An Introduction to
Combinatorial Commutative Algebra

Richard P. Stanley

Department of Mathematics
Massachusetts Institute of Technology
Cambridge, MA 02139

Abstract

In these lectures we will provide a brief introduction to the interactions between commutative algebra and combinatorics, and will discuss some applications to combinatorics. Our basic object of study will be graded algebras and graded modules over them. Let \mathbb{N}, \mathbb{I}, and \mathbb{Z} denote the set of nonnegative integers, positive integers, and integers, respectively.

1. DEFINITION. Let k be a field. By an \mathbb{N}-graded k-algebra (or graded algebra) we will mean in this paper a commutative, associative ring R with identity, containing a copy of the field k (so that R is a vector space over k, i.e., a k-algebra), together with a collection of subspaces $\{R_i\}_{i \in \mathbb{N}}$ satisfying:

(i) R is the vector space direct sum of the subspaces R_i; written

$$R = \bigoplus_{i \in \mathbb{N}} R_i,$$

(ii) $R_0 = k$,

(iii) $R_i R_j \subseteq R_{i+j}$,

(iv) R is finitely-generated as a k-algebra, i.e., there exist finitely many elements $x_1, \ldots, x_r \in R$ such that every element in R is a polynomial (not necessarily unique) in x_1, \ldots, x_r with coefficients in k. If we can choose each $x_i \in R_1$ (i.e., R is generated by R_1), then R is called standard.

An element $x \in R_i$ is said to be homogeneous of degree i, denoted $\deg x = i$. In particular, $\deg 0$ is arbitrary. For any set $S \subseteq R$ we let
H(S) denote the set of homogeneous elements of S. In particular, \(H(R) = \bigcup_{i \in \mathbb{N}} R_i\) (set union). Denote by \(R_+\) the ideal \(\bigcap_{i \geq 1} R_i\) of \(R\). It is easily seen that \(R\) is generated by finitely many homogeneous elements.

2. DEFINITION. Let \(R\) be a graded algebra. A \(\mathbb{Z}\)-graded \(R\)-module \(M\) (or graded \(R\)-module) is a unitary \(R\)-module ("unitary" means \(1 \cdot u = u\) for all \(u \in M\)), together with a collection of subspaces \(\{M_i\}_{i \in \mathbb{Z}}\), satisfying:

(i) \(M\) is the vector space direct sum of the subspaces \(M_i\), denoted

\[
M = \bigcup_{i \in \mathbb{Z}} M_i,
\]

(ii) \(R_i M_j \subseteq M_{i+j}\),

(iii) \(M\) is finitely-generated as an \(R\)-module, i.e., there exist finitely many elements \(u_1, \ldots, u_s \in M\) such that \(M = u_1 R + \ldots + u_s R\).

Note that condition (iii) implies that \(M_i = 0\) for all but finitely many \(i < 0\). The notation \(\deg x\), \(H(S)\), etc., is carried over in an obvious way to \(M\). Again it is clear that \(M\) is generated by finitely many homogeneous elements.

Let us mention that one can define more generally \(\mathbb{N}^m\)-graded algebras and \(\mathbb{Z}^m\)-graded modules \((m > 1)\) in an obvious way, but to keep the exposition simple we confine ourselves to the \(m = 1\) case. However, many important applications to combinatorics require \(m > 1\).

Recall that if \(k\) is any noetherian ring (i.e., every ascending chain of ideals becomes stable), then the Hilbert basis theorem asserts that the polynomial ring \(k[x]\) is also noetherian. From this it is easy to deduce our first basic result.

3. THEOREM. If the submodule \(N\) of \(M\) (or ideal \(I\) of \(R\)) is generated as an \(R\)-module by a subset \(S \subseteq N\), then some finite subset of \(S\) generates \(N\).

APPLICATION: Let \(\phi\) be an \(r \times s\) matrix with integer entries (or \(\mathbb{Z}\)-matrix). Let \(\beta \in \mathbb{Z}^r\), and define

\[
\Lambda = \{\alpha \in \mathbb{N}^s : \phi \alpha = 0\}
\]

\[
\Lambda_\beta = \{\alpha \in \mathbb{N}^s : \phi \alpha = \beta\}
\]

One of the main aims of these lectures is to understand the structure of \(\Lambda\) and \(\Lambda_\beta\). Note that \(\Lambda\) is a submonoid of \(\mathbb{N}^s\), and that \(\Lambda_\beta\) is a \("\Lambda\)-module" in the sense that \(\Lambda + \Lambda_\beta \subseteq \Lambda_\beta\).
4. THEOREM.

(a) Λ is a finitely-generated monoid, i.e., there exist $\alpha_1, \ldots, \alpha_i \in \Lambda$ such that $\Lambda = \alpha_1 \mathbb{N} + \ldots + \alpha_i \mathbb{N}$.

(b) Λ_β is a finitely-generated Λ-module, i.e., there exist $\beta_1, \ldots, \beta_j \in \Lambda_\beta$ such that $\Lambda_\beta = \bigcup (\beta_i + \Lambda)$.

SKETCH OF PROOF.

