
JOURNAL OF COMBINATORIAL THEORY, Series A 43, 103-113 (1986) 

Symmetries of Plane Partitions 

RICHARD P. STANLEY* 

Department of Mathematics, Massachusetts Institute of Technology, 
Cambridge, Massachusetts 02139 

Communicated by the Managing Editors 

Received March 20. 1985 

We introduce a new symmetry operation, called complementation, on plane par- 

titions whose three-dimensional diagram is contained in a given box. This operation 
was suggested by work of Mills, Robbins, and Rumsey. There then arise a total of 
ten inequivalent problems concerned with the enumeration of plane partitions with 
a given symmetry. Four of these ten problems had been previously considered. We 

survey what is known about the ten problems and give a solution to one of them. 

The proof is based on the theory of Schur functions, in particular the 
Littlewood-Richardson rule. Of the ten problems, seven are now solved while the 
remaining three have conjectured simple solutions. 8 1986 Academic Press, Inc. 

1. INTRODUCTION 

Plane partitions are generalizations of ordinary partitions of integers first 
considered by P. A. MacMahon. MacMahon defined six symmetry 
operations on plane partitions and raised the problem of enumerating 
plane partitions with given symmetries. (Precise statements and references 
are given below.) The work of Mills-Robbins-Rumsey suggests a further 
symmetry operation which has been previously overlooked. There then 
arise in a natural way a total of ten inequivalent problems concerned with 
the enumeration of plane partitions with given symmetries. In the next sec- 
tion of this paper we discuss the ten symmetry classes and what is known 
about them. In Section 3 we solve one of the ten enumeration problems. 
Previously six have been solved, so now there are seven solved problems 
and three conjectures. 

Our proof in Section 3 is based on the theory of symmetric functions and 
especially Schur functions, whose connection with plane partitions is first 
explicitly mentioned in [15]. For an introduction to the theory of Schur 
functions, see [15, Part l] or [7, Chap. I]. 
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2. SYMMETRY CLASSES OF PLANE PARTITIONS 

Fix positive integers r, s, t. A plane partition with < r rows, <s columns, 
and largest part <t is an r x s matrix rr = (rc,), 1 < i < r, 1 <j < s, such that 
each rcU is an integer satisfying 0 d xi< t,. and such that the rows and 
columns of n are weakly decreasing. See [ 15, Part 21. Define JnJ = xi, j 7~~. 
If 1~1 = n then we say rc is a plane partition of n. If m is a positive integer, 
then write [m] = { 1, 2,..., m}. The diagram O(X) of rr is the subset of the 
box B(r, s, t) = [r] x [s] x [t] defined by 

D(n)= ((i,j, k): qj>k). 

Thus 17~1 is equal to the number ID(n)1 of elements of D(rc). Frequently we 
identify rc with its diagram D(z), and will say that n: is contained in 
B(r, s, t), denoted rc E B(r, s, t). Similarly we write x E ‘II instead of x E O(z). 
If we regard B(r, s, t) as a poset (partially ordered set) with the usual 
product order, then a plane partition contained in B(r, s, t) is just an order 
ideal (also called semi-ideal, decreasing subset, or down-set) of B(r, s, t). 

Let P denote the set of positive integers. The symmetric group S, acts on 
iFp3 be permuting coordinates, and therefore on the set of all (diagrams of) 
plane partitions. For each subgroup G of S3 we are interested in the num- 
ber N,(r, s, t) of plane partitions contained in B(r, s, t) and invariant under 
G. Clearly we can assume that B(r, s, t) is G-invariant, so certain choices of 
G will cause certain of the numbers r, s, t to be equal. The six symmetries 
of plane partitions just defined were first considered by MacMahon [S, 9, 
Sects. 425, 509ff]. References to the problem of determining N,(r, s, t) will 
be given later. 

There is an additional symmetry of plane partitions contained in 
B(r, s, t) which is suggested by work of Mills-Robbins-Rumsey [ 11, Con- 
jecture 3S]. If rc c B(r, s, t), then define the complement xc of rr by 

n(‘= {(r + 1 - i, s + 1 -j, t + 1 -k): (i,j, k) $ z}. 

