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MAGIC LABELINGS OF GRAPHS, SYMMETRIC
MAGIC SQUARES, SYSTEMS OF PARAMETERS,
AND COHEN-MACAULAY RINGS

RICHARD P. STANLEY

1. Introduction.

Let T be a finite graph allowing loops and multiple edges, so that T' is a
pseudograph in the terminology of [5]. Let E = E(T) denote the set of edges
of T' and N the set of non-negative integers. A magic labeling of T of index r
is an assignment L : E — N of a non-negative integer L(e) to each edge ¢ of T
such that for each vertex v of T, the sum of the labels of all edges incident to v
is r (counting each loop at v once only). We will assume that we have chosen
some fixed ordering e, , e, , - - - , e, of the edges of I'; and we will identify the
magic labeling L with the vector « = (a;, @z, + -, o) € N, where a; = L(e;).

Let Hr(r) denote the number of magic labelings of T of index ». It may happen
that there are edges ¢ of I' that are always labeled 0 in any magic labeling. If
these edges are removed, we obtain a pseudograph A satisfying the two condi-
tions: (i) Hr(r) = H,(r) for all r € N, and (ii) some magic labeling L of A
satisfies L(e) > 0 for every edge e of A. We call a pseudograph A satisfying (ii) a
positive pseudograph. By (i) and (ii), in studying the function H(r) it suffices
to assume that I' is positive. A magic labeling L of T' satisfying L(e) > 0 for
all edges ¢ € E(I') is called a positive magic labeling. Any undefined graph
theory terminology used in this paper may be found in any textbook on graph
theory, e.g., [5].

In [14] the following two theorems were proved.

TrEOREM 1.1. [14, Thm. 1.1]. Let T be a finite pseudograph. Then either
H(r) = 8, (the Kronecker delta), or else there exist polynomials P (r) and Qr(r)
such that Hr(r) = Pr(r) + (=1)'Qr(7) for all r € N.

TuEOREM 1.2 [14, Prop. 5.2]. Let T be a finite positive pseudograph with at
least one edge. Then deg Pr(r) = q — p + b, where q is the number of edges of T,
p the number of vertices, and b the number of connected components which are
bipartite.

For reasons which will become clear shortly, we define the dimension of T,
denoted dim T, by dim I' = 1 + deg Pr(r). In [14, p. 630], the problem was
raised of obtaining a reasonable upper bound on deg Qr(r). It is trivial that
deg Qr(r) < deg Pr(r), and [14, Cor. 2.10] gives a condition for Q.(r) = O.
Empirical evidence suggests that if T' is a “typical’’ pseudograph, then deg Qr(r)
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will be considerably smaller than deg Py (r). In this paper we will give a rigorous
justification of this empirical fact. We will give an upper bound for deg Q. (r)
which we believe to be the best possible ‘“theoretical’’ upper bound. (The degree
of Qr(r) may be smaller than this upper bound because of ‘““accidents’ in the
structure of I'. See Example 3.2 for an illustration of what we mean by the
term “‘accident.””) The upper bound we obtain depends on analyzing a certain
commutative ring R" associated with I'. We will try to provide a reasonable
amount of ring-theoretic background for the reader unfamiliar with commutative
algebra.

When T is the complete graph on n vertices with one loop at each vertex,
H(r) is the number S, (r) of n X n symmetric matrices of non-negative integers
such that every row (and therefore every column) sums to r. Using a combina-
torial argument whose basic idea was kindly supplied to this writer by Daniel
Kleitman, we can transform our bound on deg Qr(r), which depends in a rather
complicated way on the structure of T, into an explicit integer. We obtain the
result that S,(r) = P,.(») + (—=1)"Q.(r), where

deg P,(r) = (g) and deg Q,.(r) < (n ; 1) -1

if n is odd, while

ag 0 < ("5 ) -1

if » is even. We conjecture that equality holds for all n. This conjecture is
true forn < 5.

