Further Combinatorial Properties of Two Fibonacci Lattices

RICHARD P. STANLEY

In an earlier paper on differential posets, two lattices $\operatorname{Fib}(r)$ and Z(r) were defined for each positive integer r, and were shown to have some interesting combinatorial properties. In this paper the investigation of $\operatorname{Fib}(r)$ and Z(r) is continued. A bijection Ψ : $\operatorname{Fib}(r) \rightarrow Z(r)$ is shown to preserve many properties of the lattices, though Ψ is not an isomorphism. As a consequence we give an explicit formula which generalizes the rank generating function of $\operatorname{Fib}(r)$ and of Z(r). Some additional properties of $\operatorname{Fib}(r)$ and Z(r) are developed related to the counting of chains.

1. INTRODUCTION

In [3] two lattices, denoted Fib(r) and Z(r), were defined for each positive integer r and were shown to have some interesting combinatorial properties. (Fib(1) had previously been considered in [1], where it was called the 'Fibonacci lattice'.) In particular, Fib(r) and Z(r) have a unique minimal element $\hat{0}$, are graded, and have the same (finite) number of elements of each rank. When r = 1, the number of elements of rank n is the Fibonacci number F_{n+1} (where $F_1 = F_2 = 1$, $F_{n+1} = F_n + F_{n-1}$). There is a rank-preserving bijection ψ : Fib(r) $\rightarrow Z(r)$, which satisfies $e(x) = e(\psi(x))$ for all $x \in Fib(r)$, where e(x) denotes the number of maximal chains in the interval $[\hat{0}, x]$ (see [3, Prop. 5.7]).

In this paper we show that in fact the intervals $[\hat{0}, x]$ and $[\hat{0}, \psi(x)]$ have the same number of chains (or multichains) of any specified length. These numbers are relatively easy to compute for Fib(r), so we have 'transferred' this result to Z(r). As a consequence, we show that for any fixed $n \ge 1$,

$$\sum_{x_1 \leq x_2 \leq \cdots \leq x_n} q^{\rho(x_n)} = \prod_{i=1}^n (1 - rq - ((i-1)r+1)q^2)^{-1},$$

where the sum ranges over all *n*-element multichains in Fib(*r*) or in Z(r), and where ρ denotes rank. Our results can also be interpreted in terms of the zeta polynomial [2, Ch. 3.11] of certain subposets of Fib(*r*) and Z(r). The proof in [3] that $[\hat{0}, x]$ and $[\hat{0}, \psi(x)]$ have the same number of maximal chains does not extend to chains of smaller lengths, so we use a new method of proof here.

We will use the notation

$$\mathbb{N} = \{0, 1, 2, \ldots\}, \qquad \mathbb{P} = \{1, 2, 3, \ldots\}.$$

2. MULTICHAINS IN Fib(r) AND Z(r)

We first define the lattices Fib(r) and Z(r). Let $A(r) = \{1_1, 1_2, \ldots, 1_r, 2\}$ be an alphabet with r types of 1's and with one 2. (When r = 1 we simply let $A(1) = \{1, 2\}$.) Then Fib(r) and Z(r) have the same set of elements, namely the set $A(r)^*$ of all finite words with letters in A(r) (including the empty word ϕ). The cover relations (and hence by transitivity the entire partial order) of Fib(r) and Z(r) are defined as follows. We say that v covers u in Fib(r) if u is obtained from v by changing a single 2 to a 1_i for some i, or by deleting the last letter in v if it is a 1_i . For instance, the word $v = 221_221_21_1$ in Fib(2) covers the words $1_121_221_21_1$, $1_221_221_21_1$, $21_21_21_21_1$, $221_21_21_21_1$, and 221_221_2 . We say that v covers u in Z(r) if u can be obtained

from v by changing a single 2 to a 1_i for some i, provided that all letters preceding this 2 are also 2's, or by deleting the first letter which is not a 2 (if it occurs). Thus in Z(2) the word $v = 221_221_21_1$ covers the words $1_121_221_21_1$, $1_221_221_21_1$, $21_11_221_21_1$, $21_21_221_21_1$ and 2221_21_1 . (Note that v covers 7 words in Fib(r) and 5 in Z(r).)

