A CHROMATIC-LIKE POLYNOMIAL FOR ORDERED SETS

Richard P. Stanley
Harvard University

This paper surveys some results appearing in a section of the author's doctoral dissertation [4, Ch. IV, Section 5]. For further details, generalizations, and applications, see [4].

Let \(P \) be a finite (partially) ordered set with \(p > 0 \) elements and longest chain of length \(\ell \) (or cardinality \(\ell + 1 \)). A chain (totally ordered set) with \(p \) elements is denoted \(C_p \).

Definition (i) A map \(\sigma : \overline{P} \rightarrow C_n \) is said to be order-preserving if \(X \leq Y \Rightarrow \sigma(X) \leq \sigma(Y) \). Define \(\Omega(n) \) to be the number of order-preserving maps \(\sigma : \overline{P} \rightarrow C_n \).

(ii) A map \(\tau : \overline{P} \rightarrow C_n \) is said to be strictly order-preserving if \(X < Y \Rightarrow \tau(X) < \tau(Y) \). Define \(\Omega(n) \) to be the number of strict order-preserving maps \(\tau : \overline{P} \rightarrow C_n \).

(iii) \(e_n \) denotes the number of surjective order-preserving maps \(\sigma : \overline{P} \rightarrow C_n \).

(iv) \(\overline{e}_n \) denotes the number of surjective strict order-preserving maps \(\tau : \overline{P} \rightarrow C_n \).

For instance, if \(P = C_p \), then \(\Omega(n) = \binom{n+p-1}{p} \) and \(\overline{\Omega}(n) = \binom{n}{p} \); while if \(P \) is a disjoint union of \(p \) points, then \(\Omega(n) = \overline{\Omega}(n) = n^p \). For any \(P \), the number \(e_P \) is equal to the number of ways of extending \(P \) to a total order and is an important numerical invariant of \(P \). It is not hard to see that \(\Omega(n) \) is equal to the number of semi-ideals in the
direct product \(P \times C_{n-1} \) (see [1] for definitions). In particular, \(\Omega(1) = 1 \) and \(\Omega(2) \) is the number of semi-ideals of \(P \).

Theorem 1. \(\Omega(n) \) and \(\bar{\Omega}(n) \) are polynomials in \(n \) of degree \(p \) and leading coefficient \(e^p_p \) given by

\[
\Omega(n) = \sum_{s=1}^{p} e_s \binom{n}{s}
\]

\[
\bar{\Omega}(n) = \sum_{s=1}^{p} \bar{e}_s \binom{n}{s}
\]

Proof. For each of the \(\binom{n}{s} \) subsets \(S \) of \(C_n \) of size \(s \), there are \(e_s \) (resp. \(\bar{e}_s \)) order-preserving (resp. strict order-preserving) maps of \(P \) onto \(S \), and the theorem follows. \(\square \)

In the language of the calculus of finite differences,

\[
e_s = \Delta^s \Omega(0)
\]

\[
\bar{e}_s = \Delta^s \bar{\Omega}(0)
\]

The polynomial \(\bar{\Omega}(n) \) is an ordered set analog of the chromatic polynomial of a graph. \(\bar{\Omega}(n) \) counts the number of ways of "coloring" \(P \) with the colors \(1, 2, \ldots, n \) such that no two comparable elements of \(P \) have the same color, and such that this coloring is "compatible" with the ordering of \(P \). One point at which the analogy breaks down is that the coefficients of \(\bar{\Omega}(n) \) need not alternate in sign, the smallest such \(P \) having five elements.