It is more convenient to work with the generating function Fr(\) =
> 0" Hy(r)\ than with the function H(r) itself. Using the fact that the
ring R" is a Cohen-Macaulay ring (which follows from a result of M. Hochster),
we are able to obtain information on the coefficients of certain polynomials
associated with F.(\). For instance, we are able to show that F1r(\)(1 — \*)%isa
polynomial with non-negative integer coefficients, where d = dim T

2. Some ring theory background. Let I' be a finite pseudograph with edge
set £ = E(I') = {z,,2,, -+, x,}. Regard the z,’s as independent indeter-
minates and let R denote the polynomial ring R = Clz,, - - - , z,], where C denotes
the complex numbers. (We could use any infinite field in place of C, but for
definiteness we will use C.) Let R" denote the subring of R generated by all
monomials z,**- - - x,%¢, where o = (a,, -+, @,) is a magic labeling of I'. For
short we write x* = z,** --- z,%. Thus since the sum o + 8 of two magic
labelings o and B8 of T is also magic, it follows that the monomials x*, where «
is a magic labeling of T, form a vector space basis for R".

We want to investigate the structure of the ring R'. TFirst we will review
certain relevant facts from commutative ring theory. Most of these facts are
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well-known and can be found in a number of references, of which [1], [3], [9], [11],
[12], [13], [17], are a sample. Results which we shall need which can be found in
these references we will merely state without proof; a few results which do not
explicitly appear in these references we will prove. We shall restrict our attention
to certain kinds of rings which we call “G-algebras”, though some of our results
on G-algebras are actually valid for more general classes of rings. There is a
well-known analogy between the theory of G-algebras and the theory of local
rings. Thus many of the references which we shall give for results on G-algebras
actually do not refer to G-algebras as such, but to local rings. If one replaces
“local ring” by “G-algebra’’, “the maximal ideal m of a local ring R’ by “‘the
irrelevant ideal 4, + 4, + - of a G-algebra A = A, + A, + 4, + -7,
“ideal” by “homogencous ideal”, etc., the theorems and their proofs remain
valid.

We proceed to define the concept of a G-algebra. By a graded ring, we mean a
commutative ring 4 with identity whose additive group has a direct sum decom-
position A = A, + A, + --- such that 4,4; C A,.;. If in addition 4, is a
field k, so that 4 is a k-algebra, and if 4 is finitely-generated as a k-algebra
(so that A is Noetherian), then we say that 4 is a G-algebra. We can make the
ring R" defined above into a G-algebra by defining R," to be the vector space
spanned by all monomials x* such that « is a magic labeling of index r.

IfA = 4,4 A, + - is a G-algebra, we say that an element x of A is homo-
geneous if x & A, for some r € N; and we say that x has degree ,
written deg ¢ = 7. In particular, deg 0 is arbitrary. Anideal I of 4 is said to be
homogeneous if it is generated by homogeneous elements of A. The assumption
that a (F-algebra is finitely-generated implies that each A4, is a finite-dimensional
vector space over k = A,. The Hilbert function H, : N — N of A is defined by
H,(r) = dim, A, . Thus for the G-algebra structure we have defined on R", we
have Hyr(r) = H(r), the number of magic labelings of T' of index 7.

If A is a G-algebra, the Poincaré series F,()\) is a formal power series with
integral coefficients in the variable A defined by F,(\) = Y.,.," H (r)\'. Tt is
well-known that F,(\) is a rational function of \ [1, Thm. 11.1] [13, Cor. 4.3].
If T is a finite positive pseudograph, we abbreviate Frr(\) to Fr(\). It follows
from Theorem 1.1 that F(\) has the form

Wr\)

M s = T

where d, s € N and where W()\) is a polynomial in \ with integral coefficients
satisfying (a) Wr(1) # 0and (b) Wy (—1) # 0ifs > 0. Thusd = 1 + deg Pr(r)
= dim I, and s = 1 4+ deg Qr(r) (where we set the degree of the polynomial
0 to be —1). We call s the subdimension of T, denoted s = sdm T.

A fundamental result of commutative algebra [1, Thm. 11.14] [3, Thm. 2.3]
(12, p. ITI-7, Thm. 1] [13, Thm. 5.5] states the following
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ProrosiTion 2.1. Let A be a G-algebra. Then the following three numbers
are finite and equal:

(1) The length of a longest chain of prime ideals of A,

(ii) The maximum number of elements of A (which can be chosen to be homo-
geneous) which are algebraically independent over k = A, , and

(iii) the order to which N = 1 7s a pole of the Poincaré series F ,(\).