It is easily seen that Fib(r) and Z(r) are graded posets with $\hat{0} = \phi$ (the empty word), and rank function given by

$$\rho(a_1a_2\cdots a_k)=a_1+a_2+\cdots+a_k,$$

where $a_i \in A(r)$, and where we add the a_i 's as integers (ignoring subscripts on the 1's). It is also easily seen [1] [3, after Def. 5.6] that Fib(1) is a distributive lattice, while Fib(r) for any r is upper-semimodular. More strongly, if $x \in Fib(r)$ and x^* is the join of all elements covering x, then the interval $[x, x^*]$ is the product of a boolean algebra with the modular lattice of rank two and cardinality r + 2. In particular, Fib(2) is 'join-distributive'. (In [3] it was erroneously claimed that Fib(r) is join-distributive for any r.)

We will need the following result from [3, Prop. 5.4]:

PROPOSITION 2.1. Z(r) is a modular lattice for which every complemented interval has length ≤ 2 .

Given $x \in A(r)^*$ and $n \in \mathbb{P}$, let $M_n(x) = M_n(x, r)$ (respectively, $N_n(x) = N_n(x, r)$) denote the number of multichains $\hat{0} = x_0 \le x_1 \le \cdots \le x_n = x$ in Fib(r) (respectively, Z(r)) of length n with top x. It is clear from the definitions of Fib(r) and Z(r) that if x and x' are two words in $A(r)^*$ differing only in the subscripts on the 1's, then there are automorphisms of Fib(r) and of Z(r) which send x to x'. Hence $M_n(x) = M_n(x')$ and $N_n(x) = N_n(x')$. For this reason we often suppress the subscripts on the 1's in x when writing $M_n(x)$ or $N_n(x)$ for particular x. For instance, $M_n(211y)$ denotes $M_n(21_i1_jy)$ for any $i, j \in \{1, \ldots, r\}$ (and $y \in A(r)^*$).

In the terminology of [2, Ch. 3.11], $M_n(x)$ and $N_n(x)$ are (as functions of n) the zeta polynomials of the interval $[\hat{0}, x]$ of Fib(r) and Z(r), respectively.

LEMMA 2.2. Let
$$u \in A(r)^*$$
. Then
 $M_n(1u) = \sum_{i=1}^n M_i(u), \qquad M_n(2u) = \sum_{i=1}^n ((i-1)r+1)M_i(u).$ (1,2)

PROOF. Let $1 \le i \le n$ and $1 \le j \le r$. Given a multichain $\hat{0} = u_0 \le u_1 \le \cdots \le u_i = u$ in Fib(r), associate with it the multichain $\hat{0} = x_0 = x_1 = \cdots = x_{n-i} < 1_j u_1 \le \cdots \le 1_j u_i = 1_j u$ in Fib(r). This sets up a bijection which proves (1).

Again given $\hat{0} = u_0 \le u_1 \le \cdots \le u_i = u$ in Fib(r), define the following (i-1)r+1 multichains of length *n* from $\hat{0}$ to 2u in Fib(r):

$$0 = x_0 = x_1 = \dots = x_{n-i} < 1_k u_1 \le 1_k u_2 \le \dots \le 1_k u_s \le 2u_s \le \dots \le 2u_i = 2u,$$

$$1 \le k \le r, \ 2 \le s \le i,$$

$$\hat{0} = x_0 = x_1 = \dots = x_{n-i} < 2u_1 \le 2u_2 \le \dots \le 2u_i = 2u.$$

Every multichain of length *n* from $\hat{0}$ to 2u occurs exactly once in this way, so (2) follows. \Box

LEMMA 2.3. For any $i \ge 0$ and any $u \in A(1)^*$, we have

$$N_n(2^i 1u) - N_{n-1}(2^i 1u) = r \sum_{j=1}^{i} N_n(2^{j-1} 12^{i-j} 1u) + N_n(2^i u) - ir N_n(2^{i-1} 1u),$$
(3)

$$N_n(2^i) - N_{n-1}(2^i) = r \sum_{j=1}^i N_n(2^{j-1}12^{i-j}) - (ir-1)N_n(2^{i-1}).$$
(4)

