix}$$
An example

Reduced Laplacian matrix of K_4:

$$A = \begin{bmatrix}
 3 & -1 & -1 \\
 -1 & 3 & -1 \\
 -1 & -1 & 3
\end{bmatrix}$$

Matrix-tree theorem $\implies \det(A) = 16$, the number of spanning trees of K_4.
Reduced Laplacian matrix of K_4:

$$
A = \begin{bmatrix}
3 & -1 & -1 \\
-1 & 3 & -1 \\
-1 & -1 & 3
\end{bmatrix}
$$

Matrix-tree theorem $\implies \text{det}(A) = 16$, the number of spanning trees of K_4.

What about SNF?
An example (continued)

\[
\begin{bmatrix}
3 & -1 & -1 \\
-1 & 3 & -1 \\
-1 & -1 & 3
\end{bmatrix}
\rightarrow
\begin{bmatrix}
0 & 0 & -1 \\
-4 & 4 & -1 \\
8 & -4 & 3
\end{bmatrix}
\rightarrow
\begin{bmatrix}
0 & 0 & -1 \\
-4 & 4 & 0 \\
8 & -4 & 0
\end{bmatrix}
\rightarrow
\begin{bmatrix}
0 & 0 & -1 \\
0 & 4 & 0 \\
4 & -4 & 0
\end{bmatrix}
\rightarrow
\begin{bmatrix}
1 & 0 & 0 \\
0 & 4 & 0 \\
0 & 0 & 4
\end{bmatrix}
\]
Reduced Laplacian matrix of K_n

$L_0(K_n) = nI_{n-1} - J_{n-1}$

$\det L_0(K_n) = n^{n-2}$
Reduced Laplacian matrix of K_n

$$L_0(K_n) = nI_{n-1} - J_{n-1}$$
$$\det L_0(K_n) = n^{n-2}$$

Trick: 2×2 submatrices (up to row and column permutations):

$$\begin{bmatrix} n-1 & -1 \\ -1 & n-1 \end{bmatrix}, \begin{bmatrix} n-1 & -1 \\ -1 & -1 \end{bmatrix}, \begin{bmatrix} -1 & -1 \\ -1 & -1 \end{bmatrix},$$

with determinants $n(n-2)$, $-n$, and 0. Hence $e_1 e_2 = n$. Since $\prod e_i = n^{n-2}$ and $e_i|e_{i+1}$, we get the SNF $\text{diag}(1, n, n, \ldots, n)$.
Laplacian matrices of general graphs

SNF of the Laplacian matrix of a graph: very interesting

connections with sandpile models, chip firing, abelian avalanches, etc.
Laplacian matrices of general graphs

SNF of the Laplacian matrix of a graph: very interesting

connections with sandpile models, chip firing, abelian avalanches, etc.

no time for further details
SNF of the Laplacian matrix of a graph: very interesting

connections with sandpile models, chip firing, abelian avalanches, etc.

no time for further details 😞
SNF of random matrices

Huge literature on random matrices, mostly connected with eigenvalues.

Very little work on SNF of random matrices over a PID.
Is the question interesting?

\(\text{Mat}_k(n) \): all \(n \times n \ \mathbb{Z} \)-matrices with entries in \([-k, k]\) (uniform distribution)

\(p_k(n, d) \): probability that if \(M \in \text{Mat}_k(n) \) and \(\text{SNF}(M) = (e_1, \ldots, e_n) \), then \(e_1 = d \).
Is the question interesting?

\(\text{Mat}_k(n) \): all \(n \times n \mathbb{Z} \)-matrices with entries in \([-k, k]\) (uniform distribution)

\(p_k(n, d) \): probability that if \(M \in \text{Mat}_k(n) \) and \(\text{SNF}(M) = (e_1, \ldots, e_n) \), then \(e_1 = d \).

\textbf{Recall:} \(e_1 = \gcd \) of \(1 \times 1 \) minors (entries) of \(M \)
Is the question interesting?