The integer defined by Proposition 2.1 is known as the Krull dimension of A
and is denoted dim A. (The Krull dimension “dim” is not to be confused with
the vector space dimension ‘“dim,”.) There follows immediately from Proposi-
tion 2.1 and our observations about F(\) the next result:

CoROLLARY 2.2. Let T be a finite pseudograph. Then dim R" = dim T.
Thus if T is positive with at least one edge, then dim R* = ¢ — p + b + 1, in the
notation of Theorem 1.2.

Corollary 2.2 of course explains our reason for the notation “dim I'’. We now
come to another basic result in commutative algebra [12, p. III-11] [13, §6].

Prorosition 2.3. Let A be a G-algebra, and let 8, , 0, - - -, 6, be homogeneous
elements of A of positive degree. The following five conditions are equivalent:

(1) d = dim 4 and dim A/(6,, --- , 6,) = 0.

(ii) d = dim A and dim, A/(8,, - -+, 6,) < « (recall that dim, denotes dimen-
ston as a vector space over k, not Krull dimension),

(i) For any subset {6, , -+ ,0;,} of {6, -+, 0.}, dim A/(6;, , -+, 8:,) =
dim A — j; and dim A = d.

@iv) 6, , 65, --- , 8, are algebraically independent over k and A is a finitely-
generated module over the polynomial subring k[6, , - - - , 6,].

(v) 0,,0,, ---, 0, are algebraically independent over k and A is integral over
the subring B = k[0, , - - -, 04] (i.e., every element of A satisfies @ monic polynomial
with coefficients in B).

Aset6,,0,, -, 0, of homogeneous elements of positive degree satisfying any
one of the above five (equivalent) conditions is known as a homogeneous system
of parameters (h.s.o.p.) for A. Every G-algebra A possesses an h.s.o.p. (e.g.,
{1, p. 69, Ex. 19] [12, p. III-20, Thm. 2] [13, Thm. 5.4]). If 6,, ---, 6, belong to
some h.s.0.p., we call 8, , - -+, 0, a partial h.s.o.p. If 6 belongs to some h.s.0.p.,
then we call 6 a parameter. A necessary and sufficient condition that a set
6,, :+-, 0; of homogeneous elements of A of positive degree be a partial h.s.o.p.
is that dim A/(6,, ---, 6;) = dim A — 7 (e.g., [12, p. III-11, Prop. 6]).

ProrositioNn 2.4. Let A be a G-algebra, and let 0, , --- , 8, be an h.s.o.p.,
say with deg 6; = e; . Then the Poincaré series F4(\) can be written in the form

P = 70/ TTa =),

where V 4(\) 28 a polynomial in \ with integer coefficients.
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Proof. By Proposition 2.3, 4 is a finitely-generated (graded) module over
the polynomial ring k[8, , - -+ , 6.). The proof now follows from [1, Thm. 11.1]
or [13, Thm. 4.2].

If P is a prime ideal of a G-algebra A, define the height of B (sometimes called
the rank of PB), denoted At B, to be the length of the longest chain of prime ideals
of A whose maximum element is P. (Equivalently, it B = dim A4 , where
Ag is the localization of 4 at B.) Thus At B = 0 if and only if P is a minimal
prime of A. If Iis any ideal of A, define it I = inf At P, where the inf is taken
over all prime ideals P of A which are minimal with respect to containing I.

Let I be a homogeneous ideal of a (G-algebra A. Besides ht I, we wish to
consider two other numerical invariants of I. Define quo I, the quotient height
of I, by quo I = dim B — dim R/I. Also define par I to be the cardinality of
the largest partial h.s.o.p. contained in I.

ProrosiTioN 2.5. Let I be a homogeneous ideal of a G-algebra A. Then
ht I < quo I = par I.

Proof. The inequality ht I < quo I is well-known and easy to prove. Namely,
let P be a prime ideal containing I such that dim R/P = dim R/I (such a B
exists since the primes in R/ are just the images of primes in R containing I).
Then dim R/I + ht P = dim R/P + ht B < dim R (see [12, p. 11I-21]) and
htP > htI. Thusdim R > dim R/I + ht I, which is equivalent to ht I < quo 1.

Suppose 6, , - -, 0, is a partial h.s.0.p. contained in I. By Proposition 2.3,
dim A/(6,, ---,6,) = dim A — 7, so a fortiori dim A/I < dim A — 7. Thus
par I < quo 1.