 $(Set N_n(2^{-1}1u) = 0 \text{ and } N_n(2^{-1}) = 0 \text{ in the case } i = 0.)$

PROOF. Let P be any locally finite poset for which every principal order ideal $\Lambda_x := \{y \in P : y \le x\}$ is finite. Let $L_n(x)$ be the number of multichains $x_1 \le x_2 \le \cdots \le x_n = x$ in P. Clearly,

$$L_n(x) = \sum_{y \leq x} L_{n-1}(y).$$

Hence, letting μ denote the Möbius function of P we have, by the Möbius inversion formula [2, Prop. 3.7.1],

$$L_{n-1}(x) = \sum_{y \leq x} L_n(y)\mu(y, x).$$

Since $\mu(x, x) = 1$ there follows

$$L_n(x) - L_{n-1}(x) = -\sum_{y < x} L_n(y)\mu(y, x).$$
(5)

Now, given $x \in Z(r)$, let x_* be the meet of elements which x covers. (Since Z(r) is a lattice by Proposition 2.1, it follows that x_* exists.) By a well known property of Möbius functions (e.g. [2, Cor. 3.9.5]), we have $\mu(y, x) = 0$ unless $x_* \le y \le x$. But by Proposition 2.1, the interval $[x_*, x]$ has length at most 2 (since a finite modular lattice is complemented if and only if $\hat{0}$ is a meet of coatoms).

If $[x_*, x]$ has length 0, then $x = \hat{0}$ and the lemma is clearly valid (put i = 0 in (4) to obtain 0 = 0).

If $[x_*, x]$ has length 1, then $[x_*, x] = [u, 1_j u]$ or $[x_*, x] = [1, 2]$; the latter case only for r = 1 (so j = 1). Then $\mu(x_*, x) = -1$, and equations (3) (with i = 0) and (4) (with i = r = 1) coincide with (5).

Finally, assume that $[x_*, x]$ has length 2. If x covers k elements y, then $\mu(y, x) = -1$, and $\mu(x_*, x) = k - 1$. Now if $x = 2^i 1_k u$ (with $i \ge 1$) then x covers the ir + 1 elements $y = 2^{j-1} 1_m 2^{i-j} 1_k u$ ($1 \le j \le i$ and $1 \le m \le r$) or $y = 2^i u$; and $x_* = 2^{i-1} 1_k u$. If $x = 2^i$ (with i > 0, and with i > 1 if r = 1) then x covers the *ir* elements $y = 2^{j-1} 1_k 2^{i-j} (1 \le j \le i, 1 \le k \le r)$; and $x_* = 2^{i-1}$. Thus equations (3) and (4) again coincide with (5), and the proof is complete. \Box

We come to the main result of this section.

THEOREM 2.4. For all $w \in A(1)^*$ and $n \ge 1$, we have $M_n(w, r) = N_n(w, r)$. (Recall that in the notation $M_n(w, r)$ and $N_n(w, r)$, w stands for any word $w' \in A(r)^*$ obtained from w by replacing each 1 with some 1_i for $1 \le i \le r$.)

PROOF. Given a function $F: \mathbb{P} \to \mathbb{Z}$, define new functions σF and τF by

$$\sigma F(n) = \sum_{i=1}^{n} F(i), \quad \tau F(n) = ((n-1)r+1)F(n).$$

If $w = w_1 w_2 \cdots w_k \in A(1)^*$, define the operator Γ_w on functions $F: \mathbb{P} \to \mathbb{Z}$ by replacing each 1 in w with σ and each 2 with $\sigma\tau$. For instance, $\Gamma_{22121} = \sigma\tau\sigma\tau\sigma\sigma\tau\sigma$. Let $I: \mathbb{P} \to \mathbb{Z}$ be defined by I(n) = 1 for all n. Then it follows from Lemma 2.2 and the initial condition $M_n(\phi) = 1$ that

$$M_n(w) = \Gamma_w I(n). \tag{6}$$

Hence (since clearly $N_n(\phi) = 1$) it suffices to show that the right-hand side of (6) satisfies the same recurrence, given by Lemma 2.3, that $N_n(w)$ satisfies.