Clearly rc’ is a plane partition, and InI + I&J = rst. Thus if rc = n’ then 17~1 = 
lncl = rst/2, so rst is even. The transformation ’ and the group Ss generate a 
group T of order 12. For every subgroup G of T we may again ask for the 
number N,(r, s, t) = N,(B) of plane partitions 7~ G B(r, s, t) = B invariant 
under G (i.e., w. R = rc for all w  E G). Again we may assume B(r, s, t) is G- 
invariant. If G and G’ are conjugate subgroups of T then clearly 
NG(r, s, t) = N&r, s, t). One can check that the group T has ten conjugacy 
classes of subgroups, giving rise to ten enumeration problems. We now 
explicitly list these ten classes of plane partitions (where we have chosen a 
particular group G in each conjugacy class). The following terminology will 
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TABLE I 

Symmetry Classes of Plane Partitions 

B Class 

I. B(r, .y, 1) 
2. B(r, r, 1) 
3. B(r, r, r) 
4. B(r, r, r) 
5. B(r, s, 1) 
6. B(r, r, t) 
I. B(r, r. t) 
8. B(r, r, r) 
9. B(r, r. r) 

IO. B(r, r, r) 

Any 
Symmetric 

Cyclically symmetric 
Totally symmetric 
Self-complementary 

Complement = transpose 
Symmetric and self-complementary 

Cyclically symmetric and complement = transpose 
Cyclically symmetric and self-complementary 

Totally symmetric and self-complementary 

be used. The transpose rc* of the plane partition rt = (n,) is defined by 
T* = (71~). We say 71 is symmetric if 71 = z *, We say n is cyclically symmetric 
if whenever (i,j, k) E rt then (i, k, i) E z. In other words z is invariant under 
the (unique) 3-element subgroup G of S,. This condition is equivalent to 
saying that for every i, the ith row of the matrix (7tii) is conjugate (in the 
sense of [7, p. 21) to the ith column. For example, 

3 2 2 

3 2 0 

1 1 0 

is cyclically symmetric. A plane partition rc is called totally symmetric if it is 
S,-invariant, i.e., if it is cyclically symmetric and symmetric. Equivalently, rc 
is symmetric and every row of rc is a self-conjugate partition, Of course, by 
a self-complementary plane partition 71 we mean that rc = rt’. We now give 
our list of the ten symmetry classes of plane partitions contained in B= 
B(r, s, t). (See Table I.) 

We now briefly discuss what is known about enumerating the ten classes. 
Remarkably, in every case there is a simple formula either known or con- 
jectured. At the present writing seven of the formulas are proved and three 
are conjectured. In particular, in the next section we establish a formula for 
Case 5. 

Cases ll4. If x = (i,j, k) E B, then define the height At(x) = i +j+ k - 2. 
If G acts on B and q is an orbit of this action, then define k(q) = h(x) for 
any x E ye. (This definition differs from the original one of Macdonald [7, 
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p. 521 and seems more natural for our purposes.) Now if G is a subgroup 
of T corresponding to Cases 14, then define a polynomial 

where the sum is over all G-invariant plane partitions rr contained in 
B = B(r, s, 1) (where BG = B). Thus N,(B; 1) = N,(B). Macdonald [7, pp. 
522531 observed that previously known results concerning plane partitions 
can be given the unified statement 

(1) 

where G corresponds to Cases 1 or 2, and where B/G is the set of orbits of 
G acting on B. For Case 1, Eq. (1) is equivalent to a famous result of Mac- 
Mahon [9, Sect. 4951. A simple proof based on Schur functions is given in 
[7, p. 481, and many additional proofs have been given. For Case 2 Eq. (1) 
is equivalent to a conjecture of MacMahon [S; 9, Sect. 5201, shown by G. 
Andrews [l] to be equivalent to a conjecture of Bender-Knuth [S]. Sub- 
sequently the Bender-Knuth conjecture (and therefore (1) when G 
corresponds to Case 2) was proved independently by Andrews [2], 
Gordon [6], Macdonald [7, p. 521, and Proctor [13]. Macdonald [7, 
pp. 52-531 also conjectured that (1) was valid for Case 3, and this conjec- 
ture was proved by Mills-Robbins-Rumsey [lo]. However, (1) is certainly 
not true for Case 4; in fact, the right-hand side is not even a polynomial in 
q. Nevertheless, several persons independently conjectured that (1) is true 
in Case 4 for q = 1; this conjecture remains open. (Thus Case 4 is one of the 
three open cases.) Andrews and Robbins independently gave a “q- 
analogue” of Case 4 (alluded to in [4]). We now state an equivalent for- 
mula. For G corresponding to Cases 14 define another polynomial 

