Further Combinatorial Properties of Two Fibonacci Lattices

RICHARD P. STANLEY

In an earlier paper on differential posets, two lattices \(\text{Fib}(r) \) and \(Z(r) \) were defined for each positive integer \(r \), and were shown to have some interesting combinatorial properties. In this paper the investigation of \(\text{Fib}(r) \) and \(Z(r) \) is continued. A bijection \(\Psi : \text{Fib}(r) \to Z(r) \) is shown to preserve many properties of the lattices, though \(\Psi \) is not an isomorphism. As a consequence we give an explicit formula which generalizes the rank generating function of \(\text{Fib}(r) \) and of \(Z(r) \). Some additional properties of \(\text{Fib}(r) \) and \(Z(r) \) are developed related to the counting of chains.

1. Introduction

In [3] two lattices, denoted \(\text{Fib}(r) \) and \(Z(r) \), were defined for each positive integer \(r \) and were shown to have some interesting combinatorial properties. (\(\text{Fib}(1) \) had previously been considered in [1], where it was called the “Fibonacci lattice”.) In particular, \(\text{Fib}(r) \) and \(Z(r) \) have a unique minimal element \(0 \), are graded, and have the same (finite) number of elements of each rank. When \(r = 1 \), the number of elements of rank \(n \) is the Fibonacci number \(F_{n+1} \) (where \(F_1 = F_2 = 1, F_{n+1} = F_n + F_{n-1} \)). There is a rank-preserving bijection \(\psi : \text{Fib}(r) \to Z(r) \), which satisfies \(e(x) = e(\psi(x)) \) for all \(x \in \text{Fib}(r) \), where \(e(x) \) denotes the number of maximal chains in the interval \([0, x] \) (see [3, Prop. 5.7]).

In this paper we show that in fact the intervals \([0, x] \) and \([0, \psi(x)] \) have the same number of chains (or multichains) of any specified length. These numbers are relatively easy to compute for \(\text{Fib}(r) \), so we have ‘transferred’ this result to \(Z(r) \). As a consequence, we show that for any fixed \(n \geq 1 \),

\[
\sum_{x_1, x_2, \ldots, x_n} q^{e(x)} = \prod_{i=1}^{n} (1 - rq - ((i-1)r + 1)q^2)^{-1},
\]

where the sum ranges over all \(n \)-element multichains in \(\text{Fib}(r) \) or in \(Z(r) \), and where \(\rho \) denotes rank. Our results can also be interpreted in terms of the zeta polynomial [2, Ch. 3.11] of certain subposets of \(\text{Fib}(r) \) and \(Z(r) \). The proof in [3] that \([0, x] \) and \([0, \psi(x)] \) have the same number of maximal chains does not extend to chains of smaller lengths, so we use a new method of proof here.

We will use the notation

\[N = \{0, 1, 2, \ldots\}, \quad P = \{1, 2, 3, \ldots\}. \]

2. Multichains in \(\text{Fib}(r) \) and \(Z(r) \)

We first define the lattices \(\text{Fib}(r) \) and \(Z(r) \). Let \(A(r) = \{1, 1_2, \ldots, 1_r, 2\} \) be an alphabet with \(r \) types of 1's and with one 2. (When \(r = 1 \) we simply let \(A(1) = \{1, 2\} \).) Then \(\text{Fib}(r) \) and \(Z(r) \) have the same set of elements, namely the set \(A(r)^* \) of all finite words with letters in \(A(r) \) (including the empty word \(\emptyset \)). The cover relations (and hence by transitivity the entire partial order) of \(\text{Fib}(r) \) and \(Z(r) \) are defined as follows. We say that \(v \) covers \(u \) in \(\text{Fib}(r) \) if \(u \) is obtained from \(v \) by changing a single 2 to a 1, for some \(i \), or by deleting the last letter in \(v \) if it is a 1. For instance, the word \(v = 221_21_21_1 \) in \(\text{Fib}(2) \) covers the words \(121_21_21_1, 121_21_21_1, 121_21_21_1, 221_21_21_1, 221_21_21_1, 221_21_21_1, 221_21_21_1, 221_21_21_1, \) and \(221_21_21_2 \). We say that \(v \) covers \(u \) in \(Z(r) \) if \(u \) can be obtained
from \(v \) by changing a single 2 to a 1, for some \(i \), provided that all letters preceding this 2 are also 2's, or by deleting the first letter which is not a 2 (if it occurs). Thus in \(Z(2) \) the word \(v = 221221211 \) covers the words \(122122111, 12121221211, 212122121, 212122121 \) and \(22121211 \). (Note that \(v \) covers 7 words in \(\text{Fib}(r) \) and 5 in \(Z(r) \).)