We claim that the operators σ and τ satisfy the relation

$$r\sigma^2 = \tau\sigma - \sigma\tau + r\sigma; \tag{7}$$

for we have

$$r\sigma^{2}F(n) = r\sum_{i=1}^{n} (n-i+1)F(i), \quad \tau\sigma F(n) = ((n-1)r+1)\sum_{i=1}^{n} F(i),$$

$$\sigma\tau F(n) = \sum_{i=1}^{n} ((i-1)r+1)F(i), \quad r\sigma F(n) = \sum_{i=1}^{n} F(i),$$

from which (7) is immediate.

Now suppose that $w = 2^i 1u \in A(1)^*$. In order to show that $\Gamma_w I(n)$ satisfies the same recurrence (3) as does $N_n(w)$, it suffices to show that for any $F: \mathbb{P} \to \mathbb{Z}$,

$$(\sigma\tau)^{i}\sigma F(n) - (\sigma\tau)^{i}\sigma F(n-1) = r \sum_{j=1}^{i} (\sigma\tau)^{j-1} \sigma(\sigma\tau)^{i-j} \sigma F(n) + (\sigma\tau)^{i} F(n) - ir(\sigma\tau)^{i-1} \sigma F(n).$$
(8)

We have

$$r\sum_{j=1}^{i} (\sigma\tau)^{j-1} \sigma(\sigma\tau)^{i-j} \sigma = \sum_{j=1}^{i} (\sigma\tau)^{j-1} (\tau\sigma - \sigma\tau + r\sigma) (\tau\sigma)^{i-j}, \quad \text{by (7)}$$
$$= \sum_{j=1}^{i} [(\sigma\tau)^{j-1} (\tau\sigma)^{i-j+1} - (\sigma\tau)^{j} (\tau\sigma)^{i-j} + r(\sigma\tau)^{i} \sigma]$$
$$= (\tau\sigma)^{i} - (\sigma\tau)^{i} + ir(\sigma\tau)^{i} \sigma. \tag{9}$$

But for any $G: \mathbb{P} \to \mathbb{Z}$ we have

$$(\sigma\tau)^{i}\sigma F(n) - (\sigma\tau)^{i}\sigma F(n-1) = \sigma(\tau\sigma)^{i}F(n) - \sigma(\tau\sigma)^{i}F(n-1)$$

= $(\tau\sigma)^{i}F(n).$ (10)

Hence (8) follows from (9) and (10), as desired.

There remains the case $w = 2^i$. We need to show that for any $F: \mathbb{P} \to \mathbb{Z}$,

$$(\sigma\tau)^{i}F(n) - (\sigma\tau)^{i}F(n-1) = r\sum_{j=1}^{i} (\sigma\tau)^{j-1}\sigma(\sigma\tau)^{i-j}F(n) - (ir-1)(\sigma\tau)^{i-1}F(n)$$

 $\sigma G(n) - \sigma G(n-1) = G(n).$

The proof is analogous to that of (8) and will be omitted. \Box

COROLLARY 2.5. For all $w \in A(r)^*$, the intervals $[\phi, w]$ in Fib(r) and Z(r) have the same number of elements.

PROOF. Put n = 2 in Theorem 2.4. \Box

It would be interesting to find a simple bijective proof of Corollary 2.5. The intervals $[\phi, w]$ in Fib(r) and Z(r) do not in general have the same rank-generating function (e.g. $w = 1_i 21_j$).

We have the following generalization of Corollary 2.5:

COROLLARY 2.6. For any $w \in A(r)^*$ and any $j \in \mathbb{P}$, the intervals $[\phi, w]$ in Fib(r) and Z(r) have the same number of j-element chains.

