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Abstract. An elementary, self-contained proof of a result of Pouzet and Rosenberg and of Harper is 
given. This result states that the quotient of certain posets (called unitary Peck) by a finite group of 
automorphisms retains some nice properties, including the Sperner property. Examples of unitary 
Peck posets are given, and the techniques developed here are used to prove a result of Lovhz on the 
edge-reconstruction conjecture. 
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Let P be a finite graded poset of rank n, i.e., P is a disjoint union of subsets PO, 
Pl, *a*, P,,, called ranks, such that if x E Pi and y covers x, then y E Pi+ 1. Let 
pi = /PiI, where P is said to be rank-symmetric if Pi =pn -i for all i, and rank-unimodal if 
PO < p1 < **’ <pi 2 Pj+l >pj+s 2 +.- > pn for some j. P satisfies the Sperner property 
if no antichain (= set of pairwise incomparable elements) of P is bigger than the largest 
rank. More generally, P is k-Sperner if no union of k antichains is larger than the union 
of the k largest ranks, and is strongZy Sperner if it is kSperner for 1 < k < n t 1. P is a 
Peck poset if it is rank-symmetric, rank-unimodal, and strongly Sperner. 

Let Vi be the complex vector space with basis Pi. It is known [ 131, Lemma 1.1, that 
a finite graded poset P of rank n is Peck if and only if there exist linear transformations 
$9: vi-+ vi+1, 0 < i < n , satisfying: 

(A) IfxEPi then 

GiCx)= ,E$+, ‘Yey 

y >‘x 

for some cY E @. 

* Supported in part by a National Science Foundation research grant. 
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(B) For all 0 < i < fn, the linear transformation 

@?I--i+1 ‘*‘&+lQji: Vi+Vn-i 

is invertible. 
Let us call a Peck poset P unitary if the above linear transformations & can be taken 

to be 

Qi6)= yeF+, YP x EPi- (1) 

J&L 

Let G be a group of automorphisms of a poset P, and let P/G be the quotient poset. 
The elements of P/G are the orbits of G, and 0 < 0’ in P/G if there exist x E @, 
x’ E 0’ such thatx <x’ in P. 

The purpose of this paper is to give a simple, straightforward proof that if P is unitary 
Peck then P/G is Peck. A somewhat weaker result was first obtained by M. Pouzet [9], 
last sentence on p. 118, at least when P is a Boolean algebra. Namely, if Vi/G denotes the 
vector space with basis Pi/G (the orbits of G on Pi), then for 0 < i <j < n there are 
linear transformations $ii : b/G + Vj/G such that: (a) if 0 E Pi/G then 

tii(O> = n,s, c(7 ICC?” forsome co#EC, and (b) 

c?EPjfG 

rank $ij=min{ IPi/GI, IPj/GI}. 

This result implies that P/G has the Sperner property, but it is not strong enough to imply 
the strong Sperner property. Pouzet and Rosenberg [lo] have gone on to generalize the 
argument of [9] and to obtain our main result (Theorem 1) as a special case. Indepen- 
dently, Harper [33 has generalized Theorem 1 using category theory. Both these proofs 
involve considerable background not really necessary if only Theorem 1 is desired. Thus, 
the proof given here, while basically the same as those in [3] and [lo], should be more 
accessible. 

THEOREM 1. If P is a unitary Peck poset then P/G is Peck. 

NOTE: (a) If P is unitary Peck then P/G need not be unitary Peck. For instance, if P is 
the Boolean algebra B, (which is unitary Peck) and G the cyclic group of order 5 (acting 
in the obvious way), then P/G is given by 

I 

(9 
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which is not unitary Peck. 
(b) IfP is Peck then P/G need not be Peck. For instance, let P be the Peck poset 

3 4 
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Let G be generated by the transposition (1,2). Then P/G isn’t Peck (or even rankaym- 
metric), although it does have the strong Sperner property. For an example where P/G 
does not even have the Sperner property, take P to be the Peck poset 

5 6 7 R 

P= 

Let G be generated by the permutation (1,2) (7,8). Then 

P/G = 

WA 

which lacks the Sperner property. 

We now turn to the proof of Theorem 1. The action of w E G on Pi extends to a 
linear transformation W : Vi --f Vi. Let 

Vy = (fE Vi Iwf=f for all wEG}, 

the space of Ginvariant elements of Vi. For any subset S of Pi we identify S with the 
element XX ES x of Vi. Thefollowinglemmais standard, but for the sake of completeness 
we include a proof. 