It remains to show par I > quo I. If quo I = O there is nothing to prove.
Now suppose that quo I > 1 and par I = 0. Thus for all homogeneous z € I,
dim A/(x) = dim A. This means each homogeneous x & I is contained in a
prime ideal P of A, necessarily minimal, such that quo B = 0. Since a Noetherian
ring contains only finitely many minimal primes (e.g., [9, Thm. 88]), we have
that the set I, of homogeneous elements of I is contained in a set union B, \J
B, - UPB; of prime ideals B, , Po, - -+, B;. A straightforward modification
of an argument in [9, Thm. 81] or [13, Lemma 5.1] shows that then I, is contained
in some PB; . Namely, we argue by induction on j. For every 7 we may assume
LB U - UB, U .. U, , where the notation P, means that P, is
omitted. Pick y; € I, butnot in B, U --- UR, U --- U PB; . The desired
result is trivial forj = 1. Forj > 2,let a = degy, and b = deg y.ys - - ¥ ,
and set ¥y = y,° + (yays -+ ¥;)*. Then y € I, but y lies in none of the P.’s,
acontradiction. Thus I, C P, for some 7. Since I is homogeneous, I C B, .
Thus quo I = 0, contradicting the assumption that quo I > 1. Hence if
quol > 1, then par I > 1.

The proof now proceeds by induction on quo I. By the above paragraph,
we are done if quo I = 1. Assume quo I > 1. By the above, I contains a
homogeneous parameter §. Let S = R/(6) and J = I/(8). By Proposition 2.3,
dim S = dim R — 1. Moreover S/J = R/I,soquo J = dim S — dim S/J =
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dim R — dim R/I — 1 = quo I — 1. By induction we may assume J contains
a partial h.s.o.p. of cardinality quo I — 1. Lifting these parameters back to I
and adjoining 6, we obtain a partial h.s.o.p. in I of cardinality quo I. Hence
par I > quo I, and the proof is complete.

Note. We will only need the equality quo I = par I of Proposition 2.5, but
we have added the inequality involving ht I for the sake of completeness. Also
for the sake of completeness we include the next proposition.

ProrosiTioN 2.6. Let A be a G-algebra, and suppose that A is also an integral
domain. Let I be a homogeneous ideal of A. Then ht I = quo I = par I.

Proof. By Proposition 2.5, it suffices to show that At I = quo I. Now any
integral domain B which is a finitely-generated algebra over a field & has the
property that all maximal chains of prime ideals have length equal to dim B
(e.g., [12, Cor. 2, p. I11-24]). Hence it P + dim A/P = dim A for every prime
ideal P of A. Thus ht I = inf (ht ) = inf (dim R — dim R/P) = dim B — sup
dim B/P = dim R — dim R/I = quo I, where the inf’s and sup’s are over all
primes minimal over I. This completes the proof. ‘

We need some information on the degrees of the elements of a system of
parameters for a G-algebra A. We will prove a somewhat stronger result (Propo-
sition 2.9) than we need for the time being, since we will require such a result
in Section 5. An even stronger result can be proved, but Proposition 2.9 is
adequate for our purposes. Proposition 2.9 may be regarded as an elaboration
of the well-known fact (see, c.g., [1, p. 69, Ex. 16]) that if k is infinite and A is
generated by 4, , then A possesses an h.s.0.p. 0, , - - -, 6, such that eachdeg 6,,=1
We first require two lemmas.

LeMmma 2.7. Le{ A be a G-algebra, and let I C J be homogeneous ideals. Lel
B = A/I, and let J denote the image of J in B. Then par J = par J — par I.

Proof.  Using Proposition 2.5 and the identity B/ J = A/J, we have par J =
dim B — dim B/J = (dim A — parI) — dim A/J = (dim 4 — dim A/J) —
par I = par J — par I. This completes the proof.

Lemma 2.8, Let k be an infinite field, and let V be a finite-dimensional vector
space over k. If Sy, ---, S, are subsets of V whose set-union is V, then some S
contains a basis for V.

Proof. Letr = dim V. We can find an infinite sequence v, , v, , - - - of ele-
ments of ¥ such that any r of them form a basis for V, since choosing v;,, once
vy, Vs, + -+, ¥; have been chosen merely involves avoiding the zeroes of finitely

many polynomials with coefficients in k. Then one of the S; must contain r
of the v.’s (in fact, infinitely many of them), so the proof is complete.