It is easily seen that \(\text{Fib}(r) \) and \(Z(r) \) are graded posets with \(\emptyset = \phi \) (the empty word), and rank function given by

\[
\rho(a_1 a_2 \cdots a_k) = a_1 + a_2 + \cdots + a_k,
\]

where \(a_i \in A(r) \), and where we add the \(a_i \)'s as integers (ignoring subscripts on the 1's).

It is also easily seen \([1, 3\), after Def. 5.6\] that \(\text{Fib}(1) \) is a distributive lattice, while \(\text{Fib}(r) \) for any \(r \) is upper-semimodular. More strongly, if \(x \in \text{Fib}(r) \) and \(x^* \) is the join of all elements covering \(x \), then the interval \([x, x^*]\) is the product of a boolean algebra with the modular lattice of rank two and cardinality \(r + 2 \). In particular, \(\text{Fib}(2) \) is 'join-distributive'. (In \([3\) it was erroneously claimed that \(\text{Fib}(r) \) is join-distributive for any \(r \).)

We will need the following result from \([3, \text{Prop. 5.4}]:\)

Proposition 2.1. \(Z(r) \) is a modular lattice for which every complemented interval has length \(\leq 2 \).

Given \(x \in A(r)^* \) and \(n \in \mathbb{P} \), let \(M_n(x) = M_n(x, r) \) (respectively, \(N_n(x) = N_n(x, r) \)) denote the number of multichains \(\emptyset = x_0 \leq x_1 \leq \cdots \leq x_n = x \) in \(\text{Fib}(r) \) (respectively, \(Z(r) \)) of length \(n \) with top \(x \). It is clear from the definitions of \(\text{Fib}(r) \) and \(Z(r) \) that if \(x \) and \(x' \) are two words in \(A(r)^* \) differing only in the subscripts on the 1's, then there are automorphisms of \(\text{Fib}(r) \) and of \(Z(r) \) which send \(x \) to \(x' \). Hence \(M_n(x) = M_n(x') \) and \(N_n(x) = N_n(x') \). For this reason we often suppress the subscripts on the 1's in \(x \) when writing \(M_n(x) \) or \(N_n(x) \) for particular \(x \). For instance, \(M_n(211y) \) denotes \(M_n(21,1,y) \) for any \(i, j \in \{1, \ldots, r\} \) and \(y \in A(r)^* \).

In the terminology of \([2, \text{Ch. 3.11}] \), \(M_n(x) \) and \(N_n(x) \) are (as functions of \(n \)) the *zeta polynomials* of the interval \([0, x]\) of \(\text{Fib}(r) \) and \(Z(r) \), respectively.

Lemma 2.2. Let \(u \in A(r)^* \). Then

\[
M_n(1u) = \sum_{i=1}^{n} M_i(u), \quad M_n(2u) = \sum_{i=1}^{n} ((i-1)r + 1)M_i(u). \tag{1,2}
\]

Proof. Let \(1 \leq i \leq n \) and \(1 \leq j \leq r \). Given a multichain \(\emptyset = u_0 \leq u_1 \leq \cdots \leq u_i = u \) in \(\text{Fib}(r) \), associate with it the multichain \(\emptyset = x_0 = x_1 = \cdots = x_{n-i} < 1, u_1 \leq \cdots \leq 1, u_i = 1, u \) in \(\text{Fib}(r) \). This sets up a bijection which proves (1).