(a) Let $R = k\Lambda$ be the monoid algebra of Λ over the field k. We may think of R as the subalgebra of $A = k[x_1, \ldots, x_r]$ generated (or spanned as a vector space) by all monomials x^{γ}, $\gamma \in \Lambda$ (where $x^{\gamma} = x_1^{\gamma_1} \cdots x_r^{\gamma_r}$, $\gamma = (\gamma_1, \ldots, \gamma_s)$). By Theorem 3 some finite subset S of the x^{γ} generates I. It is now routine to verify that S generates R as a k-algebra, so that $\{\gamma : x^{\gamma} \in S\}$ generates Λ.

(b) As in (a), let $M_\beta = k\Lambda_\beta$ be the k-span of Λ_β, regarded as the k-subspace of A with basis x^{γ}, $\gamma \in \Lambda_\beta$. Thus M_β is an R-module. Let I_β be the ideal of I generated by M_β. Then I_β is generated by some finite subset $T \subseteq \{x^{\gamma} : \gamma \in \Lambda_\beta\}$, and one shows easily that T generates M_β as an R-module. Then $\{\gamma : x^{\gamma} \in T\}$ generates Λ_β as a Λ-module.\square

5. EXERCISE. Find a submonoid of \mathbb{N}^2 which is not finitely-generated. Show that every submonoid of \mathbb{N} is finitely-generated.

The fundamental combinatorial object associated with graded algebras and modules is their Hilbert series. Define

$$H(R, n) = \dim_k R_n, \quad n \in \mathbb{N},$$
$$H(M, n) = \dim_k M_n, \quad n \in \mathbb{Z}.$$

It follows from the finiteness properties of R and M that $H(R, n) < \infty$ and $H(M, n) < \infty$. The functions $H(R, n)$ and $H(M, n)$ are called the Hilbert functions of R and M, respectively. The generating functions

$$F(R, \lambda) = \sum_{n \in \mathbb{N}} H(R, n) \lambda^n$$
$$F(M, \lambda) = \sum_{n \in \mathbb{Z}} H(M, n) \lambda^n$$

are called the Hilbert series of R and M.

6. EXERCISE. (a) If $R = k[x_1, \ldots, x_r]$, graded by defining $\deg x_i = a_i \in \mathbb{P}$, then
\[F(R, \lambda) = \prod_{i=1}^{r} (1 - \lambda^{a_i})^{-1} \]

(b) Suppose \(R \) is any graded algebra and \(M \) a free graded \(R \)-module with a homogeneous basis \(y_1, \ldots, y_s \) where \(\deg y_i = b_i \in \mathbb{Z} \). Then

\[F(M, \lambda) = (\lambda^{b_1} + \ldots + \lambda^{b_s}) F(R, \lambda). \]

A submodule \(N \) of \(M \) (or ideal \(I \) of \(R \)) generated by homogeneous elements is called a homogeneous submodule (or homogeneous ideal) and has a natural grading \(N = \bigcup_{i \in \mathbb{Z}} N_i \) given by \(N_i = N \cap M_i \). Similarly the quotient module \(M/N \) has a natural grading defined by \((M/N)_i = M_i/N_i \), where \(M_i/N_i \) is a quotient of vector spaces. It is clear that

\[F(M, \lambda) = F(N, \lambda) + F(M/N, \lambda). \]

Now let \(\theta \in \text{H}(R) \) and define \((0: \theta) = (0: \theta)_M = \{ u \in M : \theta u = 0 \} \). This is a homogeneous submodule of \(M \). The following lemma is straightforward to verify.

7. LEMMA. If \(\theta \in R_i, i \neq 0 \), then

\[F(M, \lambda) = \frac{F(M/\theta M, \lambda) - \lambda^i F((0: \theta), \lambda)}{1 - \lambda^i}. \]

Using Lemma 7 and induction on the number of generators of \(R \), the following basic result is obtained.

8. THEOREM. Let \(R \) be generated by homogeneous elements of degrees \(a_1, \ldots, a_r > 0 \). Then

\[F(M, \lambda) = P(M, \lambda) \prod_{i=1}^{r} (1 - \lambda^{a_i})^{-1}, \tag{2} \]

where \(P(M, \lambda) \in \mathbb{Z} [\lambda, \lambda^{-1}] \) (i.e., \(P(M, \lambda) \) is a polynomial in \(\lambda \) and \(\lambda^{-1} \) with integer coefficients). If \(M \) has no elements of negative degree (e.g., if \(M = R \)), then \(P(M, \lambda) \in \mathbb{Z} [\lambda] \).

Standard results concerning coefficients of rational generating functions [15] yield:

9. COROLLARY. Let \(R \) be as in Theorem 8. Let \(m = \text{LCM} \{a_1, \ldots, a_r\} \). Then there exist polynomials \(P_0(n), \ldots, P_{m-1}(n) \) such that \(H(M, n) = P_i(n) \) whenever \(n \equiv i \) (mod \(m \)) and \(n \) is sufficiently large (denoted \(n >> 0 \)). In particular, if \(R \) is standard, \(H(M, n) \) is a polynomial for \(n >> 0 \), the Hilbert polynomial of \(M \). If \(M_i = 0 \) for \(i < 0 \), then \(H(M, n) \) is a polynomial for all \(n \geq 0 \) if and only if \(\deg P(M, \lambda) < a_1 + \ldots + a_r \), in the notation of (2).