ProrosiTion 2.9. Let A be a G-algebra such that k (= A,) is infinite. Let
I, -, 1, be a sequence of homogeneous ideals of A such that each I; is generated
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by homogeneous elements all of the same degree, say d; . Furthermore assume that
d;_,dividesd; for2 <17 <s. LetJ, =1, 41,4+ --- 4+ 1I,,andlet p;, = par J, .
Then A possesses a partial h.s.o.p. 8, , 0, , -+, 0,, such that

deg 0,,_,.1 = deg 0,,_,.p = -+ = deg 0,, = d., 1 <7<,

where by convention p, = 0.

Proof. The proof is by induction on p, . The theorem is trivial for p, = 0.
Now assume the theorem for p, < p, say, and suppose we are dealing with the
situation p, = p > 0. Let K; be the ideal of A generated by the set of all
2" where for some ¢ < j, x is an element of I, of degree d; . Define K,, =
Ki+Iiow+1Tin+ - 4+1,,j<m<s.

We claim that par K,, = par J,,,j < m <s. Let B = A/K,,. LetJ, be
the image of J,,in B. Since K,, C J,,, by Lemma 2.7 we have par K,, = par J,,
— par J,.. But every clement of J,, is nilpotent, so par J,, = 0. This proves
the claim.

Now let j be the least integer for which par K; > 0, and suppose that K is
gencrated by homogeneous elements 4, , 45, -+, ¥, , all of degree d; . We now
claim that some linear combination 8, = Z ay; , a; € k, is a parameter.
Otherwise each such 6, belongs to a minimal prime ideal P of A satisfying
par B = 0. Since there are only finitely many minimal primes in a Noetherian
ring, by Lemma 2.8 some minimal prime P satisfying par = 0 contains a
basis for the vector space spanned by the y,’s. Since P is an ideal, we get K; C B,
contradicting par K; > 0. This proves the claim.

Let C = A/(8,), where 6, is the element constructed in the previous paragraph.
Since 6, is homogeneous, C becomes a (F-algebra by letting C, be the i lmage of A,
Let I denote the image in C of an ideal I of A. Then K; , I, I;.s, - ,I,
is a sequence of homogeneous ideals of C such that K, (respectively, I,) is
generated by homogeneous elements all of degree d; (respectively, d;). More-
over, K, = K; +I,,, + -+ +1I,,]<i<s Lettingl = () and J = K,
in Lemma 2.7, we have par K, = par K; — 1, < ¢ < s. By the induction

hypothesis, C possesses a partial h.s.0.p. 8,, - - - , 8,, such that deg §, = deg 0; =

=degd, =d,anddegd,,_,,, =degb, ,.o= - =degf, =d;,,2<
¢ < s. Lifting 8,, - -, 8,, back to homogeneous elements 6, , - - - , 6,, of A and
adjoining 6, , we obtain our desired partial h.s.o.p. 6, , 6,, -+, 8,, . This com-

pletes the proof.

CoroLLARY 2.10. Let A be a G-algebra where k = A, is infinite, and let I be a

homogeneous ideal of A. Let par I = p, and suppose that y, , ys , ~++ , Y. 18
a homogeneous set of generators for I (as an ideal of A). Lete; = deg y. , and let
N be the least common multiple of e, , -+ , e, . Then I contains a partial h.s.o0.p.
0y, -+, 8, of cardinality p, such that each 8 is of degree N.

Proof. Let I, be the ideal of A generated by the elements y,"'*". Let I =
I/I, denote the image of Tin A/I, . Then every element of I is nilpotent, so
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par I = 0. It follows from Lemma 2.7 that par I, = par I. The proof now
follows from the case s = 1 of Proposition 2.9.

3. The formal subdimension of ' We are now ready to resume our discus-
sion of magic labelings.

Definition. Let T be a finite pseudograph, and let R” be the ring defined in
the previous section. Let I" be the ideal of R" generated by all monomials x*,
where « is a magic labeling of T' of odd index (i.e., x* € R;" for some odd integer
j, where R' = R," + R," + --- is the grading defined in the previous section).
The formal subdimension of T, denoted fsd T, is defined by

(2) fsd T = dim I' — par I".
TueorEM 3.1. Let T be a finite pseudograph. Then sdm T' < fsd T.