Again given \(\emptyset = u_0 \leq u_1 \leq \cdots \leq u_i = u \) in \(\text{Fib}(r) \), define the following \((i-1)r + 1\) multichains of length \(n \) from \(\emptyset \) to \(2u \) in \(\text{Fib}(r) \):

\[
\emptyset = x_0 = x_1 = \cdots = x_{n-i} < 1, u_1 \leq \cdots \leq 1, u_i = 1, u, \quad 1 \leq k \leq r, \quad 2 \leq s \leq i,
\]

\[
\emptyset = x_0 = x_1 = \cdots = x_{n-i} < 2, u_1 \leq \cdots \leq 2, u_i = 2, u.
\]

Every multichain of length \(n \) from \(\emptyset \) to \(2u \) occurs exactly once in this way, so (2) follows.

Lemma 2.3. For any \(i \geq 0 \) and any \(u \in A(1)^* \), we have

\[
N_n(2^1u) - N_{n-1}(2^1u) = r \sum_{j=1}^{i} N_n(2^{j-1}2^j1u) + N_n(2^iu) - iN_n(2^{i-1}1u), \tag{3}
\]

\[
N_n(2^i) - N_{n-1}(2^i) = r \sum_{j=1}^{i} N_n(2^{j-1}2^j) - (ir-1)N_n(2^{i-1}). \tag{4}
\]

(Set \(N_n(2^{-1}u) = 0 \) and \(N_n(2^{-1}) = 0 \) in the case \(i = 0 \).)
PROOF. Let \(P \) be any locally finite poset for which every principal order ideal \(A_x := \{ y \in P : y \leq x \} \) is finite. Let \(L_n(x) \) be the number of multichains \(x_1 \leq x_2 \leq \cdots \leq x_n = x \) in \(P \). Clearly,

\[
L_n(x) = \sum_{y \leq x} L_{n-1}(y).
\]

Hence, letting \(\mu \) denote the Möbius function of \(P \) we have, by the Möbius inversion formula [2, Prop. 3.7.1],

\[
L_{n-1}(x) = \sum_{y \leq x} L_n(y) \mu(y, x).
\]

Since \(\mu(x, x) = 1 \) there follows

\[
L_n(x) - L_{n-1}(x) = -\sum_{y < x} L_n(y) \mu(y, x). \tag{5}
\]

Now, given \(x \in Z(r) \), let \(x_* \) be the meet of elements which \(x \) covers. (Since \(Z(r) \) is a lattice by Proposition 2.1, it follows that \(x_* \) exists.) By a well known property of Möbius functions (e.g. [2, Cor. 3.9.5]), we have \(\mu(y, x) = 0 \) unless \(x_* \leq y \leq x \). But by Proposition 2.1, the interval \([x_*, x]\) has length at most 2 (since a finite modular lattice is complemented if and only if 0 is a meet of coatoms).

If \([x_*, x]\) has length 0, then \(x = 0 \) and the lemma is clearly valid (put \(i = 0 \) in (4) to obtain \(0 = 0 \)).

If \([x_*, x]\) has length 1, then \([x_*, x] = [u, 1] \) or \([x_*, x] = [1, 2]\); the latter case only for \(r = 1 \) (so \(j = 1 \)). Then \(\mu(x_*, x) = -1 \), and equations (3) (with \(i = 0 \)) and (4) (with \(i = r = 1 \)) coincide with (5).

