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1. Introduction

What can be said about the set E* of solutions in nonnegative integers to a
system of linear equations with integer coefficients? For many purposes, such
as those of linear programming, this question has been adequately answered.
However, when this question is regarded from the vantage point of com-
mutative algebra, many additional aspects arise. In particular, there is a na-
tural way to associate with E* a graded module A* (over an appropriate graded
commutative ring A), and one can ask for such standard information about A*
as its depth, canonical module, etc. We will obtain such information by
explicitly computing the Hilbert function of the local cohomology modules
H'(A%) associated with A® (with respect to the irrelevant ideal of A) in terms of
the reduced homology groups of certain polyhedral complexes associated with
E*. This method was suggested by some work of M. Hochster concerning
polynomial rings modulo ideals generated by square-free monomials (unpub-
lished by him but discussed in [St,]), and I am grateful to him for making his
ideas available to me. Similar techniques were employed by Goto and Wa-
tanabe [G-W] to study arbitrary affine semigroup rings, though they did not
consider modules over them.

As a consequence of our computations regarding H'(A%), we can give a
general “reciprocity theorem™ (Theorem 4.2), whose statement does not involve
commutative algebra, connecting the set E* of nonnegative integral solutions
to the set of solutions in negative integers. This generalizes the results in [St,],
where only a special class of equations was considered.

[t seems natural to find a purely combinatorial analogue to the algebraic
results mentioned above. In Sect. 5 we discuss what we have accomplished
along these lines, and offer a general ring-theoretic conjecture which would
imply a much more definitive resuit.

The following notation concerning sets will be used throughout.
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Symbol Set

N nonnegative integers

—N nonpositive integers

P positive integers

—IP negative integers

R, nonnegative real numbers

[r] {1,2,...,p}, where peN

[p,q] {p,p+1,...,q}, where p<q and p,qcZ
S\T {xeS: x¢T}

The notation Z, @, R is standard. If f=(f,,...,5,)eR" and y=(y,,...,y,)eR",
then f<vy means f,=<y, for all i, while f<y means §;<y, for all i. Similarly
p=0 means f§,20 for all i, and f>0 means f§,>0 for all i.

Let us now consider some background material concerning linear equa-
tions. Let @ be an r x n matrix of integers (or Z-matrix), and assume (without
loss of generality in what follows) that rank ®=r. Let aeZ’, regarded as a
column vector but written for convenience as a row vector. (We will write all
column vectors as row vectors in this paper.) Define

E={BeN"¢p=0}
E*={fecN": ®df=u}.

Hence E is a submonoid of IN" (i.e., closed under addition and containing 0),
and E* is an “E-module” in the sense that E+ E*c E* Here of course E+ E*
={f+y: PeE and yeE"}.

Let k be a field (though much of what we do goes through for an arbitrary
commutative ring), and let A=kE denote the monoid algebra of E over k. In
order not to confuse the addition operations in E and in A, we will denote by
x” the element of A corresponding to feE. Hence A as a vector space has the
basis {x’: BeE}, and multiplication in A is defined by x*-x’=x"*7 In fact,
define a linear transformation

w: A-k[x,...,x,]

by w(x*)=xf'... xE where f=(8,,...,B,). This is clearly an isomorphism of A
onto the subalgebra of k[x,,...,x,] generated (in fact, spanned) by the mo-
nomials x#' ... x#». Hence we may regard A as a ring generated by monomials,
and may identify x® with x#*... xf»

Similarly, let A* denote the vector space with basis {x*: e E*}. Then A* is a
A-module is a natural way, viz, if BeE and yeE® then define x*-x"=x*7e A%

The ring 4 and module A* have an interpretation in terms of invariant
theory. Suppose ®=[y,,v,,...,7,), where y, is a column vector of length r.
Define

T={diag(u”,u”,...,u"™): ue(k*)},

where k*=k—{0} and u”=u):.. >, and where u=(u,...,u,) and vy,
=(V;1,---» V) Since rank & =r, T is a subgroup of GL,(k) isomorphic to (k*),
and hence by definition is an r-dimensional (algebraic) torus. T acts in a
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natural way on the polynomial ring R=k[x,...,x,]), viz, if =
=diag(u”™,...,u”)eT then 7 - f(x,....,x,)=f(u"'x,,...,u""x,). Let

u

RT={feR:t- f=f for all teT},

the ring of invariants of T acting on R. One sees immediately that A=R7, so
that A4 may be regarded as a ring of invariants. From this observation several
facts about A are clear. For instance, since T is linearly reductive it follows
that A is finitely-generated as a k-algebra (e.g. [M]). This was first shown by
Hilbert and in a simple combinatorial way by Gordan (see [G-Y, Sect. 1517]).
We will soon need a refinement of this result. It also follows from [H] or the
more general [H-R] that 4 is a Cohen-Macaulay ring. This result will also be
a consequence of our work. The reader unfamiliar with Cohen-Macaulay rings
may wish to consult [St,].