Proof. Let s = par I'. By Corollary 2.10, we can find a partial h.s.o.p.
6,,8,, -, 0, of R such that each 8, has degree equal to the least common
multiple of the degrees of the generators of I'. By assumption these generators
all have odd degree, so each 8; has odd degree N. Extend 6, , - - -, 8, to an h.s.o0.p.
0., +,6,,whered = dim . Lete, = deg8;fors+1 <7 < d. By Proposi-
tion 2.4, we have

> HoW

n=0

®3) Fr(N)

d

Ve)/@ =A% IT @ =9,

i=8+1
where V:(\) € Z[\]. Then since N is odd, we have by (3)
sdmT <d —s = dim T — par I".

This completes the proof.

We believe that Theorem 3.1 provides the best possible ‘“theoretical’”” upper
bound for sdm I' (and hence for deg Q1 (r), since 1 + deg Qy(r) = sdm I'). In
other words, if T satisfies sdm I' < fsd T, this is because of very special properties
of T which cannot be explained in a general way. Thus we believe that a
“typical” pseudograph T satisfies sdm I' = fsd T. Of course we are speaking
heuristically when we use the term ‘‘typical”’.

Example 3.2. We give an example where sdm I' < fsd T, and we explain
why this strict inequality is due to “accidental” properties of I'. Let T be the
pseudograph (actually a graph) of Figure 1. Define the magic labelings

o' = (ly 1,10,0,2,0,0,1,1, 1): o = (1: 0,0, 0) 19 0, 1: 0,0, ly 0)’
o = (O) 1) 0’ 1) 0,0, O) 1, 0)0) 1)’ of = (07 1,0, ]’ 0, 0’ 1; 0) 0,1, O)y
o = @,o9,0,0,1,0,0,1,0,0, 1)
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F1GURE 1

For convenience set 7; = x*'. Then a minimal set of generators for R' (as an
algebra over C) consists of 4, , ¥», -+ , ¥s . The ideal I in the definition of
fsd T is generated by ¥, , ¥z, ¥a, ¥s . It is easy to check that dim I' = 4 and
par I" = 3. Hence fsd T' = 1, so we would expect F.(\) to have a simple pole
at A = —1. However, in fact F(\) is analytic at A = —1. To see this, note
that all relations among the generators y, , - - - , y5 are consequences of y,y; =
ysYs . Hence since deg y, = 2 and deg y, = deg y; = deg y, = deg y; = 1,
we have

1= 1
1T —=NQ =2~ a-=n"

Fr(\) =

It is merely an “accident’” that the relation between v, , ys , ¥4 , ¥s , giving rise
to a factor 1 — A\* in the numerator, cancels the factor 1 — \*in the denominator
coming from the generator i, . There is no “theoretical’”’ reason why y, should
be related to ¥, , ys , ¥s , ¥s in this way; indeed, y, is algebraically independent
of Yo, Y3, Ya, Ys .

There is another way to view the above example. An h.s.o.p. for R" can be
takentobe 6, = y,,0;, = y,, 0 = Y3, 0, = ys + ys . Now by Proposition 2.3,
R" is a finitely-generated module over the polynomial ring C[6; , 8, , 65 , 04].
In fact, R is a free module with generators 1 and y, . (For the significance of
R" being free, see Proposition 4.1.) Thus we get

deg 1 deg 4
Fl‘()\) = Z\ A = 12+ A 3 = 1 '
H (1 _ )\degﬂi) (1 — A )(1 - )\) (1 - )‘)

i=1
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Again, it is an ‘“‘accident’” that the factor 1 4+ ) in the numerator, coming from
the module generators 1 and y, , cancels the factor 1 — A\* coming from the
parameter 6, .

Remark. The reader familiar with [14] may wish to know its relationship to
the present paper. Although stated differently, Proposition 2.7 of [14] asserts
essentially that if J is the ideal of R" generated by all monomials x* where « is
magic of index two, then par J = dim I'. It then follows immediately from
Proposition 2.4 of this paper that F(\) has the form (1). In [14], Proposition
2.4 of this paper has been replaced by Theorem 2.5.

Theorem 3.1 gives us a bound for sdm T, but it is not very satisfactory since
it leaves open the problem of computing fsd I'.  We would like a purely com-
binatorial description of fsd I'in terms of the structure of I'.  Such a description
is provided by the next result.