PROOF. For any finite poset P, let $L_n(P)$ be the number of multichains $x_1 \le x_2 \le \cdots \le x_{n-1}$ of length n in P, and let c_j be the number of j-element chains. Then (see [2, Prop. 3.11.1])

$$L_n(P) = \sum_{j \ge 1} c_j \binom{n-2}{j-1}.$$
 (11)

184

From this it follows easily that the numbers $L_n(P)$ uniquely determine the c_j 's. The proof now follows from Theorem 2.4. \Box

3. A GENERALIZED RANK-GENERATING FUNCTION

The rank-generating function of a poset P with rank function $\rho: P \to \mathbb{N}$ (defined by $\rho(x) = \text{length of longest chain of } P$ with top element x) is given [2, p. 99] by

$$F(P, q) = \sum_{x \in P} q^{\rho(x)}$$

For Fib(r) and Z(r) we have (see [3, Th. 5.3 and Prop. 5.7])

$$F(Fib(r), q) = F(Z(r), q) = (1 - rq - q^2)^{-1}.$$
(12)

Now, given P as above and $n \in \mathbb{P}$, define

$$F_n(P, q) = \sum_{x_1 \leqslant \cdots \leqslant x_n} q^{\rho(x_n)},$$

summed over all n-element multichains in P. The main result of this section is the following:

THEOREM 3.1. Let $n \in \mathbb{P}$. Then

$$F_n(\operatorname{Fib}(r), q) = F_n(Z(r), q) = \prod_{i=1}^n (1 - rq - ((i-1)r + 1)q^2)^{-1}$$

PROOF. It follows from Theorem 2.4 that $F_n(Fib(r), q) = F_n(Z(r), q)$. We prove Theorem 3.1 for Fib(r) by induction on n. The case n = 1 is given by (12). Now assume the result for n - 1. Write

$$F_j(\operatorname{Fib}(r), q) = \sum_{t \ge 0} f_j(t)q^t.$$
(13)

We claim that

$$f_n(t) - f_{n-1}(t) = rf_n(t-1) + ((n-1)r+1)f_n(t-2),$$
(14)

for n > 0. (When n = 0, (14) is valid for $t \ge 3$.)

Now, using the notation of the previous section, we have

$$f_n(t) = \sum_{\rho(v)=t} M_n(v),$$

summed over all words $v \in A(r)^*$ of rank t.

For each $u \in A(r)^*$ of rank t-1 there are r words $v = 1_j u$ (provided that $t \ge 1$); while for each $u \in A(r)^*$ of rank t-2 there is one word v = 2u of rank t (provided that $t \ge 2$). Hence

$$f_n(t) = r \sum_{\rho(u)=t-1} M_n(1u) + \sum_{\rho(u)=t-2} M_n(2u).$$

By (1) and (2) there follows

$$f_n(t) = r \sum_{\rho(u)=t-1} \sum_{i=1}^n M_i(u) + \sum_{\rho(u)=t-2} \sum_{i=1}^n ((i-1)r+1)M_i(u),$$

so (since n > 0)

$$f_n(t) - f_{n-1}(t) = r \sum_{\rho(u)=t-1} M_n(u) + \sum_{\rho(u)=t-2} ((n-1)r + 1)M_n(u)$$

= $rf_n(t-1) + ((n-1)r + 1)f_n(t-2),$

proving (14).

Now multiply (14) by x^t and sum on $t \ge 0$. This results in (writing $F_j(q)$ for $F_i(Fib(r), q)$)

$$F_n(q) - F_{n-1}(q) = rqF_n(q) + ((n-1)r + 1)q^2F_n(q),$$

for n > 0, whence

$$F_n(q) = F_{n-1}(q)/(1 - rq - ((n-1)r + 1)q^2)$$

The proof follows by induction. \Box

Given a graded poset P and $t \in \mathbb{N}$, let

$$P_{[0,t]} = \{ x \in P : 0 \le \rho(x) \le t \}.$$
(15)

In the terminology of [2, Ch. 3.12], $P_{[0,t]}$ is a rank-selected subposet of P. Thus, in the notation of (13), $f_n(t)$ is the number of *n*-element multichains in Fib $(r)_{[0,t]}$ or $Z(r)_{[0,t]}$, so $f_{n-1}(t)$ (as a function of n) is the zeta polynomial of Fib $(r)_{[0,t]}$ or $Z(r)_{[0,t]}$. By (11), $f_n(t)$ (or $f_{n-1}(t)$) is a polynomial of degree t and leading coefficient $m_t/t!$, where m_t is the number of maximal chains in Fib $(r)_{[0,t]}$ or $Z(r)_{[0,t]}$. By [3, Prop. 3.1], we have

$$\sum_{t \ge 0} m_t x^t / t! = \exp(rt + \frac{1}{2}rt^2).$$

$$m_t = \sum r^{c(\pi)},$$
(16)

Equivalently,

where π ranges over all involutions in the symmetric group \mathfrak{S}_t and where $c(\pi)$ denotes the number of cycles of π .