We also wish to interpret the module A* in terms of invariant theory.
Suppose that the equation @f=ou has at least one integral solution feZ".
Equivalently, the g.c.d. of all the j xj minors from any j rows of @ must equal
the g.c.d. of all the jxj minors from the corresponding j rows of the augmen-
ted matrix [&,a]. We then call the pair (@, ) or the equation ¢f=u non-
trivial, and henceforth we will automatically assume that (@, o) is non-trivial. In
this case the map y,: T— k* defined by y,(7,)=u" is a one-dimensional repre-
sentation (or character) of T, and every rational irreducible representation of T
is obtained in this way. Now define

R} ={feR:t- f=y,(x) f for all TeT},

the module of semi-invariants or relative invariants of T with respect to the
character y,. Again it is immediate that A*=R] . From this one can deduce
that A% is a finitely-generated A-module, or if preferred a direct combinatorial
proof can be given. However, it is not in general true that A* is a Cohen-
Macaulay module, and one of our main aims is to give a necessary and
sufficient condition for this to be the case.

We have mentioned that A is a finitely-generated k-algebra (or equivalently,
E is a finitely-generated monoid). Define S€E to be fundamental if whenever f8
=7+ with y, €E then y=0 or §=0. The set of all fundamental elements of
E is denoted FUND(E). It is easily seen that a subset G E generates E as a
monoid if and only if FUND(E)=G. Hence FUND(E) is the unique minimal
set of generators of E, and {x*: fe FUND(E)} is a minimal set of generators of
A. We need for later purposes, however, a minimal set B of elements of E for
which A is integral over the subalgebra k[x®]=k[x’: feB] generated by x*
BeB. (Equivalently, A is a finitely-generated k[x®]-module.) To see that
FUND(E) need not coincide with B, let ¢=[1,1,—-2]. Then FUND(E)
={(2,0,1), (0,2, 1), (1,1, 1)}, but we may take B={(2,0,1), (0,2, 1}}. This leads us
to define an element BeE to be completely fundamental if whenever mf=y+4
where m2>1 and y, 6eE, then y=ipf for some 0<i<m. Let CF(E) denote the
set of completely fundamental elements of E.

1.1 Proposition. Let B be any subset of E. Then A is integral over k[x"] if and
only if B contains a non-zero multiple of every element of CF(E). [
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The proof is an easy consequence of [St,, Lemma 2.4].

It is useful in what follows to view the set CF(E) geometrically. Let 4 =%,
denote the set of all solutions feR” to ®f=0. Thus ¥ is an (n—r)-
dimensional convex polyhedral cone in R”", with unique vertex at the origin.
Let #=%, denote any non-degenerate cross-section of & (eg.
En{p, ... BJeR": X f,=1}). Thus 2 is an (n —r — 1)-dimensional convex poly-
tope (or (n—r—1)-polytope, for short), and any other non-degenerate cross-
section of € is combinatorially equivalent to # An i-dimensional face # of &
will be called an i-face. If f=(f,,..., 8,)eR", define the support of f by suppf8
={i: ,>0}; and if B=(B,,...,H,)eR", define the negative support of f by
supp_f={i: p,<0}. If # is a face of & then all elements of the relative interior
F° of # have the same support, which we denote by supp # It follows that
the faces of 2 are in one-to-one correspondence with the supports of elements
peE, and that two faces &, ¢ satisfy # % if and only if supp # csupp @. If v
is a vertex (=0-dimensional face) of & then those elements feE satisfying
supp f=suppv are N-multiples of a unique element f,eE. We leave to the
reader to verify that {f :v is a vertex of #}= CF(E). In other words, CF(E)
consists of those non-zero points § of E which lie on an extreme ray of 4 and
for which no other points of E lie on the line segment joining 0 and f.

1.2 Example. Let @=[1,1, —1, —1]. The supports of elements of E consist of
the sets 0, {1,3}, {1,4}, {2,3}, {2,4}, {1,2,3}, {1,2,4}, {1,3,4}, {2,3,4},
{1,2,3,4}. Hence the lattice of faces of 2 is given by

Al234

134 Q 0123

023

so # is a quadrilateral:

(1

23 24

The vertices 13, 14, 23, 24 correspond to the completely fundamental elements
1010, 1001, 0110, 0101, respectively. [
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The ring A and module A* have in a natural way the structure of an IN"-
graded k-algebra and Z"-graded A-module respectively. Namely, we have the
vector space direct sums

A=1]4, A=]] 4,
BeE feE*
where A, (respectively, A7) denotes the one-dimensional vector space spanned
by x” for BeE (respectively, feE®). The Hilbert series of A and A* are defined
to be the formal power series

F(A,x)=Y xPeZ[[x,,...,x,]]
BeE

F(A%,x)= ¥ xPeZ[Lx,,...,x,]],

BeE*
where if f=(B,,...,8,) then xP=xPxb Tt follows from general facts about
Hilbert series that F(A,x) and F(A% x) represent rational functions of x
=(x,,...,x,). (This is because A is a finitely-generated k-algebra and A* a
finitely-generated A-module.) We should point out [St,, Thm. 2.5], though we
don’t need this fact, that when F(A, x) and F(A7% x) are reduced to lowest terms
(and assuming as always (@, o) is non-trivial) then they both have denominator
[T (a—x*.
BeCF(E)

We conclude this section with a description of the Krull dimension of A
and A% One can define dim A to be the maximal number of elements of A
which are algebraically independent over k, and similarly we can set dim A*
=dim(A/Ann A%) where AnnA*={feA|f-A*=0}. Clearly AnnA*=0 (since
(@, ) is non-trivial), so dim A*=dim A. Now a set x* x’,... of monomials is
algebraically independent if and only if the vectors f,v,... are linearly inde-
pendent (over R, say). Hence dim A is equal to any of the following quantities:

(1) the dimension of the real vector space RE spanned by E, regarded as a
subset of R”,

(11) the dimension of the cone %,

(iii) the rank of the (free) abelian group ZE generated by E, regarded as a
subset of Z".

