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For fixed k let A n denote the number of dimer coverings of a k × n rectangle. Various proper- 
ties of the generating function ]~ An xn a r e  obtained, in particular answering questions of 
Klarner and Pollack and of Hock and McQuistan. An explicit expression for the molecular free- 
dom for dimers on a saturated k × n lattice space is also obtained. The results are consequences 
of the explicit formula for An obtained by Kasteleyn and by Temperley and Fisher. 

Let  k be a f ixed posi t ive  integer,  and  let A n =An,  k denote  the n u m b e r  o f  ways to 

ti le a k × n rec tangle  with nk/2 dimers  (or dominoes ) .  (Of  course  A n = 0 if  nk is 

o d d . )  F o r m  the genera t ing  func t ion  

Fk(X)= ~ Anx n. 
n>__O 

I t  is well k n o w n  (e.g. ,  [5]) tha t  Fk(X) represents  a r a t iona l  func t ion ,  say Fk(x)= 
Pk(x)/Qk(X) with Pk, Qk po lynomia l s  with integer coeff ic ients ,  and  Qg(O)= 1. W e  

do  not  assume tha t  Fk(X) is reduced  to lowest  terms.  I f  

Ok(X) = 1 - a l x  . . . . .  aqX q, 

then  it fo l lows tha t  

An+q = alAn+q- 1 + "'" + aqAn (1) 

fo r  all n suff ic ient ly  large (and for  all n___0 i f  and  only  i f  deg P k < d e g  Qk; we will 

show be low tha t  deg Q g - d e g P k = 2 ) .  F o r  the bas ic  facts concern ing  ra t iona l  

genera t ing  funct ions ,  see [8]. The  largest  roo t  o f  the  po lynomia l  xqQk(1/x),  when 

Fk(X) is reduced  to  lowest  te rms,  is deno ted  by  Px; and  the number  2 k = p  2/k is call-  

ed the molecular freedom for  d imers  on  a sa tu ra t ed  k × n lat t ice space.  

Recent ly  Kla rne r  and  Po l l ack  [5] c o m p u t e d  Pk(x) and  Qk(x) for  1 _<k_< 8, while 

H o c k  and  M c Q u i s t a n  [3] c o m p u t e d  Qk(x) for  l_<k_<10. They  also c o m p u t e d  

numer ica l ly  the  values o f / x ,  for  1 _< k_< 8 and  1 < k _  10, respect ively.  Both  papers  

ra ised  var ious  ques t ions  a b o u t  the proper t ies  o f  Pk(x) and  Qk(x). Here  we will 
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answer these and other questions and will give an explicit fo rmula  for/*k- 
Our  results are direct consequences o f  Kasteleyn's  fo rmula  for  A n (also obtained 

by Temperley and Fisher [9] and later by Lieb [6]), which Kasteleyn shows [4, eqn. 
(15)] can be written in the fo rm 

/ , i ,  c ;  + l - + , , 

j = l  An = ], 0, 2bj 

where 

nk even, 

nk odd 
(2) 

j n  ( j7~ ) 1/2, 
c j = c o s k + l  + l + c o s  2 k + l  

j .   ,J2 
jr~ _ 1 + cos 2 e j = c o s  k +  1 k +  1// ' 

b J = (  1 +c° s2  k+lJTr) 1/2 

Note  that  cjCj = -  1. 
Write l = [k/2],  and let S be any subset o f  { 1 . . . . .  l} and S = { 1 . . . . .  l} - S. Define 

Then  (2) shows that  

[' lv An= H (2b/) -1 (--1)lglC~ +1, (3) 
j= l  

provided nk is even, where S ranges over all subsets o f  {1 . . . . .  l}. 

Lemma.  We have 

I 

1-I b f = d k 2  -k, 
j = l  

where do = 1, dl = 2, d k = 2dk_ 1 + dk-  2. Explicitly, 

(1 + ~/~)k+ 1 _ (1 -- ~/~-)k + 1 
dk = 2~/2 (4) 

Proof .  When k is even, equat ion (4) is the case u = 1 o f  a fo rmula  o f  Kasteleyn [4, 
eqn. (14)], and when k is odd,  Kasteleyn's  p r o o f  is also valid. The recurrence dk = 
2dk_ 1 + dk-  2 follows f rom (4) since 1 _+ x/2 are roots  o f  the polynomial  x 2 - 2 x -  1. 