10. APPLICATION. Let \(\Lambda \subset \mathbb{N}^{n^2} \) be the set of all \(n \times n \) \(\mathbb{N} \)-matrices
such that all row and column sums are equal. A matrix \(\alpha = (\alpha_{ij}) \in \Lambda \)
may be regarded as an \(N \)-solution to the system of equations
\[\sum_i \alpha_{ij} = \sum_i \alpha_{ji} = \alpha_{11} + \alpha_{12} + \ldots + \alpha_{1n}, \quad 1 \leq j \leq n, \]
so \(\Lambda \) is a monoid of the type arising in Theorem 4. Define a grading on \(R = k\Lambda \) by setting \(\deg x^\alpha = \alpha_{11} + \alpha_{12} + \ldots + \alpha_{1n} \),
the line sum of the matrix \(\alpha \in \Lambda \). Then a basis for \(R_i \) consists of all monomials \(x^\alpha \) of degree \(i \), so \(H(R, i) \) is
the number of \(n \times n \) \(N \)-matrices with every row and column sum equal to \(i \).
This number is usually denoted by \(H_n(i) \). According to the
Birkhoff-von Neumann theorem (e.g., [11, Th. 5.2]), every \(\alpha \in \Lambda \) is a
sum of permutation matrices. This is equivalent to saying that \(R \)
is standard. By Corollary 9, it follows that \(H_n(i) \) is a polynomial in \(i \) for
\(i \geq 0 \). It can be shown (as was first done in [14]) that \(H_n(i) \) is a poly-
nomial for all \(i \geq 0 \), of degree \((n-1)^2 \). Some further properties of
\(H_n(i) \) will be discussed later.

11. EXERCISE. Let \(\Omega \subset \mathbb{N}^{n^2} \) be the set of all \(n \times n \) symmetric \(\mathbb{N} \)
-matrices with all row sums equal. Let \(S \) be the subalgebra of \(R = k\Omega \)
generated by \(R_1 + R_2 \). Show that \(R \) is a finitely-generated \(S \)-module
(though \(R \neq S \) when \(n \geq 7 \)). Deduce that if \(S_n(i) \) is the number of \(\alpha \in \Omega \)
with line sum \(i \), then there exist polynomials \(P_n(i) \) and \(Q_n(i) \) such that
\[S_n(i) = P_n(i) + (-1)^i Q_n(i) \]
for \(i \geq 0 \). (Again, it can be shown that equality holds for all \(i \geq 0 \).

We now come to a lemma of crucial importance for further pro-
gress. The analogue for non-graded rings appears in [7, Thm. 82],
while a proof for the graded case stated below may be found in [1,
Lemma 2.2]. This lemma will allow us to bypass techniques from
homological algebra normally used to prove many of the subse-
quent results.

12. LEMMA. Let \(R \) be a graded algebra and \(M \neq 0 \) a graded \(R \)-module.
Suppose every \(x \in \mathbb{H}(R_+) \) is a zero-divisor on \(M \) (i.e., for
some \(0 \neq u \in M \), \(xu = 0 \)). Then for some \(0 \neq u \in H(M) \), \(uR_+ = 0 \). □

Now let \(M \) be a graded \(R \)-module. By the lemma, exactly one of
the following two possibilities holds: (a) some \(\theta \in \mathbb{H}(R_+) \) is a non-zero
divisor (NZD) on \(M \), or (b) some \(u \in \mathbb{H}(M) \) satisfies \(R_+ u = 0 \). In either
case we may consider the quotient module \(M/\theta M \) or \(M/\theta \).
In case (a), \(M \) will be a free module (not necessarily of finite rank) over the
ring \(k[\theta] \). A set \(B \subset \mathbb{H}(M) \) will be a basis for \(M \) as a \(k[\theta] \)-module if and
only if the image of \(B \) in \(M/\theta M \) is a \(k \)-basis for \(M/\theta M \). In particular, if
deg \(\theta = 1 \) then
\[F(M, \lambda) = (1 - \lambda^a)^{-1} F(M/\theta M, \lambda). \]
(3)

In case (b), \(uR \) is a one-dimensional vector space and if \(\deg u = b \) then
\[F(M, \lambda) = \lambda^b + F(M/uR, \lambda). \]
(4)

Now apply (a) or (b), as the case may be, to \(M/\theta M \) or \(M/uR \), and form a new quotient module. As we continue this process, we obtain a sequence of smaller and smaller quotient modules of \(M \). By the ascending chain condition on submodules, this process eventually terminates in 0. We then say that \(M \) has been “peeled.” Using (3) and (4) the Hilbert series of \(M \) can be written down by inspection from the peeling. Moreover, we obtain a canonical form for writing the elements of \(M \).

13. EXAMPLE. Let \(A = \mathbb{N}^2 - \{(1, 0)\} \). Then the monoid algebra \(R = kA \) is given by \(R = k[x^2, x^3, y, xy] \). Now note the following:

(a) \(y \) is an NZD of \(R \),

(b) \(R/yR \) is spanned by \(\{1, x, x^2, \ldots, xy\} \) so \(xyR_+ = 0 \) in \(R/yR \).

(c) \(x^2 \) is an NZD of \(R/(yR + xyR) \).

(d) \(S = R/(yR + xyR + x^2R) \) is spanned by \(\{1, x^3\} \), so \(x^3R_+ = 0 \) in \(S \), and \(1 \cdot R_+ = 0 \) in \(S/x^3S \).