\(\text{Mat}_k(n) \): all \(n \times n \mathbb{Z} \)-matrices with entries in
\([-k, k]\) (uniform distribution)

\(p_k(n, d) \): probability that if \(M \in \text{Mat}_k(n) \) and
\(\text{SNF}(M) = (e_1, \ldots, e_n) \), then \(e_1 = d \).

Recall: \(e_1 = \gcd \) of \(1 \times 1 \) minors (entries) of \(M \)

Theorem. \(\lim_{k \to \infty} p_k(n, d) = \frac{1}{d n^2 \zeta(n^2)} \)
Specifying some e_i

with Yinghui Wang
Specifying some e_i

with Yinghui Wang (王颖慧)
Two general results.

Let $\alpha_1, \ldots, \alpha_{n-1} \in \mathbb{P}$, $\alpha_i | \alpha_{i+1}$.

$\mu_k(n)$: probability that the SNF of a random $A \in \text{Mat}_k(n)$ satisfies $e_i = \alpha_i$ for $1 \leq \alpha_i \leq n - 1$.

$$\mu(n) = \lim_{k \to \infty} \mu_k(n).$$

Then $\mu(n)$ exists, and $0 < \mu(n) < 1$.
Let $\alpha_n \in \mathbb{P}$.

$\nu_k(n)$: probability that the SNF of a random $A \in \text{Mat}_k(n)$ satisfies $e_n = \alpha_n$.

Then

$$\lim_{k \to \infty} \nu_k(n) = 0.$$
Sample result

\(\mu_k(n) \): probability that the SNF of a random \(A \in \text{Mat}_k(n) \) satisfies \(e_1 = 2, \ e_2 = 6. \)

\[
\mu(n) = \lim_{k \to \infty} \mu_k(n).
\]
\[\mu(n) = 2^{-n^2} \left(1 - \sum_{i=(n-1)^2}^{n(n-1)} 2^{-i} + \sum_{i=n(n-1)+1}^{n^2-1} 2^{-i} \right) \]

\[\cdot \frac{3}{2} \cdot 3^{-(n-1)^2} \left(1 - 3^{(n-1)^2} \right) \left(1 - 3^{-n} \right)^2 \]

\[\cdot \prod_{p>3} \left(1 - \sum_{i=(n-1)^2}^{n(n-1)} p^{-i} + \sum_{i=n(n-1)+1}^{n^2-1} p^{-i} \right). \]
\(\kappa(n) \): probability that an \(n \times n \mathbb{Z} \)-matrix has SNF \(\text{diag}(e_1, e_2, \ldots, e_n) \) with \(e_1 = e_2 = \cdots = e_{n-1} = 1 \)
\(\kappa(n) \): probability that an \(n \times n \mathbb{Z} \)-matrix has SNF \(\text{diag}(e_1, e_2, \ldots, e_n) \) with \(e_1 = e_2 = \cdots = e_{n-1} = 1 \)

Theorem. \(\kappa(n) = \frac{\prod_p \left(1 + \frac{1}{p^2} + \frac{1}{p^3} + \cdots + \frac{1}{p^n} \right)}{\zeta(2) \zeta(3) \cdots} \)
Cyclic cokernel

$$\kappa(n):$$ probability that an $$n \times n \mathbb{Z}$$-matrix has SNF $$\text{diag}(e_1, e_2, \ldots, e_n)$$ with $$e_1 = e_2 = \cdots = e_{n-1} = 1$$

Theorem.
$$\kappa(n) = \prod_p \left(1 + \frac{1}{p^2} + \frac{1}{p^3} + \cdots + \frac{1}{p^n} \right) \frac{\zeta(2) \zeta(3) \cdots}{\zeta(6) \prod_{j \geq 4} \zeta(j)}$$

Corollary.
$$\lim_{n \to \infty} \kappa(n) = \frac{1}{\zeta(6) \prod_{j \geq 4} \zeta(j)} \approx 0.846936 \cdots.$$
Small number of generators