One can also view this lemma (as well as [4, eqn. (14)]) as a s tandard result on 
the Chebyshev polynomial  

,=) Uk (X) = 2 k X--COS , 
j= l  k + l  
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after observing that 

l 
ik2k I-[ b f = Uk(i), where i 2 = -  1. 

j=l 

Theorem. (a) The polynomial Qk(x) can be taken to be 

f ~  (1 - CsX ), k even 

Qk(x) = (1 - c2x2), k odd, (5) 

where S ranges over all subsets o f  { 1 . . . . .  1}. Hence A n satisfies a linear recurrence 
(1) (which by (d) below will be valid for  all n > O) o f  degree qk = deg Qk = 2t(~+ ])/21. 
Moreover, all the roots o f  Qk(x) are real and nonzero, and exactly half  the roots 
are positive. 

(b) The largest reciprocal root o f  Qk(x) is 

I 
I~k = H Cj, (6) 

j=l 

which occurs with multiplicity one and which is not a reciprocal root o f  Pk(x)= 

Q,  (x)F k (x). The molecular freedom Xk = ~ / k  satisfies 

X = lim 2k = e 2c/= = 1.79162... ,  (7) 
k~oo 

where G = ~s_~o ( - 1)s( 2 s +  1)- 1 is Catalan's constant. 
(c) Asymptotically we have 

A , - a k l ~  +l, as n--,oo with nk even, (8) 

where 

a k = 26d k, (9) 

where dk is given by (4) and where O = 0 i f  k is even and ~ = ½ i f  k is odd. Moreover, 

lim a2/k= 1/(V~+ 1) = ~/2-- 1. 
k~oo 

(d) Pk (x) has degree Pk = 2[¢k + 1)/2] _ 2 = qk -- 2. Hence A n satisfies (1) f o r  all n _ 0. 
(e) I f  k >  1, then P k ( x ) = - x P * P k ( I / x ) .  I f  k is odd or divisible by 4, then 

Qk(x)=xqkQk(1/x ). I f  k=-2 (mod 4), then Qk(X)=-xqkQk(1/x) .  I f  k is odd, then 
Pk(X) =Pk(--X) and Q k ( - x ) =  Qk(x). (The statements about  Qk(x) are equivalent 
to  proper ty  (d) of  the roots  observed by Hock  and McQuis tan  [3, p. 104] for  k <  10.) 

(f) For k odd write 

Qe(x) = 1~0 -/~1 x2 + ]~2 X4 . . . .  + t~r x2r 

r 2 r 4 
= '0 - -  ( 1 ) ' I X  + ( 2 )  '2X . . . .  + , r  x 2 r  
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where r= 21. Then the numbers )Ji are positive and log-concave (i.e., y2>= ~)i- 1Yi+ 1)"  

Thus they are also unimodal (i.e., increase monotonically to a maximum, and then 
decrease monotonically). (This implies that the fli's are also positive, log-concave, 
and unimodal. ) 

(g) Define 

( ~  (1-CsX), k even, 

Tk(x ) = bs e° (1 - C2X2), k odd, 
k...[SI even 

( S ~ d  ( 1 - c s x ) ' k e v e n ' l  
= 

d(1--C2X2), k odd, 
k_lSl odd 

SO that Qk(x) = Tk(x)Tk(x). Then the coefficients o f  Tk(X) and 7"k(X) lie in the field 
©(dl/2), where d k is given by the Lemma, and i f  dl/2 ~ ©, then the coefficients o f  
any monomial x j in Tk(x ) and Tk(x ) are conjugate in ©(dl/2). I f  d2/Ee©, then 
Tk(x) and Tk(X) have rational coefficients (so Qk(X) is reducible over Q). (J. 
Lagarias has shown me a proof  that dk is a square if and only if k =  0 or k =  6). 
When k = 6 we have 

T6(X ) = (1 -x)(1  - 6x+ 5X 2-x3) ,  

7"6(x) = (1 +x)(1 +5x+6x2+x3) .  

(The fact that + 1 are roots o f  Q6(x ) is equivalent to the surprising identity Cl = c2c3 
for  k = 6 . )  Moreover, when k is even, 

Pk(x)=dk-1/2(Tic(x)T~(x) - T~(X)Tk(X)). 