THEOREM 3.3. Let T be a finite pseudograph. Then fsd T' = max (dim A),
where A ranges over all positive spanning sub-pseudographs of T which do not
possess a magic labeling of odd indez.

Note. The assumption in Theorem 3.3 that A is positive is clearly unneces-
sary, since any finite pseudograph A has the same dimension as its maximal
spanning positive sub-pseudograph. The advantage of dealing only with
positive A is that dim A (= dim R*) can then be calculated by Corollary 2.2.

Proof. By Proposition 2.5 and the definition (2) of fsd T', we have
fsd T = dim ' — quo I" = dim R"/I".
Set
St =R"/I".

By Proposition 2.1, it follows that fsd I' is the maximum number of (homo-
gencous) elements of S which are algebraically independent over C. Now S*
is generated by monomials x*, where « is a magic labeling of I'. Thus fsd T' is
equal to the largest integer A for which there exist h magic labelings «; , -+, as
of T such that x**, - -+, x** are algebraically independent over C in S*. Now
x*, -+, x** will be algebraically independent in S if and only if the following
two conditions are satisfied:

@) If ay, -+, @, are non-negative integers, the monomial x*“**"*"**** does
not lie in I'. Equivalently, if « is a magic labeling of T, let supp « denote the
set of edges of I' on which a is positive and let 7 = \_J,_." supp a; . Let A denote
the spanning subgraph of T' with edge set 7. Then A has no magic labelings
of odd index.

(ii) The vectors @, , -+ , o are linearly independent over Q.

Thus fsd T is the largest integer h obtained as follows: A is a positive spanning
subgraph of T' which does not possess a magic labeling of odd index, and
ag, + -+, a,are magic labelings of A for which o, , - - - , @, are linearly independent
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over Q. But a,,- - -, e, are linearly independent over Q if and only if x**,-- -, x**
are algebraically independent in R*. The largest 4 for which x*, --- , x** arc
algebraically independent in R* is just dim A, so the proof follows.

4. A-sequences and Cohen-Macaulayrings. We know from Theorem 3.1 that
if T'is a finite pseudograph, then Fr(\) = Wr(\)/(1 — N1 + \)/, where

=dim I, f = fsd T, and W(\) is a polynomial in A. In order to obtain more
information about the generating function F(\), we need to introduce the
theory of A-sequences and Cohen-Macaulay rings. If A is a G-algebra, a
sequence of homogenecous elements 8, , 8, , --- , 6, of A is said to be a homo-
geneous A-sequence if the following two conditions are satisfied:

(1) The ideal (6, , 6, , --- , 6,) is not all of A. Equivalently, deg 6, > 0
forl <2<

(il) If 1 <7 < 7, then 6;is not a zero-divisor modulo the ideal (6, , 6, ,- - -, 6,_,).

Two well-known facts concerning homogeneous 4-sequences are the following:
Every permutation of a homogeneous A-sequence is a homogeneous A-sequence,
and every homogeneous A-sequence is a partial h.s.o.p. If is not true, however,
that an h.s.o.p. is a homogeneous A-sequence; and this fact leads to the next
proposition.

ProrosiTion 4.1. Let A be a G-algebra, and let 6, , - - - , 8, be an h.s.0.p., say
with deg 0, = e;. Let B = A/(8,, -+, 64), endowed with the natural “quotient
grading” (B, is the image of A,). The following four conditions are equivalent:

(i) 6., ---, 0, 1s an A-sequence,

(il) every h.s.o.p. of A is an A-sequence,

(iii) A 4s a freec module over the polynomial ring k[6, , --- , 64] (recall from
Proposition 2.3 that A is always a finitely-generated module over k[8, , - -+ , 6,]).

d
(iv) Fa) = 10 /T =),

If A satisfies any of the equivalent conditions of Proposition 4.1, then by
definition A is a Cohen-Macaulay G-algebra. The various implications needed
to prove Proposition 4.1 all can be found in the literature. The equivalence of
(1) and (ii) appears, e.g., in [12, p. IV-20, Thm. 2]. Condition (iii) is mentioned
in [7, p. 1036] and (13, Prop. 6.8]. Finally condition (iv) appears in [13, Cor. 6.9]
and [15, Cor. 3.2].