It follows that every element \(f \) of \(R \) can be written uniquely in the form
\[f = xyp_1(y) + p_2(x^2, y) + x^3p_3(x^2, y), \]
where \(p_1 \in k[x_1] \) and \(p_2, p_3 \in k[x_2, x_3] \). (In effect, we have decomposed the monoid \(\Lambda \) into the disjoint subsets \((1, 1) + (0, 1) \mathbb{N}, (2, 0) \mathbb{N} + (0, 1) \mathbb{N}, \) and \((3, 0) + (2, 0) \mathbb{N} + (0, 1) \mathbb{N}. \) We also see that
\[F(R, \lambda) = \frac{\lambda^2}{1 - \lambda} + \frac{1 + \lambda^3}{(1 - \lambda)(1 - \lambda^2)} = \frac{1}{(1 - \lambda)^2} - \lambda. \]

14. EXERCISE. Peel the rings \(k[x, y, z, w]/(xz, xw, yw) \) and \(k[x, y, z, w]/(xw, yw, zw, xyz) \) (with the standard grading), and compute their Hilbert series. Express each Hilbert series as a fraction reduced to lowest terms.

The following result is immediate from the way \(F(M, \lambda) \) is computed from a peeling of \(M \).

15. COROLLARY (and definition). Let \(M \) be a graded module. Then the order to which \(\lambda = 1 \) is a pole of \(F(M, \lambda) \) is equal to the total number of NZD’s encountered in peeling \(M \). This number is called the Krull dimension of \(M \), denoted \(\dim M \).
It is not difficult to show at this stage that \(\dim M \) is also equal to the maximum number of (homogeneous) elements of \(R/\text{Ann } M \) which are algebraically independent over \(k \), where \(\text{Ann } M = \{ x \in R : xM = 0 \} \). Note that \(\text{Ann } R = 0 \).

If \(\theta_1, \ldots, \theta_r \in H(R_+) \) then it is clear that \(\dim M/(\theta_1M + \ldots + \theta_rM) \geq \dim M - r \). If equality holds we call \(\theta_1, \ldots, \theta_r \) a partial homogeneous system of parameters for \(M \). Clearly \(r \leq d = \dim M \). If equality holds, we call \(\theta_1, \ldots, \theta_d \) a homogeneous system of parameters (h.s.o.p.).

16. THEOREM. Let \(\theta_1, \ldots, \theta_d \in H(R_+) \), and let \(M \) be a \(\mathbb{Z} \)-graded \(R \)-module. The following conditions are equivalent:

(i) \(\theta_1, \ldots, \theta_d \) are an h.s.o.p.

(ii) \(\theta_1, \ldots, \theta_d \) are algebraically independent over \(k \) in \(R/\text{Ann } M \), and \(\dim M/(\theta_1M + \ldots + \theta_dM) = 0 \).

(iii) \(\theta_1, \ldots, \theta_d \) are algebraically independent over \(k \) in \(R/\text{Ann } M \), and \(M \) is a finitely-generated \(k[\theta_1, \ldots, \theta_d] \)-module.

(iv) \(d = \dim M \) and \(M \) is a finitely-generated \(k[\theta_1, \ldots, \theta_d] \)-module.

17. THEOREM. If \(\theta_1, \ldots, \theta_d \) are the NZD's encountered in a peeling of \(M \), then \(\theta_1, \ldots, \theta_d \) is an h.s.o.p. for \(M \). Moreover, if \(R \) is standard and \(k \) infinite, we can take each \(\deg \theta_i = 1 \).

Theorem 17 is essentially the "Noether normalization lemma", which guarantees the existence of an h.s.o.p. for \(M \).

The process of peeling \(M \) begins with the construction of a sequence \(\theta_1, \ldots, \theta_r \in H(R_+) \) (which may be void) such that \(\theta_i \) is an NZD in \(M/(\theta_1M + \ldots + \theta_{i-1}M) \) for \(1 \leq i \leq r \). Such a sequence is called a homogeneous regular sequence or homogeneous \(M \)-sequence. The length of the longest (homogeneous) \(M \)-sequence is called the depth of \(M \), denoted depth \(M \). Clearly \(0 \leq \text{depth } M \leq \dim M \). If depth \(M = \dim M \) (i.e., if some h.s.o.p. for \(M \) is an \(M \)-sequence), then we call \(M \) a Cohen-Macaulay \(R \)-module. From Lemma 7 we deduce the following "combinatorial" characterization of \(M \)-sequences.

18. THEOREM. Let \(\theta_1, \ldots, \theta_r \in H(R_+) \), say \(\deg \theta_i = a_i > 0 \). Let \(N = M/(\theta_1M + \ldots + \theta_rM) \). Then \(\theta_1, \ldots, \theta_r \) is an \(M \)-sequence if and only if

\[
F(M, \lambda) = F(N, \lambda) \prod_{i=1}^{r} (1 - \lambda^{a_i})^{-1}.
\] \hspace{1cm} (5)

If \(M \) is Cohen-Macaulay and \(\theta_1, \ldots, \theta_d \) is a maximal
homogeneous M-sequence, then $N=M/(\theta_1 M + \ldots + \theta_d M)$ is a finite-dimensional vector space over k. If (the images of) \(\eta_1, \ldots, \eta_i \in H(M) \) form a k-basis for N, then every $u \in M$ can be written uniquely in the form

\[u = \sum_{i=1}^{t} \eta_i p_i(\theta_1, \ldots, \theta_d), \]

where $p_i \in k[x_1, \ldots, x_d]$. In other words, M is a finitely-generated free module over $k[\theta_1, \ldots, \theta_d]$, with basis η_1, \ldots, η_i. Moreover, if $\deg \theta_i = a_i$ and $\deg \eta_i = b_i$, then

\[F(M, \lambda) = \left(\sum_{i=1}^{t} b_i \right) \prod_{i=1}^{d} \left(1 - \lambda^{a_i} \right)^{-1}. \]

We should also mention two "uniqueness" theorems concerning maximal M-sequences.