We now come to the crucial lemma (whose proof will not be given here) in analyzing the polynomials \(\Omega(n) \) and \(\bar{\Omega}(n) \). Let \(\omega \) be any surjective order-preserving map \(P \rightarrow \{1, 2, \ldots, p\} \), i.e., \(\omega \) is an extension of \(P \) to a total order. We denote the elements of \(P \) by \(X_1, \ldots, X_p \), where \(\omega(X_i) = i \). List all permutations \(i_1, i_2, \ldots, i_p \) of \(1, 2, \ldots, p \) with the
property that if \(X < Y \) in \(P \), then \(\omega(X) \) appears before \(\omega(Y) \) in \(i_1, i_2, \ldots, i_p \). There are \(p \) such permutations. Put a "\(\leq \)" between two consecutive terms \(i_j \) and \(i_{j+1} \) if \(i_j \leq i_{j+1} \); otherwise put a "\(< \)" sign. Denote the array thus obtained by \(\bar{\lambda} \). Denote by \(\overline{\lambda} \) the array obtained from \(\lambda \) by changing all "\(< \)" signs to "\(\leq \)" signs and "\(\leq \)" signs to "\(< \)" signs. We say a map \(\sigma: P \to C_n \) is compatible with a permutation \(i_1, \ldots, i_p \) appearing in \(\lambda \) (or \(\overline{\lambda} \)) if \(\sigma(X_i) \leq \sigma(X_{i+1}) \leq \cdots \leq \sigma(X_{i+p}) \) and \(\sigma(X_{i+j}) < \sigma(X_{i+j+1}) \) whenever a "\(< \)" sign appears in \(\overline{\lambda} \).

\[\begin{array}{l}
\textbf{Example:} \text{ Let } P \text{ and } \omega \text{ be given by } 1 \rightarrow 2 \rightarrow 3 \rightarrow 4. \text{ Then } \lambda \text{ and } \overline{\lambda} \text{ are given by }\\
1 \leq 2 \leq 3 \leq 4 \quad 1 < 2 < 3 < 4 \\
2 < 1 \leq 3 \leq 4 \quad 2 < 1 < 3 < 4 \\
1 \leq 2 \leq 4 < 3 \quad 1 < 2 < 4 \leq 3 \\
2 < 1 \leq 4 < 3 \quad 2 < 1 < 4 \leq 3 \\
2 \leq 4 < 1 \leq 3 \quad 2 < 4 \leq 1 < 3 \\
\lambda \quad \overline{\lambda}
\end{array} \]

\textbf{Lemma (i)} Every order-preserving map \(\sigma: P \to C_n \) is compatible with exactly one permutation in \(\lambda \).

\((ii) \text{ Every strict order-preserving map } \tau: P \to C_n \text{ is compatible with exactly one permutation in } \overline{\lambda}. \quad \square \)

Thus we obtain alternative expressions for \(\Omega(n) \) and \(\overline{\Omega}(n) \) by summing the contributions coming from each permutation in \(\lambda \) and \(\overline{\lambda} \).

If exactly \(s \) "\(< \)" signs appear in a given permutation, then this permutation is easily seen to contribute a term \((n+p-1-s) \) to \(\Omega(n) \) or \(\overline{\Omega}(n) \). Thus by the lemma, we obtain
Theorem 2: Let \(w_s \) (resp. \(\overline{w}_s \)) be the number of permutations in \(\Sigma \) (resp. \(\overline{\Sigma} \)) with exactly \(s \) "<" signs. Then

\[
\Omega(n) = \sum_{s=0}^{p-1} w_s \left(\binom{p+n-1-s}{p} \right)
\]

\[
\overline{\Omega}(n) = \sum_{s=0}^{p-1} \overline{w}_s \left(\binom{p+n-1-s}{p} \right).
\]

But clearly \(\overline{w}_s = w_{p-1-s} \). Substituting into Theorem 2 and comparing the resulting expression for \(\overline{\Omega}(n) \) with the expression for \(\Omega(n) \), we obtain the following fundamental result.

Theorem 3: \(\overline{\Omega}(n) = (-1)^p \Omega(-n) \).