Finally, assume that \([x_*, x]\) has length 2. If \(x \) covers \(k \) elements \(y \), then \(\mu(y, x) = -1 \), and \(\mu(x_*, x) = k - 1 \). Now if \(x = 2^i 1_k u \) (with \(i \geq 1 \)) then \(x \) covers the \(i + 1 \) elements \(y = 2^{-1}1_m 2^{-i}1_k u \) (1 \(\leq j \leq i \) and \(1 \leq m \leq r \)) or \(y = 2^i u \); and \(x_* = 2^{-1}1_k u \). If \(x = 2^i \) (with \(i > 0 \), and with \(i > 1 \) if \(r = 1 \)) then \(x \) covers the \(ir \) elements \(y = 2^{-1}1_k 2^{r-i} \) (1 \(\leq j \leq i \), 1 \(\leq k \leq r \)) and \(x_* = 2^{-1} \). Thus equations (3) and (4) again coincide with (5), and the proof is complete. \(\square \)

We come to the main result of this section.

THEOREM 2.4. For all \(w \in A(1)^* \) and \(n \geq 1 \), we have \(M_* (w, r) = N_* (w, r) \). (Recall that in the notation \(M_* (w, r) \) and \(N_* (w, r) \), \(w \) stands for any word \(w \in A(r)^* \) obtained from \(w \) by replacing each 1 with some 1, for 1 \(\leq i \leq r \).)

PROOF. Given a function \(F : P \rightarrow Z \), define new functions \(\sigma F \) and \(\tau F \) by

\[
\sigma F(n) = \sum_{i=1}^{n} F(i), \quad \tau F(n) = ((n-1)r + 1) F(n).
\]

If \(w = w_1 w_2 \cdots w_k \in A(1)^* \), define the operator \(F_w \) on functions \(F : P \rightarrow Z \) by replacing each 1 in \(w \) with \(\sigma \) and each 2 with \(\sigma \tau \). For instance, \(F_{22221} = \sigma \sigma \tau \sigma \sigma \sigma \). Let \(I : P \rightarrow Z \) be defined by \(I(n) = 1 \) for all \(n \). Then it follows from Lemma 2.2 and the initial condition \(M_* (\phi) = 1 \) that

\[
M_* (w) = \Gamma_w I(n). \tag{6}
\]

Hence (since clearly \(N_* (\phi) = 1 \)) it suffices to show that the right-hand side of (6) satisfies the same recurrence, given by Lemma 2.3, that \(N_* (w) \) satisfies.

We claim that the operators \(\sigma \) and \(\tau \) satisfy the relation

\[
r \sigma^2 = \tau \sigma - \sigma \tau + r \sigma; \tag{7}
\]
for we have
\[r\sigma^2 F(n) = r \sum_{i=1}^{n} (n-1+i)F(i), \quad \tau\sigma F(n) = ((n-1)r+1) \sum_{i=1}^{n} F(i), \]
\[\sigma\tau F(n) = \sum_{i=1}^{n} ((i-1)r+1)F(i), \quad r\sigma F(n) = \sum_{i=1}^{n} F(i), \]
from which (7) is immediate.

Now suppose that \(w = 2^i1_u \in A(1)^* \). In order to show that \(I_w(n) \) satisfies the same recurrence (3) as does \(N_n(w) \), it suffices to show that for any \(F : \mathbb{P} \to \mathbb{Z} \),
\[
(\sigma\tau)^i\sigma F(n) - (\sigma\tau)^i\sigma F(n-1) = r \sum_{j=1}^{i} (\sigma\tau)^{i-j-1} \sigma(\sigma\tau)^{j-i} \sigma F(n) + (\sigma\tau)^i F(n) - ir(\sigma\tau)^{i-1} \sigma F(n).
\] (8)

We have
\[
r \sum_{j=1}^{i} (\sigma\tau)^{i-j-1} \sigma(\sigma\tau)^{j-i} \sigma = \sum_{j=1}^{i} (\sigma\tau)^{i-j-1} (\tau\sigma - \sigma\tau + r\sigma)(\tau\sigma)^{j-i}, \quad \text{by (7)}
\]
\[= \sum_{j=1}^{i} [(\sigma\tau)^{i-j-1}(\tau\sigma)^{j-i+1} - (\sigma\tau)^{i-j}(\tau\sigma)^{j-i} + \tau(\sigma\tau)^{j-i}],
\]
\[= (\tau\sigma)^i - (\sigma\tau)^i + ir(\sigma\tau)^{i-1}. \] (9)