We will always denote dim A by the symbol d. If d' is the rank of the
abelian group of all Z-solutions f to ®§=0, then note that d <d’, with equality
if and only if there exists a IP-solution to @=0 (i.e, EnIP"+0).

2. Local Cohomology

Let A, denote the irrelevant maximal ideal of A, ie., the ideal generated (or
spanned) by all monomials x*eA with 0. Let H'(A%) denote the i local
cohomology module of A* with respect to the ideal 4. (The usual notation is
H' (A%, but we suppress A,.) There are several equivalent ways of defining
H(A%) (see, e.g, [H-R, Sect. 5]). The definition which will be most useful for
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our purposes is the following [H-R, p. 133]. Let y,,...,y, be any set of
elements of A for which rad(y,,...,y)=4,, ie, for which A", <(y,,...,y,) for
some (>0. Let A, =y; 'A denote the ring of fractions of A with respect to
(or more accurately, with respect to the multiplicative set generated by y,), and
denote by #(y*, A% the complex

S

XO0—->A4->4, -0)®A*

i=1

=0 [ s A, s A0, ()

i 1<j
The map 6,, , has the following expllclt description. Let ueA;, —M Let
(L2, si\{iy iy, i} ={0 105,00, £}, With £, </, <. </ " Let b,

M—> My( be the natural map (here an mjectlon) for 1<I‘§b—-] Then

s—j

;1 (W)= Z(—l)r g, (u). 3)

We now define HY(A%) to be the i"™ cohomology module of the complex
A (y>®, A%, Le, ] .

Hi(A%)=H{(A (y°, A7) =ker 0, ,/im 5. 4

This definition is independent of the choice of yi,...,y, (provided A4,
=rad(y,,...,¥,). We will always choose y,=x", where B,...,f is some speci-
fied ordering of CF(E). By Proposition 1.1, we indeed have in this case that
A, =rad(y,,...,y,). Since the elements x* are N"-homogeneous, each H'(A%)
inherits from (4) the structure of a Z"-graded A-module. In other words, we
have a direct sum decomposition

Hi(A)= [] H(A"),,
peinr
where A,-H'(A%),< H(A%), ;. The modules H'(A%) are not in general finitely-
generated, but we do have dim, H(4%); < co. Hence we can define the Hilbert
series
F(H (A%, x)=Y (dim, H(4%),) x".
Beln

1t is well-known that H'(A%) is an artinian A-module (though not necessarily of
finite length). It follows that there exists a vector yeIN" for which

x VF(H (A", x)eZ[[x7", ..., x7 1]

Part of the importance of local cohomology stems from its depth sensi-
tivity. A proof of this fundamental result (which we simply state for the case A*
at hand) may be found e.g. in [H-K, Satz 4.10 and 4.12].

2.1 Theorem. Let e=depthA* and (as usual) d=dim A. Then H (A% =0 unless
e<i<d. Moreover H*(A")%0 and H*(A%)%0. []



Linear Diophantine Equations and Local Cohomology 181

We also record for later use the relationship between the Hilbert series of
A* and of H'(A%). If F(x) is any rational function of x=(x,...,x,) possessing a
Laurent series expansion about 0, then denote by F(x), the Laurent series
expansion of F(x) about oo (ie., which converges in some deleted neigh-

1 -1
borhood of o). For example, if F(x)= - —, then F(x) =

_ z X l—x 1—x L

ms — 1

2.2 Theorem. Let ¢e=depth A* and d=dim A* as above. Then

d
F(A%, %), = Y (= 1) F(H(A%),%). [ ()

Perhaps the easiest way to verify this theorem (which is widely known
though not conspicuously published) is to observe that both sides of (5) are
additive functions (in the category of Z"-graded A-modules) and agree on free
modules.

Now that we have disposed of the general facts we shall need concerning
local cohomology, let us return to the subject of this paper. The following
notation will be used. If S= CF(E), then A%=S~'A" denotes the module of
fractions of A* with respect to the (multiplicative set generated by the) mo-
nomials x* for feS. (There should be no confusion with the homogeneous
component A%, where feZ") Define % to be the face of 2 satisfying

supp F5 = BUgsupp B.

If veZ" then (A%), denotes the y—homogeileous part of A%. V_Ve write E for the
abelian group generated by E<Z", and E* for the coset of E in Z" containing
E*.

2.3 Lemma. Let Sc CF(E). Then

1, if yeE* and supp_yc—supp %

dlmk(AS)Y:{()’ otherwise.

Proof. Suppose (A3),+0. Then there are integers a, for BeS and an element

oeE* such that i
y=0+ Zal,-ﬁ. (6)

Bes

Conversely, if y can be written as (6) then dim,(A5),=1. But y can be written as
(6) if and only if yeE* and supp_y< | J(supp_p)=supp F, and the proof
pes

follows. 01
Now given yeE,, define 4, to be the abstract simplicial complex whose

faces are those sets S< CF(E) such that

supp_y< | ) (suppd)=supp Fopeys-
deCF(ENS
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24 Example. Let &=[1,1,—-1, —1], a=2, and y=(0,0,—1, —1). Let a
=(1,0,1,0), b=(1,0,0,1), ¢=(0,1,0,1), d=(0,1,1,0), so CF(E)={a, b, c,d}. Then
supp_y={3,4} and 4 is given by

a ab
ac bd
c cd

The crucial result for our analysis of H(A1%) is the following.
2.5 Lemma. Let yeE* Restrict the complex A (y*, A% to its y-homogeneous
part, obtaining a complex A (y*, A%), of finite-dimensional vector spaces. Orient
the simplicial complex A, by ordering the vertex set CF(E) as Bl <...< B, where
y,=x". Then the complex H(y*, A%), is isomorphic to the augmented oriented
chain complex C’(Ay) of A, (with coefficients in k), up to a shift in grading.