π

We may ask what more can be said about the polynomials $f_n(t)$. By standard properties of rational generating functions [2, Cor. 4.3.1], we have

$$\sum_{n \ge 0} f_n(t) x^n = \frac{W_t(x)}{(1-x)^{t+1}},$$

where for fixed t, $W_t(x)$ is a polynomial in x (called the $f_n(t)$ —Eulerian polynomial) of degree $\leq t$ with integer coefficients summing to m_t (as defined in (16)). Since Z(r) is a modular lattice (or since Fib(r) is semimodular), it follows from known results (see [2, Example 3.13.5 and Exercise 3.67(b)]) that $W_t(x)$ has non-negative coefficients. Since Fib(1) is a distributive lattice, the following combinatorial interpretation of the coefficients of $W_t(x)$ (when r = 1) follows easily from the theory of P-partitions [2, Ch. 4.5].

PROPOSITION 3.2. Given a permutation $\pi \in \mathfrak{S}_i$, write π as a product of disjoint cycles where (a) each cycle is written with its smallest element first, and (b) the cycles are written in increasing order of their smallest element. Let $\tilde{\pi}$ be the permutation (written as a word) in \mathfrak{S}_i which results from erasing all parentheses from the above cycle notation. (We may have $\tilde{\pi} = \tilde{\sigma}$ even though $\pi \neq \sigma$; contrast this with the standard representation of [2, p. 17].) Then, when r = 1, we have

$$W_t(x) = \sum_{\pi} x^{1+d(\bar{\pi}^{-1})},$$

where π ranges over all involutions in \mathfrak{S}_i , and where $d(\tilde{\pi}^{-1})$ denotes the number of descents [2, pp. 21–23] of $(\tilde{\pi})^{-1}$.

186

$ ilde{\pi}$	$ ilde{m{\pi}}^{-1}$	$d(ilde{\pi}^{-1})$
1234	1234	0
1234	1234	0
1324	1324	1
1423	1342	1
1234	1234	0
1243	1243	1
1234	1234	0
1234	1234	0
1324	1324	1
1423	1342	1
	1234 1234 1324 1423 1234 1243 1234 1234	1234 1234 1234 1234 1324 1324 1423 1342 1234 1234 1234 1234 1234 1234 1234 1234 1234 1234 1234 1234 1234 1234 1234 1234 1324 1324

For instance, when t = 4 we have the following table:

Hence $W_4(x) = 5x + 5x^2$ when r = 1. Presumably a similar result holds for any r, but we will not consider this here.

PROPOSITION 3.3. Fix $r \in \mathbb{P}$. Then the polynomials $W_t(x)$ satisfy the recurrence

$$W_{t}(x) = rW_{t-1}(x) + ((rt-1)x - r + 1)W_{t-2}(x) + rx(1-x)W_{t-2}'(x), \qquad t \ge 3, \quad (17)$$

with the initial conditions

$$W_0(x) = 1$$
, $W_1(x) = rx$, $W_2(x) = (r-1)x^2 + (r^2+1)x$.

PROOF. Multiply (14) by x^n and sum on $n \ge 0$. Since (14) is valid for $n \ge 0$ when $t \ge 3$, we obtain for $t \ge 3$ that

$$\frac{W_t(x)}{(1-x)^{t+1}} - \frac{xW_t(x)}{(1-x)^{t+1}} = \frac{rW_{t-1}(x)}{(1-x)^t} + rx\frac{\mathrm{d}}{\mathrm{d}x}\frac{W_{t-2}(x)}{(1-x)^{t-1}} - \frac{(r-1)W_{t-2}(x)}{(1-x)^{t-1}}.$$
 (18)

When equation (18) is simplified, the recurrence (17) results. It is easy to compute $W_t(x)$ for $0 \le t \le 2$ by a direct argument, so the proof follows. \Box