But for any \(G : \mathbb{P} \to \mathbb{Z} \) we have
\[\sigma G(n) - \sigma G(n-1) = G(n). \]

Thus
*
(\sigma\tau)^i\sigma F(n) - (\sigma\tau)^i\sigma F(n-1) = \sigma(\tau\sigma)^i F(n) - \sigma(\tau\sigma)^i F(n-1)
*
= (\tau\sigma)^i F(n).
\] (10)

Hence (8) follows from (9) and (10), as desired.

There remains the case \(w = 2^i \). We need to show that for any \(F : \mathbb{P} \to \mathbb{Z} \),
\[(\sigma\tau)^i F(n) - (\sigma\tau)^i F(n-1) = r \sum_{j=1}^{i} (\sigma\tau)^{i-j} \sigma(\sigma\tau)^{j-i} F(n) - (ir-1)(\sigma\tau)^{i-1} F(n). \]
The proof is analogous to that of (8) and will be omitted. \(\square \)

Corollary 2.5. For all \(w \in A(r)^* \), the intervals \([\phi, w]\) in \(\text{Fib}(r) \) and \(\text{Z}(r) \) have the same number of elements.

Proof. Put \(n = 2 \) in Theorem 2.4. \(\square \)

It would be interesting to find a simple bijective proof of Corollary 2.5. The intervals \([\phi, w]\) in \(\text{Fib}(r) \) and \(\text{Z}(r) \) do not in general have the same rank-generating function (e.g. \(w = 1, 2^i \)).

We have the following generalization of Corollary 2.5:

Corollary 2.6. For any \(w \in A(r)^* \) and any \(j \in \mathbb{P} \), the intervals \([\phi, w]\) in \(\text{Fib}(r) \) and \(\text{Z}(r) \) have the same number of \(j \)-element chains.

Proof. For any finite poset \(P \), let \(L_n(P) \) be the number of multichains \(x_1 \leq x_2 \leq \cdots \leq x_{n-1} \) of length \(n \) in \(P \), and let \(c_j \) be the number of \(j \)-element chains. Then (see [2, Prop. 3.11.1])
\[L_n(P) = \sum_{j=1}^{n} \binom{n-2}{j-1}. \] (11)
From this it follows easily that the numbers \(L_n(P) \) uniquely determine the \(c_i \)'s. The proof now follows from Theorem 2.4. \(\square \)

3. A Generalized Rank-generating Function

The rank-generating function of a poset \(P \) with rank function \(\rho: P \to \mathbb{N} \) (defined by \(\rho(x) = \) length of longest chain of \(P \) with top element \(x \)) is given [2, p. 99] by

\[
F(P, q) = \sum_{x \in P} q^{\rho(x)}.
\]

For \(\text{Fib}(r) \) and \(Z(r) \) we have (see [3, Th. 5.3 and Prop. 5.7])

\[
F(\text{Fib}(r), q) = F(Z(r), q) = (1 - rq - q^2)^{-1}, \quad (12)
\]

Now, given \(P \) as above and \(n \in \mathbb{P} \), define

\[
F_n(P, q) = \sum_{\pi_1, \ldots, \pi_n} q^{\rho(\pi_n)},
\]

summed over all \(n \)-element multichains in \(P \). The main result of this section is the following:

Theorem 3.1. Let \(n \in \mathbb{P} \). Then

\[
F_n(\text{Fib}(r), q) = F_n(Z(r), q) = \prod_{i=0}^{n} (1 - r(q - ((i - 1)r + 1)q^2))^{-1}.
\]

Proof. It follows from Theorem 2.4 that \(F_n(\text{Fib}(r), q) = F_n(Z(r), q) \). We prove Theorem 3.1 for \(\text{Fib}(r) \) by induction on \(n \). The case \(n = 1 \) is given by (12). Now assume the result for \(n - 1 \). Write

\[
F_n(\text{Fib}(r), q) = \sum_{i=0} f_i(q) q^i.
\]

We claim that

\[
f_n(t) - f_{n-1}(t) = rf_n(t - 1) + ((n - 1)r + 1)f_n(t - 2), \quad (14)
\]

for \(n > 0 \). (When \(n = 0 \), (14) is valid for \(t \geq 3 \).)