Proof. Let |CF(E)|=s, and set

Hence #'(y*, A7), has the form

sy 01 do

K, K -0

0—K,_,

By Lemma 23, (45),=0 unless supp_ycsuppZ, and dimy(43),=1 if
supp_y<supp Z. If x} denotes the obvious generator for (A5), (as a vector
space), then we can identify +x} with the face CF(E)\S of 4,. In this way K, can
be identified with the space C,(4,) of i-chains of A, (including the case i= 1,
where we take a “ — 1-chain” to be a scalar multiple of the null set).

It remains to show that ¢; coincides with the boundary map &;:
Ci(Ay)—> Ci_l(A),). Let [vo,ul,...,vi]eéi(z]y) denote the oriented simplex with
vertex set {vg,v;,...,0;}. Recall (e.g., [Sp, p. 159]) that 0; is defined by

i

0ilvg, vy, -, 01= Y (= 1Y [vg, vy, ..., 05 .. 0],

j=0

where ; denotes that v; is missing. Comparison with (3) yields ,=@; when
the right sign of +x% is chosen, as desired. []

Let us denote the reduced homology groups of 4, by Hi(Ay). It is under-
stood that the coefficient group is always k. We remind the reader that for the
null set # we have
0, i+-1
k

Hl((b)%{ i1,
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2.6 Corollary. Let yeZ". Then

0, if y¢E*

dim Hi(A7), =4 & )
m, ( ) {dlmkH.s_,-_ I(Ay)’ il ’)7€Ea. 0

While Corollary 2.6 in a sense “determines™ the Hilbert function of HY(A%
and thus In particular depth A% it is not a very practical result because of the
difficulty of computing H(A ). What we need to do is replace 4, by a more
tractable object. To this end let 2* denote the dual polytope to # There is
thus a one-to-one inclusion-reversing correspondence &+ Z* between the
faces # of 22 and F* of 2*, satisfying

dim # +dim #* =(dim 2) —
Given yeE?, define a subset I of 2* by
L={J{#F*: 7 is a face of 2 satisfying supp_y<supp 7 } (7)

I’ has the structure of a polyhedral complex whose faces (or cells) are certain
faces of #*; it is a subcomplex of the polytope 2*.

2.7 Example. Let @, o, and y be as in Example 2.4. # is given by (1). The
faces # whose support contains {3,4} =supp_v are the edges joining 13 to 14,
23 to 24, together with # itsell. Hence I consists of the two disjoint vertices of
#* circled below:

134 3 34
34 14
234 24 124
P*

We now come to a crucial topological lemma which will lead to a signifi-
cant simplification of Corollary 2.6.

2.8 Lemma. Let d=dim A* and s=|CF(E)|, as usual. Then for all i,
H-(F-)ggs—dw(ljy),
where I:Ii(l';,) denotes reduced singular homology (with coefficient group k).

Proof. Let L(#*) denote the poset of proper faces of 2#* (ie., excluding § and
#*), ordered by inclusion. Let L([)={#*eL(#*): #*<I}. Regard the posets
L(#*), L), and L(Z*)\L(I) as simplicial complexes whose faces are the
chains of the corresponding poset. Now L(2*) and L(I), regarded as simplicial
complexes, are just the first barycentric subdivisions sd(02*) and sd(I}) of d#*
and I, regarded as polyhedral complexes. Hence the geometric realization
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|L{P*)| of L(#*) 1s a (d— 2)-sphere. By Alexander duality,
H(L)=H, ,_(L&N\LL)). (8)

(Since we are working with field coefficients, homology and cohomology coin-
cide.) Let I1, denote the collection of all subsets of maximal elements (=(d
—2)-faces) of L(#*)\ L(I,) whose intersection is not contained in L(I}). Thus [T
is a simplicial complex on the vertex set CF(E). By a theorem of Folkman [F]
(see also [L] [B, Thm. 2.3] [W, Thm. 5.9]), I1, and L(#*)\ L(I') have isomor-

phic reduced homology (in fact, the same homotopy type), so

Hy_;(LPOO\LL)=H,_,_,(1,). )

Let Q denote the boundary complex of the abstract simplex on the vertex
set CF(E) (ie, Q consists of all subsets of CF(E) except CF(E) itself). By
definition of 4, and I, we have

A, ={Sc CF(E): CFENS 1T}

Since || is an (s—1)-sphere, again by Alexander duality we have H(4)=
H,_5_(I), or equivalently

v d+z(A ) Hd i— 3(H ) (10)
Combining (8), (9), and (10) completes the proof. []

Although not relevant to us here, the preceding lemma suggests the follow-
ing conjecture.