\(g \): number of generators of cokernel (number of entries of SNF \(\neq 1 \)) as \(n \to \infty \)

previous slide: \(\text{Prob}(g = 1) = 0.846936 \cdots \)
Small number of generators

g: number of generators of cokernel (number of entries of SNF $\neq 1$) as $n \to \infty$

previous slide: $\text{Prob}(g = 1) = 0.846936 \cdots$

$\text{Prob}(g \leq 2) = 0.99462688 \cdots$
Small number of generators

\(g \): number of generators of cokernel (number of entries of SNF \(\neq 1 \)) as \(n \to \infty \)

previous slide: \(\text{Prob}(g = 1) = 0.846936 \cdots \)

\[\text{Prob}(g \leq 2) = 0.99462688 \cdots \]

\[\text{Prob}(g \leq 3) = 0.99995329 \cdots \]
Small number of generators

\(g \): number of generators of cokernel (number of entries of SNF \(\neq 1 \)) as \(n \to \infty \)

previous slide: \(\text{Prob}(g = 1) = 0.846936 \cdots \)

\[\text{Prob}(g \leq 2) = 0.99462688 \cdots \]

\[\text{Prob}(g \leq 3) = 0.99995329 \cdots \]

Theorem. \(\text{Prob}(g \leq \ell) = 1 - (3.46275 \cdots)2^{-(\ell + 1)^2}(1 + O(2^{-\ell})) \)
Small number of generators

g: number of generators of cokernel (number of entries of SNF $\neq 1$) as $n \to \infty$

previous slide: $\text{Prob}(g = 1) = 0.846936 \cdots$

\begin{align*}
\text{Prob}(g \leq 2) &= 0.99462688 \cdots \\
\text{Prob}(g \leq 3) &= 0.99995329 \cdots
\end{align*}

Theorem. $\text{Prob}(g \leq \ell) = 1 - (3.46275 \cdots)2^{-(\ell+1)^2}(1 + O(2^{-\ell}))$
\[3.46275 \ldots = \frac{1}{\prod_{j \geq 1} \left(1 - \frac{1}{2^j} \right)} \]
Example of SNF computation

λ: a partition $(\lambda_1, \lambda_2, \ldots)$, identified with its Young diagram

(3,1)
Example of SNF computation

λ: a partition \((\lambda_1, \lambda_2, \ldots)\), identified with its Young diagram

\[
\begin{array}{ccc}
\cdot & \cdot & \cdot \\
\cdot & \cdot & \\
\end{array}
\]

(3,1)

λ*: λ extended by a border strip along its entire boundary
Example of SNF computation

\(\lambda \): a partition \((\lambda_1, \lambda_2, \ldots)\), identified with its Young diagram

\[
(3,1)
\]

\(\lambda^* \): \(\lambda \) extended by a border strip along its entire boundary

\[
(3,1)^* = (4,4,2)
\]
Initialization

Insert 1 into each square of λ^*/λ.

\[
(3,1)^* = (4,4,2)
\]
Let $t \in \lambda$. Let M_t be the largest square of λ^* with t as the upper left-hand corner.
Let $t \in \lambda$. Let M_t be the largest square of λ^* with t as the upper left-hand corner.
Let \(t \in \lambda \). Let \(M_t \) be the largest square of \(\lambda^* \) with \(t \) as the upper left-hand corner.
Determinantal algorithm

Suppose all squares to the southeast of \(t \) have been filled. Insert into \(t \) the number \(n_t \) so that \(\det M_t = 1 \).
Suppose all squares to the southeast of t have been filled. Insert into t the number n_t so that $\det M_t = 1$.
Determinantal algorithm

Suppose all squares to the southeast of t have been filled. Insert into t the number n_t so that $\det M_t = 1$.
Suppose all squares to the southeast of t have been filled. Insert into t the number n_t so that $\det M_t = 1$.

\[
\begin{array}{ccc}
1 & 1 & 2 \\
1 & 1 & 1 \\
1 & 1 & 1 \\
\end{array}
\]
Suppose all squares to the southeast of t have been filled. Insert into t the number n_t so that $\det M_t = 1$.
Determinantal algorithm

Suppose all squares to the southeast of t have been filled. Insert into t the number n_t so that $\det M_t = 1$.