Now, using the notation of the previous section, we have

\[
f_n(t) = \sum_{\rho(u) = t} M_n(u),
\]

summed over all words \(u \in A(r)^* \) of rank \(t \).

For each \(u \in A(r)^* \) of rank \(t - 1 \) there are \(r \) words \(u = 1\mu \) (provided that \(t \geq 1 \)); while for each \(u \in A(r)^* \) of rank \(t - 2 \) there is one word \(u = 2\mu \) of rank \(t \) (provided that \(t \geq 2 \)). Hence

\[
f_n(t) = r \sum_{\rho(u) = t - 1} M_n(1\mu) + \sum_{\rho(u) = t - 2} M_n(2\mu).
\]

By (1) and (2) there follows

\[
f_n(t) = r \sum_{\rho(u) = t - 1} M_n(u) + \sum_{\rho(u) = t - 2} \sum_{i=1}^{n} ((i - 1)r + 1)M_n(u),
\]

so (since \(n > 0 \))

\[
f_n(t) - f_{n-1}(t) = r \sum_{\rho(u) = t - 1} M_n(u) + \sum_{\rho(u) = t - 2} \sum_{i=1}^{n} ((i - 1)r + 1)M_n(u)
\]

\[
= rf_n(t - 1) + ((n - 1)r + 1)f_n(t - 2),
\]

proving (14).
Now multiply (14) by x^t and sum on $t \geq 0$. This results in (writing $F_t(q)$ for $F_t(Fib(r), q)$)

$$F_n(q) - F_{n-1}(q) = rqF_n(q) + ((n-1)r + 1)q^2F_n(q),$$

for $n > 0$, whence

$$F_n(q) = F_{n-1}(q)/(1 - rq - ((n-1)r + 1)q^2).$$

The proof follows by induction. □

Given a graded poset P and $t \in \mathbb{N}$, let

$$P_{[0,t]} = \{x \in P : 0 \leq \rho(x) \leq t\}. \quad (15)$$

In the terminology of [2, Ch. 3.12], $P_{[0,t]}$ is a rank-selected subposet of P. Thus, in the notation of (13), $f_n(t)$ is the number of n-element multichains in $Fib(r)_{[0,t]}$ or $Z(r)_{[0,t]}$, so $f_{n-1}(t)$ (as a function of n) is the zeta polynomial of $Fib(r)_{[0,t]}$ or $Z(r)_{[0,t]}$. By (11), $f_n(t)$ (or $f_{n-1}(t)$) is a polynomial of degree t and leading coefficient $m_t/t!$, where m_t is the number of maximal chains in $Fib(r)_{[0,t]}$ or $Z(r)_{[0,t]}$. By [3, Prop. 3.1], we have

$$\sum_{t \geq 0} m_t x^t/t! = \exp(rt + \frac{1}{2}rt^2).$$

Equivalently,

$$m_t = \sum_{\pi} r \tau^{c(\pi)}, \quad (16)$$

where π ranges over all involutions in the symmetric group \mathbb{S}, and where $c(\pi)$ denotes the number of cycles of π.