29 Conjecture. The spaces |A| and |ZS““Fy| have the same homotopy type,
where X5~ denotes the (s — d)-fold suspension.

From Corollary 2.5 and Lemma 2.8 we deduce the main result of this
paper.
2,10 Theorem. Let d=dim A. Then

F(H{(A%), x)= Y (dim,H,_,_ D) x?. D
ye E*

Recall that a topological space I' is acyclic (over k) if H(I')=0 for all i. The
null set is not acyclic since H (@)= k. Since A* is Cohen-Macaulay if and only
if H{(A%)=0 (equivalently, F(H'(A4%), x)=0) for i+d, we deduce from Theorem
2.10 a criterion for A% to be Cohen-Macaulay.

2.11  Corollary. The following two conditions are equivalent:
(i) A" is Cohen-Macaulay,
(ii) for all yeE®, either I=§ or I is acyclic. 1

To supplement Corollary 2.11, we collect a few observations on what it
means for I, to be void.
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2.12 Proposition. Let yeE_ . Then:
(a) L=0if and only if the only face F of P satisfying supp_y<supp F is
& itself.
(b) If a=0, then
;=0 <>supp_y=supp 2.

(c) Let a=0, and suppose there exists a IP-solution to ®$=0, ie., EnIP"
+(. Then
L=0<ye(~1P)"

Proof. (a) is an immediate consequence of the definition of I;. Now suppose «
=0. To prove (b), we must show that if ¢y=0 and supp_vy+supp# then
supp_yc<supp # for some proper face of # Let feE satisfy supp f=suppZ
Let ¢ =p/q be the least rational number for which —y+c¢f=0, where geIP. Set
0=g(—y+cf). Then é€E and suppd=+suppZ since supp_y=+suppZ? But
supp_ycsuppd, so the proof of (b) follows. (c} is an immediate consequence of
(b) since EnIP"+0<>suppP=[n]. I

Note that Proposition 2.12(b) is false if «+0. For instance, take ¢=[1,
—~17, a=1, y=(0, —1). Then I, =9, yet supp_y=1{2} {1, 2} =supp #.

3. Applications

We certainly would like to be able to deduce Hochster’s result that A is a
Cohen-Macaulay ring from Corollary 2.11.

3.1 Theorem. The ring A is Cohen-Macaulay.

Proof. Let yeE. By Corollary 2.11, we need to show that either I, is acyclic or
I=0. There are three cases.

Case 1. yeE. Then supp_y=0 so I,=2*, which is acyclic.

Case 2. supp_y=supp £ By Proposition 2.12(b), this is the condition for I
=0,

Case 3. y¢E and supp_y=+supp? Let R% be the d-dimensional vector
space spanned by the cone ¥. Let # be a hyperplane (of dimension d—1) in
R% which separates y from %. Let 4, be the portion of 4 “visible” from 7,
where 4 is regarded as opaque, i.e,

¢,={Be®: the line segment £(, p) joining y and f intersects € only in f§}.

The map € -

> # which sends B to the unique element of Z(y, )N is a

homeomorphism from %, to ¥(%,). Since ¢ is convex of dimension d, (%)) is a
(d — 1)-dimensional convex subset of # Since supp_y#supp 4 it follows that
lb(% )is a convex cone whose vertex is ¥(0), where 0 is the vertex of 4. A cross-
section of Y(%.) is therefore a (d—2)-dimensional ball. But such a cross-section
is homeomorphlc to the portion Z,=2nN%, of # visible from 7y, so Z, is
acyclic.
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Now let L(#) denote the poset of proper faces of % regarded as a sim-
plicial complex as in Lemma 2.8. The subposet L(#) consisting of all non-void
faces of #, is isomorphic, as a simplicial complex, to the barycentric sub-
division sd(£). The complementary poset L(Z)\L(Z,) is isomorphic to sd(I),
since the faces & of # not visible from y are precisely those which satisfy
supp_y<supp #. Since Z, is acyclic, so is sd(#). It follows from Alexander
duality that sd(I'), and therefore I, is also acyclic. [I

The main idea of the above proof, that of considering the portion of #
visible from vy, was also used in the proof of [St,, Prop. 8.3]. With a little more
care, we can adapt the preceding proof to give a relatively tractable sufficient
(but not necessary) condition for A* to be Cohen-Macaulay. A completely
different proof of a somewhat more general result appears in [St;, Thm. 3.5].

3.2 Theorem. Suppose there exists a rational (or equivalently, real ) solution
=(f,...,8,) to @B=u satisfying —1 < f,<0. Then A* is Cohen-Macaulay.

Proof. Let yeE? and let qeP satisfy g feZ". Then g(y— p)eE. Since — 1< f,=<0,
we have supp_y=supp_q(y—f). Since by definition the space I'; depends only
on supp_d, we have L=1_g By Corollary 2.11 and Theorem 3.1, I ., is
void or acyclic, so the same is true of I,. Hence by Corollary 2.11, A* is
Cohen-Macaulay. []

The example @=[1, —1], =1, shows that the converse to Theorem 3.2 is
false.

While Theorem 2.10 is rather unwieldly for computing depth A* for arbi-
trary (&, a), it can be used to give a simple formula for depth A* when r=1
(i.e., when @ has just one row, or when the torus T is one-dimensional).

3.3. Theorem. Let a,,...,a,, b,,...,b,elP. where s,t>0. Let &=[a,,...,q,,
—by,...,=b], and choose «cZ. If f=(B,,....0,,)EZ*"", then let f
=B, B B =B 15 Bs.) Let 0ZSi<d=dimA=s-+1—1. Then

Y X, if i=s
pekx
p<0,p7°20
F(H(A%), x)= Z Xt if i=t
pecEx
20,8 <0
0, otherwise.