\[
\begin{array}{ccc}
3 & 5 & 2 & 1 \\
3 & 2 & 1 & 1 \\
1 & 1 & 1 & 1 \\
\end{array}
\]
Determinantal algorithm

Suppose all squares to the southeast of t have been filled. Insert into t the number n_t so that $\det M_t = 1$.

$$
\begin{array}{ccc|c|c}
9 & 5 & 2 & \multicolumn{1}{c|}{} & 1 \\
3 & 2 & 1 & 1 & 1 \\
\multicolumn{3}{c|}{} & 1 & 1 \\
\end{array}
$$
Uniqueness

Easy to see: the numbers n_t are well-defined and unique.
Uniqueness

Easy to see: the numbers n_t are well-defined and unique.

Why? Expand $\det M_t$ by the first row. The coefficient of n_t is 1 by induction.
If \(t \in \lambda \), let \(\lambda(t) \) consist of all squares of \(\lambda \) to the southeast of \(t \).
If $t \in \lambda$, let $\lambda(t)$ consist of all squares of λ to the southeast of t.

\begin{equation*}
\lambda = (4,4,3)
\end{equation*}
If $t \in \lambda$, let $\lambda(t)$ consist of all squares of λ to the southeast of t.

\[
\lambda = (4,4,3)
\]

\[
\lambda(t) = (3,2)
\]
\(u_\lambda = \#\{\mu : \mu \subseteq \lambda\} \)
$u_\lambda = \#\{\mu : \mu \subseteq \lambda\}$

Example. $u_{(2,1)} = 5$:

\[\begin{array}{cccc}
\cdot & \cdot & \cdot & \phi \\
\cdot & \cdot & \cdot & \\
\cdot & \cdot & & \\
\end{array}\]
\(u_\lambda = \# \{ \mu : \mu \subseteq \lambda \} \)

Example. \(u_{(2,1)} = 5 \):

\[
\begin{array}{cccc}
\emptyset & & & \\
\emptyset & & & \\
\end{array}
\]

There is a determinantal formula for \(u_\lambda \), due essentially to MacMahon and later Kreweras (not needed here).
Berlekamp (1963) first asked for $n_t \pmod{2}$ in connection with a coding theory problem.

Berlekamp (1963) first asked for $n_t \pmod{2}$ in connection with a coding theory problem.

Theorem. $n_t = u \lambda(t)$
Berlekamp (1963) first asked for \(n_t \) (mod 2) in connection with a coding theory problem.

Carlitz-Roselle-Scoville (1971): combinatorial interpretation of \(n_t \) (over \(\mathbb{Z} \)).

Theorem. \(n_t = u \chi(t) \)

Proofs.
1. Induction (row and column operations).
2. Nonintersecting lattice paths.
An example

<table>
<thead>
<tr>
<th>7</th>
<th>3</th>
<th>2</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
An example

\[
\begin{array}{cccc}
7 & 3 & 2 & 1 \\
2 & 1 & 1 & 1 \\
1 & 1 & & \\
& & & \phi
\end{array}
\]
Weight each $\mu \subseteq \lambda$ by $q^{\mid \lambda/\mu \mid}$.
A q-analogue

Weight each $\mu \subseteq \lambda$ by $q^{\lambda/\mu}$.

$\lambda = 64431, \quad \mu = 42211, \quad q^{\lambda/\mu} = q^8$
\[u_\lambda(q) = \sum_{\mu \subseteq \lambda} q^{\lambda/\mu} \]

\[u_{(2,1)}(q) = 1 + 2q + q^2 + q^3 : \]

\[
\begin{array}{cccc}
\begin{array}{c}
\end{array} & \begin{array}{c}
\end{array} & \begin{array}{c}
\end{array} & \begin{array}{c}
\end{array} \\
\begin{array}{c}
\end{array} & \begin{array}{c}
\end{array} & \begin{array}{c}
\end{array} & \begin{array}{c}
\end{array} \\
\begin{array}{c}
\end{array} & \begin{array}{c}
\end{array} & \begin{array}{c}
\end{array} & \begin{array}{c}
\end{array} \\
\begin{array}{c}
\end{array} & \begin{array}{c}
\end{array} & \begin{array}{c}
\end{array} & \begin{array}{c}
\end{array} \\
\end{array} \]