We may ask what more can be said about the polynomials $f_n(t)$. By standard properties of rational generating functions [2, Cor. 4.3.1], we have

$$\sum_{n \geq 0} f_n(t)x^n = \frac{W_t(x)}{(1 - x)^{t+1}},$$

where for fixed t, $W_t(x)$ is a polynomial in x (called the $f_n(t)$—Eulerian polynomial) of degree $\leq t$ with integer coefficients summing to m_t (as defined in (16)). Since $Z(r)$ is a modular lattice (or since $Fib(r)$ is semimodular), it follows from known results (see [2, Example 3.13.5 and Exercise 3.67(b)]) that $W_t(x)$ has non-negative coefficients. Since $Fib(1)$ is a distributive lattice, the following combinatorial interpretation of the coefficients of $W_t(x)$ (when $r = 1$) follows easily from the theory of P-partitions [2, Ch. 4.5].

Proposition 3.2. Given a permutation $\pi \in \mathbb{S}$, write π as a product of disjoint cycles where (a) each cycle is written with its smallest element first, and (b) the cycles are written in increasing order of their smallest element. Let $\bar{\pi}$ be the permutation (written as a word) in \mathbb{S}, which results from erasing all parentheses from the above cycle notation. (We may have $\bar{\pi} = \emptyset$ even though $\pi \neq \sigma$; contrast this with the standard representation of [2, p. 17].) Then, when $r = 1$, we have

$$W_t(x) = \sum_{\pi} x^{1+d(\pi^{-1})},$$

where π ranges over all involutions in \mathbb{S}, and where $d(\pi^{-1})$ denotes the number of descents [2, pp. 21–23] of $(\pi)^{-1}$.
For instance, when \(t = 4 \) we have the following table:

\[
\begin{array}{cccc}
\pi & x & x^{-1} & d(x^{-1}) \\
(1)(2)(3)(4) & 1234 & 1234 & 0 \\
(12)(3)(4) & 1234 & 1234 & 0 \\
(13)(2)(4) & 1324 & 1324 & 1 \\
(14)(2)(3) & 1423 & 1342 & 1 \\
(1)(23)(4) & 1234 & 1234 & 0 \\
(1)(24)(3) & 1243 & 1243 & 1 \\
(12)(34) & 1234 & 1234 & 0 \\
(13)(24) & 1324 & 1324 & 1 \\
(14)(23) & 1423 & 1342 & 1 \\
\end{array}
\]

Hence \(W_d(x) = 5x + 5x^2 \) when \(r = 1 \). Presumably a similar result holds for any \(r \), but we will not consider this here.

Proposition 3.3. Fix \(r \in \mathbb{P} \). Then the polynomials \(W_t(x) \) satisfy the recurrence

\[
W_t(x) = rW_{t-1}(x) + ((rt - 1)x - r + 1)W_{t-2}(x) + r(x(1 - x)W_{t-2}(x), \quad t \geq 3, \tag{17}
\]

with the initial conditions

\[
W_0(x) = 1, \quad W_1(x) = rx, \quad W_2(x) = (r - 1)x^2 + (r^2 + 1)x.
\]

Proof. Multiply (14) by \(x^n \) and sum on \(n \geq 0 \). Since (14) is valid for \(n \geq 0 \) when \(t \geq 3 \), we obtain for \(t \geq 3 \) that

\[
\frac{W_t(x)}{(1 - x)^{t+1}} - \frac{xW_t(x)}{(1 - x)^{t+1}} = \frac{rW_{t-1}(x)}{(1 - x)^{t+1}} + rx \frac{dW_{t-2}(x)}{dx} (1 - x)^{t-1} - \frac{(r - 1)W_{t-2}(x)}{(1 - x)^{t-1}}. \tag{18}
\]

When equation (18) is simplified, the recurrence (17) results. It is easy to compute \(W_t(x) \) for \(0 \leq t \leq 2 \) by a direct argument, so the proof follows. \(\square \)