Proof. Note that S<[s+1¢] is the support of some nonvoid face # of £ if and
only if Sn[s]#@ and SN[s+1, s+t]+0. Let BeE* We need to compute
H,(L).

gase 1:supp_B=[s+1, s+1], ie, f=20, B”<0. By the definition (7) of I},
a face #* of #* is contained in I if and only if suppF =ToU[s+1, s+1],
where T is a non-void subset of [s]. Hence I; is the boundary of a simplex of
dimension s—1, so

A=y o

)

N }LO, ides—1
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Case 2: supp_p=[s], e, p'<0, 7 =0. By reasoning parallel to the above,

.o 0, ififr—1
dlm"H"(r”)_{l, ifi=t—1.

Case 3: (supp_p)n[s]+® and (supp_B)n[s+1, s+t]+@. Then supp_p
=supp # for some face # of Z, so by Theorem 3.1, I; is acyclic. (Alter-
natively, one can see directly that I is a simplex.)

Case 4: supp_f<[s] but supp_f+[s]. Consider the poset L(I}) of all non-
void faces #* of I, ordered by inclusion, as in the proof of Lemma 2.8.
Identify the face #* of I, with the set [s+t]\supp # Then L(I}) consists of all
non-void subsets of the set T=[s+t]\(supp_pf) which do not contain [s+1, s
+t]. The set of all non-void subsets of T, regarded as a simplicial complex
(whose faces are chains of subsets ordered by inclusion) is isomorphic to the
first barycentric subdivision sd{do) of the boundary do of the simplex ¢ on the
vertex set T. The subcomplex of sd(do) consisting of all subsets of T containing
[s+1, s+1] is isomorphic to sd(r) for a simplex 7 with s—|supp_pf|>0 vertices.
Hence L(I})=sd(do)\sd(7) is topologically a sphere of dimension |T|—2 with a
(non-void) ball removed of dimension s—|supp_f|~1. Thus L(I), and there-
fore I, is acyclic.

Case 5: supp fc[s+1,s+t] but supp f*[s+1,s+¢t]. By reasoning
parallel to Case 4, we get that I} is acyclic.

We have computed H,(I}) for all possible . Substituting these results into
Theorem 2.10 completes the proof. 1[I

3.4 Corollary. Preserve the notation of Theorem 3.3. Let 0<i<d. Then H'(A%
is a finite-dimensional vector space, and H'(A*)=0 unless possibly either (a) i=s
and a<0, or (b) i=t and >0. Moreover,

0, if(®,a) is trivial (i.c., A*=0)

s, if there exists BeE* with <0, §”=0 (in which case x<0)
depth /1‘1 = . . - . ; " . :
t, if there exists Be E* with =0, 87 <0 (in which case 0>0)
s+t~1, otherwise (so A* is Cohen-Macaulay).

Proof. 1If f'<0 and B’ =0, then ¢f<0. Hence if BeE* then a<0. Clearly given
«<0 there are only finitely many BeE" satisfying ' <0, f”=0. Similar reason-
ing holds for /=0, f” <0, and the proof follows from Theorem 3.3. []

4. Reciprocity

The purpose of this section is to give a formula relating the N-solutions § of
®B=u to those solutions f for which supp_p is “large.” First we briefly
discuss previous work in this area. Recall our notation from Theorem 2.2 - if
F(x) is a rational function of x=(x,,...,x,) possessing a Laurent series expan-
sion about 0, then F(x), denotes the Laurent series expansion of F(x) about
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oo. In [St,, Thm. 4.1] it was shown that if E~IP"+0, then

F(4,x),,=(=1)" ). xF, (11)
peE
B<0

where F(A,x)= Zx” as usual. In [St;, Thm. 7.7] this result was given an
BeE
algebraic interpretation. Essentially it is equivalent to computing the canonical

module €(A) of A (which we will define below). In [St,, Sects. 8-11] it was
shown that a direct analogue of (11) for A* continues to remain true for certain
choices of aeZ" (provided ENIP"+@). Namely, for certain o« we have

F(A% %), =(—1)" ) x. (12)
BeEy
B<0
In general, however, the difference between the left- and right-hand sides of
(12) is non-zero. For the case r=1, this “error term” was explicitly computed
in [St,, Prop. 10.5]. In this section we compute the error term for arbitrary
(®, o) and relate it to the structure of the module A%
First we have the following immediate corollary of Theorem 2.10 and the
fact that H_ (I')=0 for any space I'+@, while A_,(§)=k.

4.1 Corollary. The Hilbert series of H%A% is given by

FHYA"),x)= ) x.
P
(See Proposition 2.12 for a description of when I;:(Z).) 0
Next we come to the main result of this section.