19. **THEOREM.** (a) Any two maximal M-sequences have the same length; (b) If M is Cohen-Macaulay, then every h.s.o.p. is an M-sequence.

20. **EXAMPLE.** Let $R = k[x,y]/(x^2, xy)$, with the standard grading. If $|k| = \infty$ then by Theorem 19 there is an h.s.o.p. for R of degree one. Alternatively, it can be easily seen that for any k, the element y forms an h.s.o.p. for R. Now

\[H(R, \lambda) = \frac{1}{1-\lambda} + \lambda = \frac{1+\lambda - \lambda^2}{1-\lambda}. \]

If R were Cohen-Macaulay, then $1+\lambda - \lambda^2 = F(R/\theta R, \lambda)$ for any h.s.o.p. θ of degree one (since by Theorem 19 all h.s.o.p.'s are R-sequences). Clearly $H(R/\theta R, 2) = -1$ is absurd, so we conclude that R is not Cohen-Macaulay. Although it sometimes is possible to show a ring or module is not Cohen-Macaulay by looking at its Hilbert series, in general one cannot deduce Cohen-Macaulayness from the Hilbert series alone. For instance, Exercise 14 gives two rings with the same Hilbert series, one Cohen-Macaulay and one not.

It often is an interesting combinatorial problem to find explicitly the decomposition

\[M = \bigoplus_{i=1}^{t} \eta_i k[\theta_1, \ldots, \theta_d] \]

of a Cohen-Macaulay module M, where $\theta_1, \ldots, \theta_d$ is an h.s.o.p. and η_1, \ldots, η_i a k-basis for $M/(\theta_1 M + \ldots + \theta_d M)$. For instance, let $R = k[x_1, \ldots, x_n]$, with $\deg x_i = 1$. R is clearly Cohen-Macaulay since x_1, \ldots, x_n is an h.s.o.p. and an R-sequence. Now let θ_i be the i-th
elementary symmetric function in \(x_1, \ldots, x_n\). It is not hard to see that \(\theta_1, \ldots, \theta_n\) is an h.s.o.p. for \(R\), so by Theorem 19 they form an \(R\)-sequence. Hence

\[
R = \bigcup_{i=1}^l \eta_i k[\theta_1, \ldots, \theta_n]
\]

for certain \(\eta_i \in H(R)\). Since \(\deg \theta_i = i\), we have

\[
\sum_{i=1}^l \deg \eta_i = \frac{(1-\lambda)(1-\lambda^2) \cdots (1-\lambda^n)}{(1-\lambda)^n} = (1+\lambda)(1+\lambda+\lambda^2) \cdots (1+\lambda+\lambda^2+\cdots+\lambda^{n-1}). \tag{6}
\]

Garsia [2, §6] has shown that for each permutation \(\pi = a_1 a_2 \cdots a_n\) in the symmetric group \(S_n\) of all permutations of \(\{1, \ldots, n\}\), if we define

\[
\eta_\pi = \sum_{a_i > a_j+1} x_{a_1} x_{a_2} \cdots x_{a_j}
\]

then \(\{\eta_\pi : \pi \in S_n\}\) is indeed a \(k\)-basis for \(R/(\theta_1, \ldots, \theta_n)\). In particular, we see from (5) that

\[
\sum_{\pi \in S_n} \lambda^{\iota(\pi)} = (1+\lambda)(1+\lambda+\lambda^2) \cdots (1+\lambda+\ldots+\lambda^{n-1}) \tag{7}
\]

where \(\iota(\pi) = \sum_{a_i > a_j+1} j\) is the major index or greater index of \(\pi\). Equation (7) is a well-known result of MacMahon [8, §104] [13, p.97], so here we have an algebraic elaboration. It would be very interesting to extend the result of Garsia to arbitrary permutation groups. Specifically, if \(G\) is a group of permutations of \(\{1, \ldots, n\}\) and \(R = k[x_1, \ldots, x_n]\), then define

\[
R^G = \{f \in R : f(x_{\pi(1)}, \ldots, x_{\pi(n)}) = f(x_1, \ldots, x_n) \text{ for all } \pi \in G\}.
\]

The elementary symmetric functions \(\theta_1, \ldots, \theta_n\) still form an h.s.o.p. for \(R^G\), and \(R^G\) is known to be Cohen-Macaulay (e.g., [18, Thm.3.2]). The problem of finding a \(k\)-basis for \(R^G/(\theta_1, \ldots, \theta_n)\) may be regarded as a subtle elaboration of Polya's enumeration theorem. The result of Garsia concerns the case when \(G\) is the trivial group of order one. Some interesting additional cases appear in [3].

Suppose \(M\) is a \(\mathbb{Z}\)-graded Cohen-Macaulay \(R\)-module, with \(\theta_1, \ldots, \theta_d\) an h.s.o.p. For any \(\mathbb{Z}\)-graded \(R\)-module \(N\), the socle of \(N\) is defined by
soc \(N=\{u \in N: uR_+=0\}\)

It is a finite-dimensional vector space. Now define

\[
\text{type } M = \dim_k \text{soc} \left(\frac{M}{(\theta_1 M + \ldots + \theta_d M)} \right)
\]

It can be shown (using homological algebra) that type \(M\) is independent of the choice of \(\theta_1, \ldots, \theta_d\).