NG(B; q) = c q’@’ 
nEB 
&=* 

where n/G is the set of orbits of G acting on rc. Then in Case 4 it is conjec- 
tured that 

(2) 

Note that (1) and (2) coincide when q = 1. Of course also (1) and (2) are 
identical in Case 1. Remarkably Eq. (2) is also valid in Case 2; it is a 
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restatement of the Bender-Knuth conjecture mentioned above. On the 
other hand, Eq. (2) is false in Case 3; again the right-hand side is not a 
polynomial. The known formulas and conjectures concerning Cases 14 
have such a uniform statement that they demand a uniform proof, but so 
far only Cases 1 and 2 have achieved any sort of unification, viz., in terms 
of the representation theory of Lie algebras [ 131. 

Case 5. Let 1 < i < 10. We write N,(B) for N,(B) when G corresponds 
to Case i. It was conjectured independently by this author and D. Robbins 
(in a different but equivalent form) that 

N,(2r, 2s, 2t) = N,(r, s, t)’ (3a) 

N,(2r + 1, 2s, 2t) = N,(r, s, t) N,(r + 1, s, t) (3b) 

NJ2r + 1, 2s + 1, 2t) = N,(r + 1, s, t) N,(r, s + 1, t). (3c) 

In the next section we prove this conjecture. In fact, we give a 
generalization involving Schur functions which yields a q-analogue of (3). 

Case 6. If 7c c B(r, s, t) satisfies rc* = 7c(‘, then r = s and t = 2k. The anti- 
diagona! elements x ;, r + , ~ I are all equal to k, and we can specify the 
elements rcV below the anti-diagonal (i.e., i+j> r + 1) in any way with the 
values 0, l,...,k provided they are weakly decreasing in rows and columns. 
The entire matrix (nti) is then uniquely determined. Hence (replacing rcg 
with k - rcnk) N,(r, r, 2k) is equal to the number of plane partitions con- 
tained in the shape (r - 1, r - 2,..., 1) with largest part at most k. A simple 
formula for this number is given by Proctor [14] and may be written 

N,(r, r, 2k) = 
‘,y2 ‘fi’ 2kly”y-jl+ 1 

,=, j=i 

Case 7. If n E B(r, s, t) satisfies n = rt* =rr(‘, then r =s and t = 2k. 
Again the anti-diagonal elements are equal to k. We can specify the 
elements xii satisfying i +j> r + 1 and i<j in any way with the values 
0, l,..., k provided they are weakly decreasing in rows and columns, and 
then n is uniquely determined. Thus N,(r, r, 2k) is equal to the number of 
plane partitions of the shifted shape (r - 1, r - 3,...) (ending in 1 or 2) with 
largest part at most k. A result proved by Proctor in [12] (see also [17, 
Sect. 6]), based on the representation theory of the symplectic group, is 
equivalent to the formulas 

N,(2r, 2r, 2k) = N,(r, r, k) 

N,(2r + 1, 2r + 1,2k) = N,(r, r + 1, k). 
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Case 8. Here r= 2k, and Mill-Robbins-Rumsey have shown [18] 
using the ideas of [lo], that 

k- * (3i+ 1)(6i)! (2i)! 
N,(2k, 2k, 2k) = n 

r=O (4i+ l)! (4i)! 

Case 9. Again we must have r = 2k. Define 

D(k) = 
l! 4! 7!...(3k-2)! 

k! (k+ 1)!...(2k- l)!’ 

Thus D( 1) = 1, D(2) = 2, D(3) = 7, D(4) = 42, D(5) = 429, D(6) = 7436, 
D(7) =218348, etc. G. Andrews has shown [3] that D(k) is equal to the 
number of “descending plane partitions” with largest part at most k. Mills, 
Robbins, and Rumsey conjecture [ 111 that D(k) is equal to the number of 
k x k “alternating sign matrices” (or “monotone triangles”). Robbins con- 
jectures (private communication) that 

N,(2k, 2k, 2k) = D(k)2. 

For instance, when k = 2 the four plane partitions being counted are given 
by 

4422 4432 4333 4441 

4422 4321 4320 3321 

2200 3210 4210 3211 (4) 

2200 2100 1110 3000. 

