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For fixed k let A, denote the number of dimer coverings of a k X n rectangle. Various proper-
ties of the generating function ¥ A,x" are obtained, in particular answering questions of
Klarner and Pollack and of Hock and McQuistan. An explicit expression for the molecular free-
dom for dimers on a saturated k x n lattice space is also obtained. The results are consequences
of the explicit formula for A,, obtained by Kasteleyn and by Temperley and Fisher.

Let & be a fixed positive integer, and let A, =A, , denote the number of ways to
tile a kxn rectangle with nk/2 dimers (or dominoes). (Of course 4,=0 if nk is
odd.) Form the generating function

F)=Y A,x".
n=0
It is well known (e.g., [5]) that F,(x) represents a rational function, say Fj(x)=
P (x)/Q,(x) with P, Q, polynomials with integer coefficients, and Q,(0)=1. We
do not assume that Fj(x) is reduced to lowest terms. If

Q) =1-ax— - —a,x",
then it follows that
A,,+q=a1A,,+q_1+---+an,, (1

for all n sufficiently large (and for all n=0 if and only if deg P, <deg Q,; we will
show below that deg Q,—deg P,=2). For the basic facts concerning rational
generating functions, see [8]. The largest root of the polynomial x?Q,(1/x), when
F(x) is reduced to lowest terms, is denoted by g, ; and the number 4, = u,f/ k is call-
ed the molecular freedom for dimers on a saturated k x » lattice space.

Recently Klarner and Pollack [5] computed Py (x) and Q,(x) for 1 =k =8, while
Hock and McQuistan [3] computed Q,(x) for 1=k=10. They also computed
numerically the values of y; for 1 =k =8 and 1=k =10, respectively. Both papers

raised various questions about the properties of P,(x) and Q,(x). Here we will

* Partially supported by a Guggenheim Foundation Fellowship.

0166-218X/85/$3.30 © 1985, Elsevier Science Publishers B.V. (North-Holland)



82 R.P. Stanley

answer these and other questions and will give an explicit formula for u, .
Our results are direct consequences of Kasteleyn’s formula for A4, (also obtained
by Temperley and Fisher [9] and later by Lieb [6]), which Kasteleyn shows [4, eqn.

(15)] can be written in the form
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Note that ¢ic;=—1.

Write /=[k/2], and let S be any subset of {1,...,/} and S= {1,

cs= <jI::'IS cj> <,IEIS Ej>.

Then (2) shows that

A,= [ fI (2b,~)‘1} Y (- 1Slez+t,
j=1 S

provided nk is even, where S ranges over all subsets of {I,..

Lemma. We have
i
[1 6/ =d,27%
j=1

where dy=1, d\=2, d,=2d,_,+d,_,. Explicitly,

_(1+\/§)k+1_(1_\/§)k+1
- 2V2 '

dy

)

...,1}—=S. Define

3)

LY

4

Proof. When £ is even, equation (4) is the case # =1 of a formula of Kasteleyn [4,
eqn. (14)], and when k is odd, Kasteleyn’s proof is also valid. The recurrence d; =
2d;_,+d,_, follows from (4) since 1+ V2 are roots of the polynomial x>—2x—1.

One can also view this lemma (as well as [4, eqn. (14)}) as a standard resuit on

the Chebyshev polynomial

\ )
Uy (x)=2* —cos-2Z >,
k=271 <x A
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after observing that

!
i2F ] b?=U,(i), where il=—1.
Jj=1

Theorem. (a) The polynomial Q,(x) can be taken to be
Il A =csx), Kk even

S
Qi) = IT1 a-c2x?, k odd,
S

&)

where S ranges over all subsets of {1, ...,1}. Hence A, satisfies a linear recurrence
(1) (which by (d) below will be valid for all nz0) of degree q,=deg Q, =2/*+1/2,
Moreover, all the roots of Q. (x) are real and nonzero, and exactly half the roots
are positive.

(b) The largest reciprocal root of Qi (x) is

we=1I ¢ ©6)

which occurs with multiplicity one and which is not a reciprocal root of P, (x)=

Ok (X)F,(x). The molecular freedom A, =u¥’* satisfies

A=lim A, =e?%"=1.79162--, @)

k— o

where G=Y _ (—1)°Q2s+ 1)~ is Catalan’s constant.
(c) Asymptotically we have

A,~aul*!, as n—>o with nk even, t3)
where

a,=2%d,, ‘ ©
where d, is given by (4) and where § =0 if k is even and 6 =1 if k is odd. Moreover,

lim ¢2*=1/(V2+1)=V2-1.

ko
(d) P, (x) has degree p, = lk+121_ o gy — 2. Hence A, satisfies (1) for all n=0.
() If k>1, then P, (x)=-x"*P,(1/x). If k is odd or divisible by 4, then
O (X)=x%Q,(1/x). If k=2 (mod 4), then Q,(x)=-x%*Q,(1/x). If k is odd, then
Py (x)=P,(—x) and Q,(—x)=Q,(x). (The statements about Q,(x) are equivalent
to property (d) of the roots observed by Hock and McQuistan [3, p. 104] for k< 10.)
(f) For k odd write

Q) =Po—Bix*+ Box* — -+ + Bx*"

r r
=yo— <1>y1x2+ <2> yaxt = +y,x¥,
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where r=2'. Then the numbers y; are positive and log-concave (i.e., y,~2 ZVi—1Yiv1)-
Thus they are also unimodal (i.e., increase monotonically to a maximum, and then
decrease monotonically). (This implies that the B;’s are also positive, log-concave,
and unimodal.)