LEMMA 1. A basis for Vi” consists of the orbits 8’ E Pi/G. 
R-005 Clearly the 8 ‘s are linearly independent elements 

f = ExEPj f(x)x E VC , then 
of vi”. Moreover, if 

where OX is the orbit containing x. Hence, Pi/G spans Vi” . Cl 
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LEMMA 2. Let & be given by (1). If f E b and w E G, then $i(Wfl = w&(f). 
Proof. By linearity, we may assume f = x E Pi. We have 

= w. c w‘,y,x w-‘y (since wisanautomorphismofP) 

COROLLARY. Suppose P is unitav Peck lff E Vc, then ~40 E Vz 1. 
Proofi For all w E G, we have w##) = Si(@) = $idf), so ‘$i(fl E I’$r. cl 

Proof of Theorem I. Let @i be given by (1). Pick 0 ff E Vy , 0 < i < n/2. Set 

By the above corollary, g E Vf- i. On the other hand, since P is unitary Peck we have 
g # 0. Hence, the map r& _ i- r ... Qi : Vi” + V,“- i is injective. 

There are several ways to see that @,- i- r ... $i: Vc + Vf- i is surjective. For in- 
stance, pick g E Vz- is Since P is unitary Peck, some fE Vi satisfies g=@,-i- r **a $i(./‘). 
Let 

ThenTE VF andg=$,-i-1 ...#i@), as desired. 
By Lemma 1, we may identify Vc with the vector space Vi/G with basis Pi/G. We have 

shown that the @i’s, when restricted to VP, satisfy condition (B). Since condition (A) is 
obvious, the proof is complete. cl 

THEOREM 2. The following posets are unitary Peck: 
(a) a product of unitary Peck posets, 
(b) the lattice L (m, n) of Ferrers diagrams fitting in an m xn rectangle (see [ 131 for a 

more detailed definition), 
(c) the lattice M(n) of order ideals of L (2, n) (agam see [ 13]), 
(d) The lattice L,(q) of subspaces of an n-dimensional vector space over the finite 

field GF (q) . 
proof. (a) This follows from the argument used to prove [2], Theorem 2, or [12], 

Theorem 3.2, but applied to unitary Peck posets only. 
(b) It follows from [ 131, Section 4, that L(m, n) is Peck, and from [ 131, bottom of 

p. 175, that L(m, n) is, in fact, unitary Peck. An elementary proof appears in [ 111. 
(c) It follows from [13], Section 5, that M(n) is Peck, and the unitary property is a 

consequence of known results from algebraic geometry analogous to the L(m, n) case. 
(See, e.g., [4], Corollary 3.2, p. 175.) Again, an elementary proof appears in [ 1 I]. 
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(d) LetP=L,(q).IfOGi<+, thenlet $q: Vi-+Vnmi bedefinedby 

h(x) = ,F& Y9 XEPi * 

Y>X 
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Kantor [5] shows that $i is invertible. Now if & : Vi + I’,+1 is given by (1) for O<i<n, 
then for 0 < i < in it is easily seen that f&i-r -1. @ii+ r f$i is a nonzero scalar multiple 
of $j and therefore invertible. q 

Note, in particular, that since chains are unitary Peck (as can be seen by inspection or 
because L(1, n) is a chain of length n), it follows from (a) that the Boolean algebra Bn is 
unitary Peck. We also remark that L(m, n) is easily seen to be of the form B,,,,,/G (e.g., 
[14], Section 9) so we obtain ‘what seems to be the simplest proof to date that L(m, n) 
is Peck. Our methods here do not yield the stronger result that L (m, n) is unitary Peck. 

Let us finally remark that the linear algebraic machinery we have set up provides a 
convenient means to prove a theorem of Lovasz [6], [7], Section 15.17a, on the edge- 
reconstruction conjecture. Let r be a graph (with no loops or multiple edges) on the 
vertex set {1,2, . . . . n}. If F has q edges, then let Fl , f;, , . . . , fq be the unlabeled graphs 
obtained by deleting a single edge from P . 

THEOREM 3. If q > f(i), then I’ can be recovered up to isomorphism from F, , F2, . . . , 
Fq . 

Proof: Let Vi be the vector space whose basis consists of the set Pi of all graphs with 
i edges on the vertex set { 1,2, . . . , n 1. Let $i : Vi + Vi _ r be the linear transformation 
defined by tii(I’) = I?r + .-.t ri, where rr, . . . . ri are the (labeled) graphs obtained from 
r by deleting a single edge. Since Boolean algebras are unitary Peck, $i is injective for 
i > f(i). (Think of $i as adding edges to the complement of I’.) 

The symmetric group S,, acts on Ps by permuting vertices, and hence acts on Vq. 
A basis for V3 consists of the distinct sums l? = ,ZwEs, wr, where I’ E Ps, We may 
identify I’ with the unlabeled graph isomorphic to r. By the arguments used to prove 
Theorem 1, when we restrict $, to V, 
p +vzl. 

‘, for q > i(t), we obtain an injection Ij/* : 
In particular, for nonisomorphic unlabeled graphs r”, r”’ E PQ we have 

rl + . ..t cq = rl/q(F)f~4(F’)=F; -I- . . . t r”b . Hence the unlabeled graphs r”, , . . . , Fq 
determine r as desired. q 

We don’t know whether the above argument can be extended in some way for q < i(i). 
In particular, we are unable to obtain Miiller’s extension [8], [ 11, Section 2, of Lov&sz’ 
result. 
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