Case 10. Again r = 2k, and Robbins conjectures that N,,(2k, 2k, 2k) = 
D(k). E.g., when k =2 the first two plane partitions of (4) are being 
enumerated. Of the three sets {descending plane partitions with largest part 
<k), {k x k alternating sign matrices}, and {totally symmetric self-com- 
plementary 7c c B(2k, 2k, 2k)}, no two are known to have the same car- 
dinality (for all k). Possibly one could establish the equivalence of the con- 
jectures for NV and N,, by showing 

N,(2k, 2k, 2k) = N,,(2k, 2k, 2k)2, 

without evaluating either case explicitly. 

3. SELF-COMPLEMENTARY PLANE PARTITIONS 

In order to prove (3), we first review two basic properties of the Schur 
functions sI(x) = sI(xl, x2 ,... ). Let rl. = (A,, I, ,...) be a partition of n = 
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A,+&+ . . . . denoted 111 = n or 2 I---n. A column-strict plane partition (or 
semistandard tableau) of shape 1 is an array r = (rii) of positive integers zii, 
where O<j<li, which is weakly decreasing along rows (i.e., rii>rj+ i,, 
when defined) and strictly decreasing along columns (tii > z~,~+ i when 
defined). The r$s are called the parts of r. Define x’ = xy’xy.. . , where mk 
of the parts of r are equal to k. We then have the following combinatorial 
interpretation of the Schur functions [ 15, Sect. 51 [7, p. 421. 

3.1. THEOREM. The Schur function So is giuen by 

SA(X) = 1 XT, 

where z ranges over all column-strict plane partitions of shape 1. 

The product sI(x) sP(x) of Schur functions can be expanded as a linear 
combination of Schur functions, say 

SAX) sp,(x) = 1 c;ps,(x), c;, E 7. 

The Littlewood-Richardson (L-R) rule gives a combinatorial interpretation 
of the (nonnegative) integers cn”,. We give a brief statement of it below; see, 
e.g., [ 16, Theorem 2.41 or [7, Chap. I.91 for more details. 

3.2. THEOREM (L-R rule). The integer c;, is equal to zero unless i c v 
(i.e., lid vi for all i). If 1 E v then C$ is equal to the number of ways of 
inserting u1 l’s, p2 2’s,... into a skew diagram A of shape v/2 subject to the 
following two conditions: 

(a) The rows are weakly increasing and columns strictly increasing, 

(b) rfa,, a2,... is the order of the numbers reading from right to left 
along the first row, next right to left along the second row, etc., then for any i 
and j, the number of is among a,, a,,..., a, is not less than the number of 
i+ l’s among a,, a, ,..., aj. 

EXAMPLE. Let il = (3,2, l), p = (4,2, l), v = (5,4,3,2). The arrays A 
satisfying (a) and (b) are given by 

11 11 11 
12 22 12 

1 1 2 

23 23 13 

Hence c;, = 3. 
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The following lemma can easily be generalized, but its present form is 
adequate for our purposes. 

3.3. LEMMA. (a) Let a = (sr), the partition with r parts equal to s. Then 
sf = 1, s,,, where y ranges over all partitions of the form 

y=(s+61,s+b*,..., s + 6,, s - 6,, s - d,- I)...) s - d,), (5) 

where 6= (c?~,..., 6,) is a partition contained in a, i.e., s > 6, > . . . > 6, z 0. 
(b) Let a= (sr) and /?= (sr+‘). Then s,sg=C,s,, where y ranges 

over all partitions of the form 

y=(s+6,,s+6, )...) s+6,,s,s-6,,s-6,- I,..., s-d,), 

where 6 is a partition contained in a. 

(c) Let a=(~~“) and p= ((s-cl)‘). Then susB=C,,s,, where y 
ranges over all partitions of the form 

y=(s+1+6,,s+l+S* )..., s+ 1 +6,, &S-6,, s-6,-1 ,..., s-6,) 

where 6 is a partition contained in (sr). 

Proof: We prove only (a), the other two cases being analogous. Apply 
Theorem 3.2 to the case I = p = (s’). Suppose CL # 0. Then v has the form 
v=(s+d, ,..., s+6,, El, &2 )... ). In order to satisfy conditions (a) and (b) of 
Theorem 3.2, the kth row of A, for 1 d k < r, must consist of 6, k’s, so 6 is 
contained in (sr). Since the columns of A are strictly increasing we must 
have .si <s. In order for conditions (a) and (b) of Theorem 3.2 to be 
satisfied, the first (left-most) column of A must consist of the entries j, 
j+ l,..., r where S,- i = s, Sj < s. The second column of A must consist ofj, 
j+ l,..., r where SiPI =s- 1, dj<s- 1, etc. It follows that si=s-6,+iPi. 
Thus any choice of 6 yields a unique A of the desired shape, and the proof 
is complete. fl 