Smith Normal Form and Combinatorics – p. 31
Diagonal hooks

\[d_i(\lambda) = \lambda_i + \lambda_i' - 2i + 1 \]

\[d_1 = 9, \quad d_2 = 4, \quad d_3 = 1 \]
Theorem. \(M_t \) has an SNF over \(\mathbb{Z}[q] \). Write \(d_i = d_i(\lambda_t) \). If \(M_t \) is a \((k + 1) \times (k + 1)\) matrix then \(M_t \) has SNF

\[
\text{diag}(1, q^{d_k}, q^{d_{k-1}+d_k}, \ldots, q^{d_1+d_2+\cdots+d_k}).
\]
Main result (with C. Bessenrodt)

Theorem. M_t has an SNF over $\mathbb{Z}[q]$. Write $d_i = d_i(\lambda_t)$. If M_t is a $(k + 1) \times (k + 1)$ matrix then M_t has SNF

$$\text{diag}(1, q^{d_k}, q^{d_{k-1}+d_k}, \ldots, q^{d_1+d_2+\cdots+d_k}).$$

Corollary. $\det M_t = q^{\sum i d_i}$.
Main result (with C. Bessenrodt)

Theorem. M_t has an SNF over $\mathbb{Z}[q]$. Write $d_i = d_i(\lambda_t)$. If M_t is a $(k + 1) \times (k + 1)$ matrix then M_t has SNF

$$\text{diag}(1, q^{d_k}, q^{d_{k-1}+d_k}, \ldots, q^{d_1+d_2+\cdots+d_k}).$$

Corollary. $\det M_t = q^{\sum i d_i}$.

Note. There is a multivariate generalization.
An example

\[\lambda = 6431, \quad d_1 = 9, \quad d_2 = 4, \quad d_3 = 1 \]
An example

\[\lambda = 6431, \quad d_1 = 9, \quad d_2 = 4, \quad d_3 = 1 \]

\[\text{SNF of } M_t : (1, q, q^5, q^{14}) \]
Let λ be the **staircase** $\delta_n = (n - 1, n - 2, \ldots, 1)$.
A special case

Let λ be the **staircase** $\delta_n = (n - 1, n - 2, \ldots, 1)$.
A special case

Let λ be the staircase $\delta_n = (n - 1, n - 2, \ldots, 1)$.

$u_{\delta_{n-1}}(q)$ counts Dyck paths of length $2n$ by (scaled) area, and is thus the well-known q-analogue $C_n(q)$ of the Catalan number C_n.
A q-Catalan example

$$C_3(q) = q^3 + q^2 + 2q + 1$$
A q-Catalan example

$C_3(q) = q^3 + q^2 + 2q + 1$

$$
\begin{vmatrix}
C_4(q) & C_3(q) & 1 + q \\
C_3(q) & 1 + q & 1 \\
1 + q & 1 & 1
\end{vmatrix} \overset{\text{SNF}}{\sim} \text{diag}(1, q, q^6)
$$

since $d_1(3, 2, 1) = 1$, $d_2(3, 2, 1) = 5$.
A q-Catalan example

$$C_3(q) = q^3 + q^2 + 2q + 1$$

$$\begin{vmatrix}
C_4(q) & C_3(q) & 1 + q \\
C_3(q) & 1 + q & 1 \\
1 + q & 1 & 1
\end{vmatrix} \overset{\text{SNF}}{\sim} \text{diag}(1, q, q^6)$$

since $d_1(3, 2, 1) = 1$, $d_2(3, 2, 1) = 5$.

- q-Catalan determinant previously known
- SNF is new
\[
\sum_{n \geq 0} C_n(q)x^n = \frac{1}{1 - \frac{x}{1 - \frac{qx}{1 - \frac{q^2x}{1 - \cdots}}}}.
\]
\[\sum_{n \geq 0} C_n(q)x^n = \frac{1}{1 - \frac{x}{1 - \frac{qx}{1 - \frac{q^2x}{1 - \cdots}}}}. \]