21. OPEN PROBLEM. Find an elementary proof of this last statement.

In the case \(M=R\), we say that \(R\) is Gorenstein if type \(R=1\). Suppose \(R\) is Gorenstein and let \(S=R/(\theta_1, \ldots, \theta_d)\) for some h.s.o.p. \(\theta_1, \ldots, \theta_d\). Then the grading of \(S\) looks like

\[S=S_0+S_1+\ldots+S_s,\]

where \(S_s \neq 0\), for some \(s \geq 0\). Since \(S_s \subseteq \text{soc} S\) and type \(R=1\), we have \(\dim_k S_s = 1\). The map \(\phi_i:S_i \times S_{s-i} \to S_s\) defined by ring multiplication is easily seen to be a perfect pairing of \(S_i\) and \(S_{s-i}\) (since \(\text{soc} R = S_s\)), which means in particular \(\dim_k S_i = \dim_k S_{s-i}\). It follows from (5) that if \(a_i = \deg \theta_i\) and

\[
F(R, \lambda) = \frac{h_0 + h_1 \lambda + \ldots + h_s \lambda^s}{\prod(1-\lambda^{a_i})}
\]

then \(h_i = h_{s-i}\).

22. EXERCISE. Show that the condition \(h_i = h_{s-i}\) is not sufficient for a Cohen-Macaulay \(\mathbb{N}\)-graded algebra \(R\) to be Gorenstein, by considering the example \(R = k[x,y]/(x^3, xy, y^2)\), with the standard grading.

In view of the above exercise, it is somewhat surprising that if \(R\) is a Cohen-Macaulay domain in (8), then \(h_i = h_{s-i}\) is necessary and sufficient for \(R\) to be Gorenstein [17, Thm. 4.4]. This can be a useful combinatorial tool for showing rings are Gorenstein.

The symmetry \(h_i = h_{s-i}\) of Gorenstein algebras is a manifestation of a deeper duality valid for any Cohen-Macaulay \(M\) (or, with somewhat more work, even non-Cohen-Macaulay \(M\)). Namely, if \(M\) is Cohen-Macaulay with h.s.o.p. \(\theta_1, \ldots, \theta_d\) then let \(S = k[\theta_1, \ldots, \theta_d] \subseteq R\) and define

\[\Omega(M) = \text{Hom}_S(M, S),\]

the set of \(S\)-module homomorphisms \(\phi:M \to S\). We can give \(\Omega(M)\) the structure of an \(R\)-module by defining \((x \phi)(u) = \phi(xu)\), for \(x \in R\), \(\phi \in \Omega(M)\), \(u \in M\). Using homological algebra it can be shown that
$\Omega(M)$, as an R-module, is independent of $\theta_1, \ldots, \theta_d$. We call $\Omega(M)$ the canonical module of M. The minimum number of generators of $\Omega(M)$ is type M, and (when $M=R$) $\Omega(R) \cong R$ if and only if R is Gorenstein. There is a natural grading on $\Omega(M)$ so that

$$F(\Omega(M), \lambda) = (-1)^d F(M, 1/\lambda)$$

(as rational functions).

$\Omega(M)$ is a kind of "dual" object to M, and when M has combinatorial significance we would expect $\Omega(M)$ to have some sort of "dual" significance. For instance, let $R = k\Lambda$ be the monoid algebra of the monoid Λ of (1). Assume without loss of generality that $\Lambda \cap IP^s \neq \emptyset$. Hochster [5] has shown that R is Cohen-Macaulay. The canonical module $\Omega(R)$ can be shown [17, Thm. 6.7] to be isomorphic to the ideal I of R spanned by all monomials x^α with $\alpha \in \Lambda \cap IP^s$. In particular, R is Gorenstein if the vector $\omega = (1, 1, \ldots, 1) \in \Lambda$, since then as R-modules we have $I \cong x^\omega R \cong R$. If we apply this observation to the polynomial $H_n(i)$ of Application 10, then (with the use of some standard properties of rational generating function [17, Cor. 4.6]) we obtain that

$$H_n(-1) = H_n(-2) = \ldots = H_n(-n+1) = 0,$$

$$H_n(i) = (-1)^{n-i} H_n(-n-i).$$

Let us turn to the problem of obtaining restrictions on the Hilbert functions of various classes of graded modules. We will here concern ourselves only with the case of standard graded algebras. If such an algebra R is generated by elements x_1, \ldots, x_r of degree one, then R has a k-basis B consisting of monomials in the x_i's, and $H(R, n)$ is equal to the number of monomials in B of degree n. Now choose B as follows: Define a linear ordering on the set \mathcal{M} of all monomials in x_1, \ldots, x_n by the rules: (a) $y_i < y_j$ if deg $y_i <$ deg y_j, and (b) $y_i < y_j$ if deg $y_j =$ deg y_j and y_i precedes y_j in reverse lexicographic order (with respect to the order $x_1 < \ldots < x_r$ of the x_i's). E.g., if $r=3$ and we set $x = x_1, y = x_2, z = x_3$, then the ordering begins