Proof .  (a) From (2) it follows that Fk(X)=Ak(X)/Bk(X), where Bk(X)= [Is (1 --csx ) 
and where Ak(X ) is a polynomial. Hence to prove (5) it suffices to show that the 
coefficients of Ck(x) are integers where 

~Bk(x), k even, 
Ck(x)= (Bk(X)Bk(-  x), k odd. 

Equivalently, if cr is an automorphism of  the splitting field of  the field L = 
©(cslS c_ { 1 . . . . .  1}) (actually, L is Galois extension of  ©, but this is irrelevant), and 
if t is a root of Cg(x) of  multiplicity m, then a t  is also a root of  Ck(x) of  multi- 
plicity m. (Probably all roots of Ck(x) have multiplicity one; see the conjecture 
below.) 

Set D =  1-I~=1 (2bj) -1- By the Lemma D 2 is a rational number, so aD= +_D. 
Applying a to (3) yields (since An is rational) 

A n = a A n =  +_D ~ ( -  1)lgl(acs) n+ l, nk even. (10) 
s 

Suppose t=cs ,  so that m is equal to the number of  T for which Cs=C r. Since cj>O 
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and ej < 0, it follows that c s > 0 if and only if [S[ is even, and hence ( - 1 )  Isl = ( - 1 )  I~rl 
whenever Cs = Cv. Thus the coefficient of  t n in (3) when all equal expressions ¢~(+1 

are combined is equal to (-1)lglDtm. 
a n Now all functions f ( n )=  Zr rYr, where the Yr'S are distinct nonzero complex 

numbers and the ar'S nonzero complex numbers, are different. It follows from (3) 
and (10) that when k is even the coefficient of  (at)  n in (3) when all equal expres- 
sions c~, + l are combined is equal to + ( -  1)18lD(~t)m. Hence exactly m values of  T 
satisfy ~rt= CT, SO that at is a root of  C,(x) of multiplicity m as desired. 

When k is odd (3) is valid only for n even. The above argument applied to 
A~ =A2n shows that c 2 and acs z are roots of Ck(~/~) of  the same multiplicity, so 
that +c s and g(+Cs) are roots of  R~(x) of the same multiplicity, completing the 
proof  of  (5). 

Clearly the numbers cj are real and, as already observed, satisfy cj>O, ej<0.  
From this we immediately have that the roots (or reciprocal roots) of Qk(x) are real 
and nonzero, and that exactly half of the roots are positive. A different proof  that 
the denominator of Fk(x), when reduced to lowest terms, has real roots appears in 
[5, p. 47]. 

(b) Clearly c j>[e j ]>0 ,  so the largest c s is uniquely obtained by letting S =  
{ 1 . . . . .  l}, yielding (6). This largest reciprocal root Pk cannot be a reciprocal root of  
Pk(x) since the term pff appears in (3) with nonzero coefficient, so that Pk must be 
a reciprocal root  of the least denominator of  Fk(x). A different proof  that the 
largest reciprocal root of the least denominator of  F~(x) has multiplicity one ap- 
pears in [1, p. 284]. 

One can compute limk~= k k directly from (6) by expressing limk~= Iogp 2/k in 
terms of  a Riemann integral in a standard way, yielding 

log2 21(/2 = -  log(cosx+(l  +cos2x)l/Z)dx. 
7~ 

The above integral is essentially evaluated, e.g., in [4, p. 1216], and is equal to 
Catalan's constant G. Hence 2 = e 2c/n. 

Alternatively, Kasteleyn [4] and Temperley and Fisher [9] showed that 

A 2/nk 2G/~ lim An, k =e  . 
k,n~oo 
kn e v e n  

But (always assuming kn is even) 

/ \ 21k 
lim A 2/nk lim (li  Al/n~ = lim/12/k "~n,k = \n  m / 

and again (6) follows. This computation of  "~k is mentioned in [6, eqn. (7)]. 
(c) From (3) and (6), the coefficient ak o f / ~ + 1  in A n is given by (9), so (8) 

follows. 
From (9) and the explicit expression (4) for dg it is clear that l ima 2/k = (1 + X/2)  - 1. 

(It is also possible to prove this result without explicitly evaluating d k, by express- 
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ing lim (2 /k ) log  (bl '"bl) as a Riemann integral.) 
(d) It follows f rom the form (3) of  A n and basic facts about rational generating 

functions [8, Theorem 4.1] that pg < qk. Then by [7, Proposit ion 5.2], we have that 
qk--Pk is equal to the largest integer m for which A_ l = A _  2 . . . . .  A_m+ 1 =0,  
where A _ n is defined by substituting - n for n in (2) or (3). Clearly by (2) we have 
A_ l =0 .  On the other hand, since cjej= - 1, it follows that A _ 2 =  + A 0 =  + 1, and 
the proof  follows. 