The numbers \(w_s \) are natural generalizations of the Eulerian numbers [3, pp214-215]. When \(P \) is a disjoint union of \(p \) points, then \(w_s \) is equal to the number of permutations of \(1, 2, \ldots, p \) with exactly \(s \) decreases between consecutive terms. This is the combinatorial definition of the Eulerian numbers \(A_{p,s+1} \). We also have the generating functions

\[
\sum_{n=0}^{\infty} \Omega(n) x^n = \left(\sum_{s=0}^{p-1} w_s x^{s+1} \right) / (1-x)^{p+1}
\]

\[
\sum_{n=0}^{\infty} \overline{\Omega}(n) x^n = \left(\sum_{s=0}^{p-1} \overline{w}_s x^{s+1} \right) / (1-x)^{p+1}
\]

Theorem 3 allows the determination of all integer zeros of \(\Omega(n) \). We state a slightly stronger result.
Corollary 1. We have $\Omega(0) = \Omega(-1) = \ldots = \Omega(-\ell) = 0$, while for $n > 0,$
$$(-1)^n \Omega(-\ell - n) \geq \Omega(n) > 0.$$

One can ask when equality holds in the inequality at the end of Corollary 1. A complete answer is provided by the following two theorems. They are proved by constructing in an obvious way a strict order-preserving map $\tau : P \to C_{n+\ell}$ corresponding to a given order-preserving map $\sigma : P \to C_n$, and analyzing when this correspondence is bijective.

Theorem 4. $\Omega(-\ell - 1) = (-1)^n$ if and only if every element of P is contained in a chain of length ℓ. \square

Theorem 5. The following three conditions are equivalent.

(i) $\Omega(-\ell - n) = (-1)^n \Omega(n)$ for some integer $n > 1$.

(ii) $\Omega(-\ell - n) = (-1)^n \Omega(n)$ for all n.

(iii) Every maximal chain of P has length ℓ.

It is not difficult to find ordered sets satisfying the conditions of Theorem 4 but not of Theorem 5. There are exactly such non-isomorphic ordered sets with six elements and none smaller. Theorem 5 leads to some interesting identities which appear to be difficult to prove by purely combinatorial reasoning.

Corollary 2. If every maximal chain of P has length ℓ, then

(i) $2e_{p-1} = (p+\ell-1)e_p$

(ii) $2\bar{e}_{p-1} = (p-\ell-1)e_p$

(iii) The coefficient of n^{p-1} in $\Omega(n)$ is $\frac{\ell e_p}{2(p-1)!}$

(iv) $\sum_{s=1}^{\ell} \frac{p}{s} e_s = 2\ell \sum_{s=1}^{\ell} e_s$.

Proof. By Theorem 5, we have

\[\Omega(n) = \sum_{s=1}^{p} c_s \binom{n}{s} = (-1)^p \sum_{s=1}^{p} c_s \binom{-t-n}{s} \]

Equating coefficients of \(n^{p-1} \) gives (i) while (ii) is proved similarly using \(\bar{\Omega}(n) \). (iii) is then an immediate consequence of (i). We omit the proof of (iv) which involves a somewhat more complicated manipulation. \(\square \)

As a consequence of formula (i) or (ii) of the previous corollary, we get a curious though not very significant result. I have been unable to find a direct combinatorial proof of this fact.

Corollary 3. If every maximal chain of \(P \) has length \(\ell \), then either \(p-\ell \) is odd or \(e_p \) is even.

The preceding corollary motivates the following conjecture: Let \(P \) be any finite ordered set. If the length of every maximal chain of \(P \) has the same parity as \(p \), then \(e_p \) is even.

In conclusion we mention that various methods are available for explicitly determining \(\Omega(n) \) for special classes of ordered sets \(P \). For instance, one of the more interesting such classes consists of those \(P \) which are the direct product of two chains, say \(P = C_r \times C_s \). It can then be shown that

\[\Omega(n) = \frac{\binom{r+n-1}{r} \binom{r+n}{r} \cdots \binom{r+s+n-3}{r}}{\binom{r}{r} \binom{r+1}{r} \cdots \binom{r+s-1}{r}} \]

This formula is closely related to MacMahon's solution of the "generalized ballot problem". [2, Section 103].
References

3. John Riordan, An Introduction to Combinatorial Analysis, John Wiley and Sons, Inc. (New York, 1958)