(8) Define
I[I U=csx), Kk even,
|S| even
T, (x) =
k) I (1—c?), & odd,
|5} even
[T (1—csx), K even,
T (X) _ 18] odd
, 1 0-c2x?), k odd,
|S] odd

so that Qy(x) = T, () T; (x). Then the coefficients of T, (x) and T, (x) lie in the field
QdL’?), where d, is given by the Lemma, and if d}’* ¢ Q, then the coefficients of
any monomial x’ in T, (x) and T,(x) are conjugate in (D(d,i/z). If d,}/zeQ, then
T, (x) and T,(x) have rational coefficients (so Q,(x) is reducible over Q). (J.
Lagarias has shown me a proof that d; is a square if and only if k=0 or k=6).
When k=6 we have

T,()=(1-x)(1—-6x+5x2—x3),
T =1 +x)(1+5x+ 6x2 +x3).

(The fact that +1 are roots of Q4(x) is equivalent to the surprising identity ¢, =c,¢5
Jor k=6.) Moreover, when k is even,

P =di AT ) Th () — T () T (x)).

Proof. (a) From (2) it follows that Fj.(x) = A, (x)/By (x), where B, (x) = [, (1 —c5x)
and where A,(x) is a polynomial. Hence to prove (5) it suffices to show that the
coefficients of C,(x) are integers where
B, (x), k even,
Ce) = [Bk(x)Bk(—x), k odd.
Equivalently, if ¢ is an automorphism of the splitting field of the field L=
Qles|Sc{L,...,1}) (actually, L is Galois extension of @, but this is irrelevant), and
if ¢ is a root of C,{x) of multiplicity m, then ot is also a root of C,(x) of multi-
plicity m. (Probably all roots of C,(x) have multiplicity one; see the conjecture
below.)
Set D=[I\_,(2b;)"". By the Lemma D? is a rational number, so cD= +D.
Applying o to (3) yields (since A, is rational)

A,=0A,=+D Y (- 1)Sl(ees)"*", nk even. (10)
S

Suppose ¢ =cg, so that m is equal to the number of T for which cg= c7. Since ¢;>0
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and ¢;<0, it follows that cs> 0 if and only if || is even, and hence (- DSl =(=iT!
whenever ¢g=cy. Thus the coefficient of " in (3) when all equal expressions c*!
are combined is equal to (— 1)|S‘Dtm.

Now all functions f(n)= Y, a,y;, where the y,’s are distinct nonzero complex
numbers and the @,’s nonzero complex numbers, are different. It follows from (3)
and (10) that when k is even the coefficient of (6¢)” in (3) when all equal expres-
sions c)’}“ are combined is equal to +(— 1)‘§|D(at)m. Hence exactly m values of T
satisfy of=cy, so that ot is a root of Cy(x) of multiplicity m as desired.

When k is odd (3) is valid only for n even. The above argument applied to
A, =A,, shows that ¢ and ac? are roots of C,(Vx) of the same multiplicity, so
that +c5 and g(=*cg) are roots of R,(x) of the same multiplicity, completing the
proof of (5).

Clearly the numbers c; are real and, as already observed, satisfy ¢;>0, ¢;<0.
From this we immediately have that the roots (or reciprocal roots) of Q,(x) are real
and nonzero, and that exactly half of the roots are positive. A different proof that
the denominator of Fj (x), when reduced to lowest terms, has real roots appears in
[s, p. 47].

(b) Clearly cj>léj|>0, so the largest c¢g is uniquely obtained by letting S=
{1,...,1}, yielding (6). This largest reciprocal root u, cannot be a reciprocal root of
Py (x) since the term u; appears in (3) with nonzero coefficient, so that u; must be
a reciprocal root of the least denominator of F,(x). A different proof that the
largest reciprocal root of the least denominator of Fj(x) has multiplicity one ap-
pears in [1, p. 284].

One can compute lim, ., A; directly from (6) by expressing lim,_, log u,f/ ¥ in
terms of a Riemann integral in a standard way, yielding

lo A—% ”/21 2 172
g A= - SO og(cos x+ (1 +cos“x) ") dx.
The above integral is essentially evaluated, e.g., in [4, p. 1216], and is equal to
Catalan’s constant G. Hence A =¢29/7,
Alternatively, Kasteleyn [4] and Temperley and Fisher [9] showed that
lim AXpk=e?0m,

k,n—oo
kn even

But (always assuming kn is even)
Y 2k
lim A2 = lim <1im A ,5/"> =lim p’*
k,n— o koo \ n—oo k—o

and again (6) follows. This computation of 1, is mentioned in [6, eqn. (7)].