4.2 Reciprocity Theorem. We have

FUA% %), =(— 1) ¥ x"+(— 1 Y 7(5)x, (13)
k5 75y

where 7(I7) denotes the reduced Euler characteristic of I,
Proof. By Theorems 2.2 and 2.10,

.M& EM&

F(A% x), (—D)'F(H(A%), x)

(-1 Y (dim H, |, _([)x’

i=0 vyeE*
d—1

=(=D" Y x"+ Y (=1 ) (dimH, ,_()x
yeE® i=0 ye Ex
F.,:(D F,*+9

(=1 Y X (=1 Y (Z(—1)"‘1“dimkHd_17i(I;))xV.
ye E* yeE* \i=0
=9 r,*0

The proof follows from the definition of #(I). 0
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43 Corollary. A necessary and sufficient condition on (&, «) in order for

F(A% x), =(—1)" ) x7 (14)

ye Ex
ry="90
is that 7(I')=0 whenever ['+§. 10
Note that by Corollary 2.11, (14) holds whenever A* is Cohen-Macaulay.
The converse is false. For instance, it follows from [St,, Ex. 8.6] that if

30 0 —1| ]
30 -1 0
4 -1 -1 0
o=|1 -1 1 0|-1,],
1 -1 0 1
4 -1 0 -1
2 -1 o ol

(X:(Z,Z, 19 - 17 - 1’ 17 1)7

then (14) holds but A* is not Cohen-Macaulay. (Here I, denotes the 7 x7
identity matrix.) In general, Theorem 4.2 gives an expression for F(A%x), in
which the right-hand side of (14) is the “main term.” We may regard the terms
arising from I 40 (or rather 7(I))+0) as “error terms.”

We now complement Theorem 4.2 by giving a more precise form of
Corollary 4.1. Let B be a homomorphic image of a Gorenstein ring A, and let
d=dimB, c=dim A. Then the canonical module Q(B) (also denoted Kj) is

defined to be
Q(B)=Ext 4B, A). (15)

(As a B-module, Q(B) does not depend on the choice of 4.) Eq. (15) makes
sense when B is replaced by any finitely-generated 4-module M. Hence we
define in general Q(M)=Ext5 %M, 4), where A is Gorenstein, M is a finitely-
generated A-module, c=dim A, and d =dim M.

Suppose 4=k[x,,...,x,], a polynomial ring over the ficld k, given an IN"-
grading so that A,=k Let A, U A, be the irrelevant ideal, and suppose

that M is a finitely-generated Z" graded A-module of dimension d. Let I(A)
=k[x7'...,x, '], the injective envelope of k=4/A4,. Then there is a unique
finitely-generated (Z"-graded) A-module Q' (M) for which

Hom ,(H% (M), I(4)=Q'(M)®, A, (16)

where A denotes the A, -adic completion of A. It is well-known that Q'(M)=
Q(M) [H-K, Ch. 5], so if we wish we can take (16) rather than (15) as the
definition of Q(M). More generally, the local duality theorem [ibid.] asserts in
the present context that

Hom ,(H', (M), I{A)) =Ext{ (M, A)®,A, (17)
or equivalently, ' .
Hom (Ext (M, A), [{A)) xH', (M). (18)
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We also note that it follows from (17) or (18) (in the case i=d) that the Hilbert
functions of HY (M) and Q(M) are related by
dim H% (M) _,=>dim, Q(M),. (19)

_a =

4.4 Theorem. For any (@, «), let A* denote the vector space kE* with basis E°
and regard A* in an obvious way as a A-module. Then (A% is isomorphic to the
submodule W of A* generated (in fact, spanned ) by the monomials x*e A* such
that I ,,:(Z).

Proof. A straightforward generalization of [St;, Lemma 6.2] shows that Q(A%)
is isomorphic, as a Z"-graded R-module, to a homogeneous submodule of A%
By (19) and Corollary 4.1, the Hilbert functions of ¥ and (A% agree. But
since every nonzero homogeneous component 71;, of A* is a one-dimensional
vector space, every homogeneous submodule of A* is uniquely determined by
its Hilbert function. Hence ¥ =(A1%). [

When «=0 and (without loss of generality) EnIP"=%=0, we obtain from
Theorem 4.4 and Proposition 2.12(c) a simple description of Q(A). This result
was first proved in [Sty, Thm. 6.7].

4.5 Corollary. Suppose EnIP"+0. Then Q(A) is isomorphic to the ideal of A
generated (in fact, spanned) by all x* with Be EnTP". []

We can now strengthen Corollary 4.1 (and therefore Theorem 4.2) by
explicitly describing HY(A%), whose Hilbert series comprises the “main term” of
the formula for F(A% x)_ .

4.6 Corollary. Let V* be the k-vector space with basis {x": I.=0}. Define a A-
module structure Ax V*—V*on V* by the rule

o Xt I, =0 (e, x T Te V)
0, otherwise.
Then V*~ HYA%.
Proof. By (18), we have
HYA*) = Hom ,(2(A%), 1(A)),

where A=k[x,,...,x,] is some polynomial ring over which A is a finitely-
generated (Z"-graded) module. For every feE* such that I_,=9, there is (using
the description of (A7) in Theorem 4.4) a unique ¢y eHom ,(£2(A%), I(A)) such
that ¢,(x’)=1el(A)=k[x7",...,x,']. It is easily checked that the map

H(A%)— V* which sends ¢, to x~# is an isomorphism. []