Now let rc be a self-complementary plane partition contained in 
B(r, s, t’). At least one of r, s, t’ must be even, so suppose without loss of 
generality that t’ = 2t. Thus ‘II may be regarded as an r x s matrix (rcti) with 
entries contained in (0, l,..., 2t). Define E=(E,), where izii=xti+r-i+l. 
Thus il is a column-strict plane partition of shape (sr) with entries con- 
tained in { 1, 2,..., 2t + r}, and the self-complementarity of rc yields E, + 
it, ~ i+ 1, 5 Pj+ I = 2t + r + 1. Conversely any such matrix if corresponds to a 
self-complementary rr. Now define W(Z) = x71x?. . . x;d, where d = t + [r/2] 
and mi is the number of parts of ii equal to i. (Note that the values 
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m, ,..., md determine mj for j = d + I,..., 2t + r.) For instance, suppose r = 4, 
s = 5, 2t = 6. Let 7c be given by 

6 6 5 4 3 

6 5 5 4 2 
7t= 

42110 

32100 

Then 

10 10 9 8 7 

9 8875 
jf= 

4 3211 

3.4. THEOREM. Define 

F(r, s, 2t; x) = F(r, s, 2t; x1 ,..., xd) = C w(n), 
A 

where rr ranges over all self-complementary plane partitions contained in 
the box B(r, s, 2t) and d = t + [r/2] as above. Then: 

(a) F(2r, 2s, 2t; x)=s,(xI ,..., x,)*, where c( = (sr>. 

(b) F(2r + 1,2s, 2t; X) = s,(x, ,..., xd) sp(x, ,..., x,), where a = (s’) and 
p= (sr+‘). 

(c) F(2r + 1, 2s + 1, 2t; x) = sB(xI ,..., xd) s?(x, ,..., xd), where p = 
(s’+‘) and y= ((s+ 1)‘). 

Proof We prove only (a) (using Lemma 3.3(a)), the proof of (b) and 
(c) being analogous (using Lemma 3.3(bc)). Consider the entries of 5 equal 
to d+ 1, d+ 2,..., 2t + 2r (where d= t + r). They occupy a diagram of some 
shape y + 2rs and we set y = S(n). By the self-complementarity of E, the 
shape y has the form (5) for some partition 6 contained in (s’). Moreover, 
given any y of the form (5) choose any column-strict plane partition e of 
shape y with parts contained in (t + r,..., 2t + 2r}, and ii is then uniquely 
determined. Since mi = mzr+ Zr- ;+, , it follows from Theorem 3.1 that 

%2a;43:1-X 
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where z ranges over all self-complementary plane partitions contained in 
B(2r, 2s, 2t) satisfying y = S(X). Hence 

F(2r, 2s, 2t; x) = 1 s&x ,,..., x,), 

summed over all y satisfying (5). The proof follows from Lemma 3.3(a). 1 

To obtain equation (3) from Theorem 3.4 note that the number 
N,(r, s, t) of plane partitions rc = (z~) contained in B(r, s, t) is equal to the 
number of column-strict plane partitions rr of shape (sr) and largest part 
6r+ t (viz., it,=ng+r-i+ 1). Hence if c1= (sr) then 

N,(r, s, t) = s,( l,..., 1) (r+ t l’s), 

so (3) follows from Theorem 3.4. More generally, we get a “q-analogue” of 
(3) by substituting xi = qi in Theorem 3.4. By (1) applied to Case 1 (or 
because s,(q, q’,..., qd) can in general be written as a simple product; see 
[7, p. 27, Example I]) we have 

where n ranges over all self-complementary plane partitions contained in 
B = B(2r, 2s, 2t), where B’ = B(r, s, t), and where U(X) is the sum of those 
entries i of it satisfying 1 < i < r + t. Similar formulas hold for B(2r + 1, 2s, 
2t) and B(2r+ 1, 2s+ 1, 2t). 

Let us mention that Eq. (3) might also be proved by exhibiting an 
explicit bijection between self-complementary plane partitions and suitable 
pairs of ordinary plane partitions. The various proofs of the Littlewood- 
Richardson rule can be used to give a simple bijection, but in order to 
prove the validity of the bijection one must invoke the validity of the proof 
of the Littlewood-Richardson rule used to define the bijection. Is there a 
simple bijection which avoids the Littlewood-Richardson rule entirely? 
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