(e) Since cjej = - 1, we have Cse s = ( -  1) l. Hence if k is odd then the reciprocal 
roots +-Cs of Qk(x) come in groups of  four of  the form Cs, -Cs, Cs= +-Cs 1, - c s =  
:VCs 1. This implies Qk(x)=xqkQk(1/x) and Qk(x)= Qx(-X) .  I f  k is divisible by 4, 
then the reciprocal roots come in pairs Cs and cs=cs  1, which implies 
Qk(x)=xqkQk(1/x). I f  k = 2  (mod4) ,  then the reciprocal roots come in pairs Cs 
and cs=  - c s  1, which implies Qk(x) = -xq~Ok(1/x).  

Now define 

Fk(X) = ~ A_nx".  
n > 0  

A result of  Popoviciu (see e.g. [7, Proposit ion 5.2]) implies that 

Fk (x ) = - Fk (1/x), 

as rational functions. From (2) and the equality cj~j = - 1 it is clear that 

A_n=(-1)(n-1)IAn_2, A _ I = 0 .  

Hence 

(X2Fk(X), 1 even, 
Fk(X) = (xZF, ( -x ) ,  I odd. 

Compar ing with (11) yields 

( -  (1/x2)Fk(1/x), I even, 
Fk(X)= ~ . - (1 /xZ)Fk( -1 /x ) ,  1 odd. 

Compar ing this result with what was just proved for Qk(x) (and using qk--Pk = 2) 
yields the desired properties of  Pk(x). 

(f) Let Q(x)= s s i ~i=0 (~i(i)X be any polynomial with negative real roots. I. Newton 
showed (see e.g. [2, Theorem 51]) that 0i2_>6i _ l&i÷ 1- (This result is in fact valid for 
any polynomial  with real roots.) Now consider for k odd the polynomial 

Since Cs is real and nonzero, it follows that Cs2>O and hence each ys>O. By 
Newton 's  result, yi z ___ 7i- i Yi + 1. Since each 7i > O, this means Yi-  min { Yi- 1, Yi+ 1 } so 
that the ),;'s are unimodal.  This completes the proof.  

(g) We omit the proof,  which is a rather routine consequence of  what we already 
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have shown. 

In conclusion we mention the following conjecture. 

Conjecture. The polynomial Qk(X) has distinct roots. 

This conjecture is equivalent to the statement that 2 {(x+ ~)/21 is the least degree of  

a linear recurrence relation satisfied by A n (or equivalently, that Pk(X) and Qk(X) 
are relatively prime). To see this, note that c~ occurs in (3) with nonzero coeffi- 

cient, so that c s must be a reciprocal root of the denominator Rk(x) when Fk(X) is 
reduced to lowest terms. When k is even, this accounts for all 2 {(*+1)/21 roots of  

Qk(X). When k is odd, this only accounts for half the roots of  Qk(X). However, in 
this case A n = 0 when n is odd. Thus if A n satisfies (1), then it also satisfies (1) 
when every t e r m  ~iAn+q_i with i odd is deleted. This means that the unique recur- 
rence (1) of minimal degree satisfies c¢2i+ 1 = 0, SO Rk(X)= Rg( -x ) .  Hence not only 
must all the numbers c s be roots of  Rg(x), but also their negatives - c  s, and we 
have again accounted for all 2 {(*+ 1)/21 roots of  Qk(X). 

Let us point out that although we are unable to decide whether the roots of  

Qk(X) are distinct, it is evident from (3) that the least denominator of Fk(X) has 
distinct roots (because the coefficient of each c~ is a constant, rather than a poly- 
nomial in n of degree _> 1). This answers a question raised in [5, p. 47]. 

A stronger assertion than the distinctness of  the roots of Qk(X) is the statement 
that Qx(x) is irreducible over the rationals. In this regard, J. Lagarias has pointed 
out to me that the reducibility of Q6(x) implies the reducibility of  Qx(x) when k +  1 
is divisible by 7. Moreover, Lagarias has proved that Qk(X) is irreducible whenever 

k + 1 is an odd prime :# 7. Hence in this case the above conjecture is valid. 
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