(¢) From (3) and (6), the coefficient a;, of u,?“ in A, is given by (9), so (8)
follows.

From (9) and the explicit expression (4) for d, it is clear that lim a?’* = (1+v2)~ L.
(It is also possible to prove this result without explicitly evaluating d,, by express-
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ing lim (2/k) log (b;:--b;) as a Riemann integral.)

(d) It follows from the form (3) of A, and basic facts about rational generating
functions [8, Theorem 4.1] that p, <gq,. Then by [7, Proposition 5.2], we have that
gix— Dy is equal to the largest integer m for which A_; =4 _,=--=4_,,,,=0,
where A _, is defined by substituting —# for n in (2) or (3). Clearly by (2) we have
A _1=0. On the other hand, since ¢;¢;= —1, it follows that A_,= +A,= %1, and
the proof follows.

() Since ¢;¢;= —1, we have cgCy=(— 1)’. Hence if k is odd then the reciprocal
roots +cg of Q,(x) come in groups of four of the form cg, —cg,c5= 5!, —c5=
=Fc§1. This implies Q,(x)=x%*Q,(1/x) and Q,(x) = O (—x). If k is divisible by 4,
then the reciprocal roots come in pairs ¢y and cg=cg', which implies
Qi () =x%Q(1/x). If k=2 (mod 4), then the reciprocal roots come in pairs cg
and cs= —cg ! which implies O, (x)= —x"*Q,(1/x).

Now define

F=Y A_,x".

n>0
A result of Popoviciu (see e.g. [7, Proposition 5.2]) implies that
Fr(x)=-F,(1/x),
as rational functions. From (2) and the equality ¢;¢;= —1 it is clear that
A_,=(-1D)""V4, .,  A_,=0.
Hence

2
- _(x"F(x), [ even,
F)= {szk(—x), ! odd.

Comparing with (11) yields

(= (1/x})F(1/x), [ even,
P9 = {—(l/xZ)Fk(- 1/x), 1 odd.

Comparing this result with what was just proved for Q,(x) (and using g, —p,=2)
yields the desired properties of P (x).

(f) Let Q(x) = ¥5_,J;(3)x’ be any polynomial with negative real roots. I. Newton
showed (see e.g. [2, Theorem 51]) that 5,—2;5,~_ 19i+1- (This result is in fact valid for
any polynomial with real roots.) Now consider for £ odd the polynomial

0u=T] (t-ci=E »(})-n'x.

Since ¢y is real and nonzero, it follows that ¢Z>0 and hence each y;>0. By
Newton’s result, y*=y;_¥;,,. Since each y,>0, this means y,=min{y;_, y;,,} so
that the y;’s are unimodal. This completes the proof.

(g) We omit the proof, which is a rather routine consequence of what we already



On dimer coverings of rectangles of fixed width 87

have shown.
In conclusion we mention the following conjecture.

Conjecture. The polynomial Q,(x) has distinct roots.

This conjecture is equivalent to the statement that 2{¢+ /2 s the least degree of
a linear recurrence relation satisfied by A, (or equivalently, that P,(x) and Q,(x)
are relatively prime). To see this, note that ¢§ occurs in (3) with nonzero coeffi-
cient, so that cg must be a reciprocal root of the denominator R, (x) when Fj(x) is
reduced to lowest terms. When & is even, this accounts for all 2{** D2 roots of
O, (x). When k is odd, this only accounts for half the roots of Q,(x). However, in
this case 4,,=0 when »n is odd. Thus if A, satisfies (1), then it also satisfies (1)
when every term a; A4, , ,_; with i odd is deleted. This means that the unique recur-
rence (1) of minimal degree satisfies &5, =0, so R;(x)=R,(—x). Hence not only
must all the numbers cg be roots of R, (x), but also their negatives —cg, and we
have again accounted for all 214+ Y2 roots of Qi (x).

Let us point out that although we are unable to decide whether the roots of
O (x) are distinct, it is evident from (3) that the least denominator of Fj(x) has
distinct roots (because the coefficient of each cg is a constant, rather than a poly-
nomial in n of degree =1). This answers a question raised in [5, p. 47].

A stronger assertion than the distinctness of the roots of @, (x) is the statement
that Qy(x) is irreducible over the rationals. In this regard, J. Lagarias has pointed
out to me that the reducibility of Q4(x) implies the reducibility of Q,(x) when k+1
is divisible by 7. Moreover, Lagarias has proved that Q,(x) is irreducible whenever
k+11is an odd prime #7. Hence in this case the above conjecture is valid.
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