$$1 < x < y < z < x^2 < xy < y^2 < xz < yz < z^2$$

$$< x^3 < x^2 y < x y^2 < y^3 < x^2 z < \ldots.$$}

Now choose the elements y_1, y_2, y_3, \ldots by letting y_{i+1} be the least monomial which is linearly independent from y_1, \ldots, y_i. The basis B obtained in this way is readily seen to be an order ideal of monomials, i.e., if $x_1^{a_1} \cdots x_r^{a_r} \in B$ and $0 \leq b_i \leq a_i$, then $x_1^{b_1} \cdots x_r^{b_r} \in B$. Conversely, if B is any order ideal of monomials and $B' = \mathcal{M} - B$, then B is a k-basis for $k[x_1, \ldots, x_r]/(B')$. where (B') denotes the ideal generated by B'.
A theorem essentially proved by Macaulay and generalized by Clements and Lindström (see [4]) characterizes the possible vectors \((h_0, h_1, \ldots) \) for which \(h_i \) is the number of monomials of degree \(i \) in an order ideal \(B \) of monomials. It follows that this same condition characterizes the Hilbert functions of standard graded algebras. The condition of Macaulay is most succinctly (but certainly not least obscurely) stated as follows: Given integers \(h, i > 0 \), write (uniquely)

\[
h = \binom{n_i}{i} + \binom{n_{i-1}}{i-1} + \cdots + \binom{n_j}{j},
\]

where \(n_i > n_{i-1} > \cdots > n_j \geq j \geq 1 \), and define

\[
h^{<i>} = \binom{n_i + 1}{i+1} + \binom{n_{i-1} + 1}{i} + \cdots + \binom{n_j + 1}{j+1}.
\]

Also set \(0^{<i>} = 0 \). We then have:

23. THEOREM. Let \(k \) be any field. The following two conditions are equivalent on a sequence \((h_0, h_1, \ldots) \) of integers:

(i) There exists a standard graded \(k \)-algebra \(R \) satisfying \(H(R, n) = h_n \) for all \(n \geq 0 \).

(ii) \(h_0 = 1 \) and \(0 \leq h_{n+1} \leq h_n^{<n>} \) for all \(n \geq 1 \).

Let us call a sequence \((h_0, h_1, \ldots) \) (finite or infinite) an \(M \)-vector (after Macaulay) if it satisfies either of the above two (equivalent) conditions. We now have from Theorems 17 and 18 (leaving aside a minor technicality arising when \(k \) is finite):

24. COROLLARY. Let \(k \) be any field, let \(d \geq 0 \), and let \(H: \mathbb{N} \to \mathbb{N} \).

The following two conditions are equivalent:

(i) There exists a standard Cohen-Macaulay graded \(k \)-algebra of Krull dimension \(d \) with Hilbert function \(H \).

(ii) For some \(s \geq 0 \) we have

\[
\sum_{n \geq 0} H(n) \lambda^n = \frac{h_0 + h_1 \lambda + \cdots + h_s \lambda^s}{(1-\lambda)^d}
\]

where \((h_0, h_1, \ldots, h_s) \) is an \(M \)-vector.

25. OPEN PROBLEM. Find a "nice" characterization of the Hilbert function of a standard Gorenstein graded \(k \)-algebra. See [17, §4] for further information.

The above problem can be reformulated as a problem in linear algebra. Let \(M_i \) denote the set of all monomials of degree \(i \) in the variables \(x_1, \ldots, x_m \). Fix an integer \(s \geq 0 \) and a nonzero function \(\sigma: M_s \to k \).
For $0 \leq j \leq s$ let $A^{(j)}$ be the matrix with rows indexed by M_j and columns by M_{s-j}, defined by $A^{(j)}_{uv} = \sigma(uv)$. Let $h_j = \text{rank } A_{j}$. Then for any $d \geq 0$ there is a standard graded Gorenstein k-algebra R of dimension d satisfying

$$F(R, \lambda) = (h_0 + h_1 \lambda + \ldots + h_s \lambda^s)(1-\lambda)^{-d}.$$

Conversely, the Hilbert series of every standard graded Gorenstein k-algebra arises in this way. For instance, suppose $s=4$ and σ is chosen so $h_1 = \text{rank } A^{(1)} = m$. How small can $h_2 = \text{rank } A^{(2)}$ be? Letting $f(m) = \min h_2$, it is known that $f(m) = m$ for $m \leq 5$, $f(13) < 13$ and

$$\frac{1}{2} \cdot 6^{2/3} \leq \lim \inf \limits_{m \to \infty} f(m)m^{-2/3} \leq \lim \inf \limits_{m \to \infty} f(m)m^{-2/3} \leq 6^{2/3}.$$

Does $f(6) = 6$? Does $\lim f(m)m^{-2/3}$ exist, and if so, then what is this limit?

Among the many applications of Corollary 24, we mention here only its connection with simplicial complexes. By a simplicial complex on the vertex set V, we mean a collection Δ of subsets of V satisfying (i) $\{x\} \in \Delta$ for all $x \in V$, and (ii) if $F \in \Delta$ and $G \subseteq F$, then $G \in \Delta$. An element F of Δ is called a face, and the integer $|F| - 1$ is called the dimension of F, denoted $\text{dim } F$. The dimension of Δ is defined by

$$\text{dim } \Delta = \max \{\text{dim } F : F \in \Delta\}.$$

Let $d = 1 + \text{dim } \Delta$ throughout this discussion. Let $f_i = f_i(\Delta)$ be the number of i-dimensional faces of Δ and call the vector $f = f(\Delta) = (f_0, f_1, \ldots, f_{d-1})$ the f-vector of Δ. Set $n = f_0 = |V|$. It is an interesting problem to obtain as much information as possible about the f-vector of various classes of simplicial complexes. For instance, a celebrated theorem of Kruskal and Katona (see [4] for a nice discussion) can be used to completely characterize the f-vector of an arbitrary simplicial complex.