The values of \(W_t(x) \) for \(3 \leq t \leq 7 \) are given by

\[
\begin{align*}
W_3(x) &= r(3r - 2)x^2 + r(r^2 + 2)x, \\
W_4(x) &= (r - 1)(2r - 1)x^3 + (6r^3 - 2r^2 + 3r - 2)x^2 + (r^4 + 3r^2 + 1)x, \\
W_5(x) &= r(11r^2 - 12r + 3)x^3 + r(10r^3 + 12r - 6)x^2 + r(r^4 + 4r^2 + 3)x, \\
W_6(x) &= (r - 1)(2r - 1)(3r - 1)x^4 + (35r^4 - 22r^3 + 13r^2 - 12r + 3)x^3 \\
&\quad + (15r^3 + 5r^2 + 31r^2 - 8r^2 + 6r - 3)x^2 + (r^5 + 5r^4 + 6r^2 + 1)x, \\
W_7(x) &= 2r(5r - 2)(5r^2 - 5r + 1)x^4 + r(85r^4 - 10r^3 + 60r^2 - 60r + 12)x^3 \\
&\quad + r(21r^4 + 14r^3 + 65r^3 + 30r - 12)x^2 + r(r^6 + 6r^4 + 10r^3 + 4)x.
\end{align*}
\]

We conclude with a brief discussion of a natural generalization of the polynomials \(W_t(x) \). Let \(P \) be a graded poset and \(S \) a finite subset of \(P \). Generalizing (15), define the rank-selected poset \([2, \text{p. } 131]\)

\[
P_S = \{ z \in P : \rho(z) \in S \}.
\]

Let \(\alpha(P, S) \) denote the number of maximal chains of \(P_S \), and define

\[
\beta(P, S) = \sum_{T \subseteq S} (-1)^{|S - T|} \alpha(P, T).
\]
Equivalently,

\[\alpha(P, S) = \sum_{T \in S} \beta(P, T). \]

For more information concerning the numbers \(\alpha(P, S) \) and \(\beta(P, S) \), see [2, Sect. 3.12–3.13]. In particular [2, Exer. 3.67], we have for \(P = \text{Fib}(r) \) and \(P = \text{Z}(r) \) that

\[W_i(x) = \sum_S \beta(P, S)x^{\#(S - \{i\})}, \tag{19} \]

where \(S \) ranges over all subsets of \(\{1, \ldots, t\} \). Moreover, since \(\text{Fib}(r) \) is semimodular and \(\text{Z}(r) \) is modular, we have [2, Exam. 3.13.5] that \(\beta(\text{Fib}(r), S) \geq 0 \) and \(\beta(\text{Z}(r), S) \geq 0 \). However, it is false in general that \(\beta(\text{Fib}(r), S) = \beta(\text{Z}(r), S) \). For instance,

\[\beta(\text{Fib}(1), \{2, 4\}) = 1, \quad \beta(\text{Z}(1), \{2, 4\}) = 2. \]

The techniques of [2, Sect. 3.12] lead to the following result, which together with (19) imply Proposition 3.2 by an easy argument (so that Proposition 3.4 may be regarded as a generalization of Proposition 3.2).

Proposition 3.4. Let \(S \) be a finite subset of \(\mathbb{P} \). Then \(\beta(\text{Fib}(1), S) \) is equal to the number of permutations \(\pi = (a_1, a_2, a_3, \ldots) \) of \(\mathbb{P} \) satisfying:

(a) \(a_i = i \) for all but finitely many \(i \);

(b) \(2i \) and \(2i + 1 \) appear to the right of \(2j - 1 \) for all \(i \in \mathbb{P} \);

(c) \(D(\pi) = S \), where \(D(\pi) \) denotes the descent set of \(\pi \) [2, p. 21].

It would be interesting to find a similar result for \(\text{Fib}(r) \) when \(r \geq 2 \) and for \(\text{Z}(r) \) when \(r \geq 1 \).

Acknowledgment

This work was partially supported by NSF grant #DMS 8401376.

References

Received 6 March 1989 and accepted 17 August 1989

Richard P. Stanley
Department of Mathematics,
Massachusetts Institute of Technology,
Cambridge, Massachusetts 02139, U.S.A.