5. A Combinatorial Decomposition

Suppose that M is a Z"-graded finitely-generated module over an N"-graded k-
algebra R. Let o: Z"—>Z be 2 homomorphism of abelian groups such that (i)
a(INY)< N, and (i) if feIN" and o(f)=0, then f=0. Define an N-grading on R
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by setting deg x=0(ff) whenever xeR,;. We will call this procedure “specializ-
ing to an IN-grading.” Similarly define a Z-grading on M and call this “spe-
cializing to a Z-grading.” Given such a Z-grading of M, the Noether normal-
ization lemma (in the graded case) guarantees the existence of a system of
parameters 0,,...,0, which is homogeneous with respect to the N-grading. (In
general, there need not exist a system of parameters which is homogeneous
with respect to the original N"-grading.) It is well-known that M is Cohen-
Macaulay if and only if M is a free module (necessarily finitely generated) over
the polynomial ring S=k[0,,...,0,]. Moreover, since Z-homogeneous elements
His-.--1, form a basis for M as an S-module if and only if their images in M’
=MH0,M+...+0,M) are a k-basis for M’, it follows that we can choose
His---5 Y, to be Z"-homogeneous. More generally, if depth M =e and if 0,,...,0,
is a maximal N-homogeneous M-sequence, then M is a free k[0,,...,0,]-
module (but no longer finitely-generated when ¢ <d=dim M) which posesses a
Z"-homogeneous basis.

There are many circumstances involving combinatorial considerations in
which one would greatly desire that 0,,...,0,, as discussed above, are IN"-
homogeneous. Since this is in general impossible, we offer the following conjec-
ture as a possible replacement.

5.1 Conjecture. Let R be a finitely-generated N"-graded k-algebra (where R,
=k as usual), and let M be a finitely-generated Z"-graded R-module. Then there
exist finitely many subalgebras S,, ..., S, of R, each generated by algebraically
independent IN"-homogeneous elements of R, and there exist Z"-homogeneous
elements n,, ..., n, of M, such that

t
M= H n:S;,  (vector space direct sum)
i=1
where dimS,=depth M for all i, and where n;S; is a free S-module (of rank
one). Moreover, if k is infinite and under a given specialization to an IN-grading
R is generated by R, then we can choose the (N"-homogeneous) generators of
each S; to lie in R,. [

This conjecture is valid for n=1. When M is Cohen-Macaulay we can pick
S,=S,=...=S,; and for general M it follows e.g. from [B-G, Thm. 2.1] that
there are IN-homogeneous elements 0,,...,0, of R such that §;
=k[0,,0,,...,0,] for some 0 =s;=d.

The main purpose of this section is to prove Conjecture 5.1 when M =4
=kE (ignoring the last sentence of the conjecture, which was included so that
the question raised in [St,, p. 149, line 6] or [G, Rmk. 5.2] would follow
affirmatively). Equivalently:

5.2 Theorem. There exist free (commutative ) submonoids E,...,E, of E, all of
rank d =dim A, and elements 8, ...,0, of E, such that

1
E= U (6,+E) (disjoint union). (20)
=1

Remark. Note that (20) establishes a “canonical form” for the elements of E.
More precisely, if y,;,...,7iq is @ basis for E; {(as a free commutative monoid),
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then for every BeE there exists a unique integer ic[t] and unique integers
a,,...,a,eN such that

t
=0+ _Zlai%'j-
Jj=

If one did not require rank E;=d in (20), then Theorem 5.2 would follow from
very general considerations in [C-S]. Actually, Theorem 5.2 was essentially
proved in [St,, Sect. 1], but from a different point of view. Here we will sketch
the argument in {St.] using our current notation and terminology.

Proof of Theorem 5.2 (sketch). Let 2 be the convex (d — 1)-polytope defined in
Sect. 1.

Step 1. 1t follows from the process of “pulling the vertices” [M-S, p. 116]
that there exists a triangulation 4 of 02 with the following properties:

(a) the vertices of 4 and of Z coincide, and

(b) 4 is the boundary complex of a simplicial convex polytope #".

Step 2. Let v be the vertex that was pulled first in Step 1. Let 4, be the
subcomplex of A consisting of all faces F not containing v. Then the cone
C(v, 4,) from v to 4, forms a (rectilinear) triangulation of £

Step 3. By property (b) above and the techniques of [B-M] (see [M-S, p.
177]), there exists a shelling G,,G,,...,G, of 4 such that if veG, and i<s, then
veG,, ;. By definition, G,G,,...,G, is a shelling of 4 if G,G,,...,G, is a
linear ordering of the maximal (i.e., (d — 2)-dimensional) faces of 4 such that if
2<i<s, then (G, VG, U...uUG,_;)NG, is a union of (d—3)-faces of G,.

Step 4. Let j+1 be the least integer for which veG; ;. Then G,,G,,...,G;
is a shelling of 4,, so C(v,G,), C(v,G,),...,C(v,G)) is a shelling of C(v,4,).
Write C,=C(v, G).

Step 5. Let Q; be the submonoid of E consisting of all feE such that the
ray in R” with endpoint 0 and containing f passes through C,. Since C; is a (d
—1)-simplex, CF(Q;) consists of d linearly independent vectors f,, f;5,---, Bia-
Let N-CF(Q,) be the free monoid which they generate. Define P,

d

=Qir\{ Y ;B 0§aj<1}. Then |P|< o and @;= ') (y+N- CF(Q)).
Jj=1 vep,

Step 6. Let F, be the unique face of C; minimal with respect to being not
contained in (C,u...uC,_)nC,;. Let T;={feCF(Q): the ray from 0 through
p intersects F;}. Given yeP, define

P=y+2{feT:y is linearly dependent on CF(Q,)— {f}.
Then ;
E=|) |J(@+N-CF(Q).

i=1 yeP,

This yields the desired decomposition of E. []
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