The values of $W_t(x)$ for $3 \le t \le 7$ are given by

$$\begin{split} W_3(x) &= r(3r-2)x^2 + r(r^2+2)x, \\ W_4(x) &= (r-1)(2r-1)x^3 + (6r^3 - 2r^2 + 3r - 2)x^2 + (r^4 + 3r^2 + 1)x, \\ W_5(x) &= r(11r^2 - 12r + 3)x^3 + r(10r^3 + 12r - 6)x^2 + r(r^4 + 4r^2 + 3)x, \\ W_6(x) &= (r-1)(2r-1)(3r-1)x^4 + (35r^4 - 22r^3 + 13r^2 - 12r + 3)x^3 \\ &+ (15r^5 + 5r^4 + 31r^3 - 8r^2 + 6r - 3)x^2 + (r^6 + 5r^4 + 6r^2 + 1)x, \\ W_7(x) &= 2r(5r-2)(5r^2 - 5r + 1)x^4 + r(85r^4 - 10r^3 + 60r^2 - 60r + 12)x^3 \\ &+ r(21r^5 + 14r^4 + 65r^3 + 30r - 12)x^2 + r(r^6 + 6r^4 + 10r^2 + 4)x. \end{split}$$

We conclude with a brief discussion of a natural generalization of the polynomials $W_t(x)$. Let P be a graded poset and S a finite subset of \mathbb{P} . Generalizing (15), define the rank-selected poset [2, p. 131]

$$P_S = \{z \in P \colon \rho(z) \in S\}$$

Let $\alpha(P, S)$ denote the number of maximal chains of P_S , and define

$$\beta(P, S) = \sum_{T \subseteq S} (-1)^{|S-T|} \alpha(P, T).$$

R. P. Stanley

Equivalently,

$$\alpha(P, S) = \sum_{T \subseteq S} \beta(P, T).$$

For more information concerning the numbers $\alpha(P, S)$ and $\beta(P, S)$, see [2, Sect. 3.12-3.13]. In particular [2, Exer. 3.67], we have for P = Fib(r) and P = Z(r) that

$$W_{t}(x) = \sum_{S} \beta(P, S) x^{\#(S - \{t\})}, \qquad (19)$$

where S ranges over all subsets of $\{1, \ldots, t\}$. Moreover, since Fib(r) is semimodular and Z(r) is modular, we have [2, Exam. 3.13.5] that $\beta(\text{Fib}(r), S) \ge 0$ and $\beta(Z(r), S) \ge 0$. However, it is false in general that $\beta(\text{Fib}(r), S) = \beta(Z(r), S)$. For instance,

$$\beta(\text{Fib}(1), \{2, 4\}) = 1, \qquad \beta(Z(1), \{2, 4\}) = 2.$$

The techniques of [2, Sect. 3.12] lead to the following result, which together with (19) imply Proposition 3.2 by an easy argument (so that Proposition 3.4 may be regarded as a generalization of Proposition 3.2).

PROPOSITION 3.4. Let S be a finite subset of \mathbb{P} . Then $\beta(Fib(1), S)$ is equal to the number of permutations $\pi = (a_1, a_2, a_3, ...)$ of \mathbb{P} satisfying:

(a) $a_i = i$ for all but finitely many i;

(b) 2i and 2i + 1 appear to the right of 2i - 1 for all $i \in \mathbb{P}$;

(c) $D(\pi) = S$, where $D(\pi)$ denotes the descent set of π [2, p. 21].

It would be interesting to find a similar result for Fib(r) when $r \ge 2$ and for Z(r) when $r \ge 1$.

ACKNOWLEDGMENT

This work was partially supported by NSF grant #DMS 8401376.

References

- 1. R. Stanley, The Fibonacci lattice, Fibonacci Q., 13 (1975), 215-232.
- 2. R. Stanley, Enumerative Combinatorics, vol. I, Wadsworth & Brooks/Cole, Monterey, California, 1986.
- 3. R. Stanley, Differential posets, J. Am. Math. Soc., 1 (1988), 919-961.

Received 6 March 1989 and accepted 17 August 1989

RICHARD P. STANLEY Department of Mathematics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, U.S.A.

188