To proceed further, let $|\Delta|$ denote the geometric realization (e.g., [12, pp. 110-111]) of Δ - it is a topological space obtained, intuitively speaking, by regarding the faces of Δ as vertices of actual Euclidean simplices and sticking these simplices together appropriately. If now $|\Delta|$ is a $(d-1)$-dimensional sphere S^{d-1}, then Motzkin and Klee raised the question of maximizing $f_i(\Delta)$ when $n = f_0$ and $d = 1 + \text{dim } \Delta$ are fixed. (Motzkin was concerned only with the more restrictive class of simplicial convex polytopes, and Klee realized Motzkin's conjecture could be made just as easily for spheres.) See [16] for references. They conjectured that a certain known simplicial complex $\Delta(n,d)$ (the boundary complex of a cyclic polytope $C(n,d)$) achieved the maximum. McMullen proved Motzkin's original
conjecture (for simplicial polytopes), but the case of spheres remained open.

The key step in proving this "Upper Bound Conjecture for spheres" (UBC) is to associate a certain graded algebra \(R_\Delta \) with any simplicial complex \(\Delta \). Let \(A=k[x_1, \ldots, x_n] \) be the polynomial ring in the vertices \(V=\{x_1, \ldots, x_n\} \) (with \(\deg x_i=1 \)), and define \(I_\Delta \) to be the ideal of \(A \) generated by all squarefree monomials \(x_{i_1}x_{i_2}\cdots x_{i_j} \) for which \(\{x_{i_1}, \ldots, x_{i_j}\} \subseteq \Delta \). If \(f(\Delta)=(f_0, \ldots, f_{d-1}) \) then the Hilbert function of \(R_\Delta \) is easily seen to be

\[
H(R_\Delta, m) = \begin{cases} 1, & m = 0 \\ d-1, & m = 0 \\ \sum_{i=0}^{d-1} \binom{m-1}{i}, & m > 0 \\ \end{cases}
\]

In particular (see Corollary 9), \(\dim R_\Delta = d = 1 + \dim \Delta \).

Since \(H(R_\Delta, m) \) is a polynomial of degree \(d-1 \) for \(m > 0 \), it follows that there exist integers \(h_0, h_1, \ldots, h_d \) such that

\[
\sum_{m=0}^{\infty} H(R_\Delta, m) \lambda^m = (h_0 + h_1 \lambda + \ldots + h_d \lambda^d)(1-\lambda)^{-d}.
\]

The vector \(h(\Delta) = (h_0, h_1, \ldots, h_d) \) is called the \(h \)-vector of \(\Delta \). In McMullen's proof of the UBC for polytopes, he showed essentially that if \(|\Delta| \) was a sphere then the UBC for \(\Delta \) followed from the inequality

\[
h_i \leq \binom{n-d+i-1}{i}, \quad 0 \leq i \leq d.
\]

26. PROPOSITION. Let \(|\Delta| = S^{d-1} \), with \(f_0(\Delta) = n \). If \(R_\Delta \) is Cohen-Macaulay, then the UBC holds for \(\Delta \).

PROOF. If \(R_\Delta \) is Cohen-Macaulay, then by Corollary 24 \(h(\Delta) \) is an \(M \)-vector, so there is an order ideal \(B \) of monomials for which \(h_i = \text{card}\{y \in B: \deg y = i\} \). Since \(h_1 = n-d \), this means that \(h_i \) cannot exceed the total number \(\binom{n-d+i-1}{i} \) of monomials of degree \(i \) in \(n-d \) variables, and the proof follows. \(\Box \)

To complete the proof of the UBC for spheres, it remains to show that \(R_\Delta \) is Cohen-Macaulay whenever \(|\Delta| \) is a sphere. A stronger result was proved by Reisner [10] using homological methods; he characterized all simplicial complexes \(\Delta \) for which \(R_\Delta \) is Cohen-Macaulay in terms of the homology groups of various subcomplexes of \(\Delta \). Although several other proofs of Reisner's theorem have since been found, none are really simple. Hochster [6] in fact has shown
that if $|\Delta|$ is a sphere then R_Δ is Gorenstein. In particular, we have $h_i = h_{d-i}$, which is equivalent to the Dehn-Sommerville equations (e.g., [9, p.171, eqn. (6)]).

An outstanding open problem in this area is to characterize completely the possible f-vectors (or h-vectors) of spheres. For simplicial polytopes this was done using deep results from algebraic geometry in addition to Reisner's theorem [19], but it remains open whether this characterization is valid for all spheres.

We have only given the briefest glimpse in these notes of the many fascinating connections between commutative algebra and combinatorics. In particular, we have omitted all reference to homological concepts, including the fundamental Hilbert syzygy theorem. Nevertheless, it is hoped that we have managed to convey some of the flavor of the subject and to make it more accessible to combinatorialists.

References