The next result is a special case of a theorem first proved by M. Hochster
[6, Thm. 1°].  Another proof appears in (10, p. 52]. Hochster’s result is general-
ized in [8]. By using Theorem 4.2 and known properties of Cohen-Macaulay
rings we could have simplified the proofs of Proposition 2.5 and Proposition 2.6
in the case A = R" (see, e.g., [11, (16.B)], but we felt it best to avoid the rela-
tively deep Theorem 4.2 whenever possible.

TureoreMm 4.2. Let T be a finite pseudograph. Then R is Cohen-M acaulay.
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Cororrary 4.3. Let I' be a finite pseudograph, and suppose that 8, , - -- , 6,
is an h.s.o.p. for R" with e; = deg 6, . Then the coefficients of the polynomial
Ve = FrO) I]io* (1 — \*) are non-negative.

Proof. LetB = R"/(6,, -+, 6,). By Theorem 4.2 and Proposition 4.1 (iv),
Vi) = Fz(\) = Y (dimc B,)\". This proves the corollary.

Corollary 4.3 expresses the coefficients of V1 (A) as dimensions of vector spaces.
It would be desirable to obtain a more combinatorial interpretation of the
coefficients (expressed directly in terms of T'), but we have been unable to do so.

Corollary 4.3 raises the question of what integers e, , e, , - -- , e, can be the
degrees of the elements of an h.s.0.p. of R", where I'is a pseudograph. A partial
answer to this question may be deduced from Proposition 2.9 and is the subject
of the next three propositions.

ProrositioNn 4.4. Let T be a finitte pseudograph, and letd = dim I'. Then R®
possesses an h.s.0.p. 0, , 0, -+, 0, wheredeg 8, = 2for1 <1 < d. Consequently
the power series Fr(N\)(1 — \*)* is a polynomial with non-negative integer coeffi-
crents.

Proof. Let I be the ideal of R" generated by all monomials x* ,where « is a
magic labeling of T' of index two. It is an immediate consequence of [14, Prop.
2.7] that par I = dim T. The proof now follows from Proposition 2.9 after
setting s = 1, I, = 1.

Prorosition 4.5. Let T be a finite pseudograph with dim T' = d, and suppose
that every magic labeling of T is a sum of magic labelings of index one. Then R"
possesses an h.s.0.p. 0, ,0,, -+, 0, wheredeg 8, = 1for 1 <1 < d. Consequently
the power series Fr(\)(1 — \)* is a polynomial with non-negative integer coefficients.

Proof. Let J" be the ideal of R" generated by all monomials x*, where a is a
magic labeling of index one. By the assumption on T', J" is the entire irrelevant
ideal R," + R," + .-+, so par J* = dim I. The proof now follows from
Proposition 2.9 (or in fact directly from [1, Ex. 16, p. 69]) after setting s = 1,
I, =J".

In [14, Prop. 2.9] a necessary and sufficient condition is given for T to satisfy
the condition of Proposition 4.5. A sufficient condition is that T’ minus its loops
be bipartite. Two special cases include: (a) T' is the complete bipartite graph
K,.. Thendim I' = (n — 1)® + 1 and H(+) is the number of n X n matrices
of non-negative integers such that every row and column sum is equal to r.
(b) T is K,, with a loop adjoined to each vertex. Then dim I' = n* -+ 1 and
H 1 (r) is the number of n X n matrices of non-negative integers such that every
row and column sum is at most 7.

ProrosiTioN 4.6. Let T be a finite pseudograph satisfying dim I' = d and
fsd T = f. Let J" be the ideal of R" generated by all monomials x*, where « s
a magic labeling of index one. Assume that f = dim I' — par J* (or equivalently,
par J© = par I", with I" as in (2)). Then R" possesses an h.s.o.p. 0, , -+ , 6,
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such that deg 6; = 1if1 <71 <d—fanddeg 8, =21fd—f+1<12<d.
Consequently, the power series Fr(\)(1 — N)*(1 + \)’ s a polynomial with non-
negative integer coefficients. (Of course even without the assumption f = dim I' —
par J*, we know from Theorem 3.1 that Fr(\)(1 — N)*(1 4+ \)’ is a polynomial
with integer coefficients.)

Proof. LetI, = J" and I, = I, where I is defined in the proof to Proposition
4.4. Since par I = dim T, the proof now follows from Proposition 2.9.

Proposition 4.6 raises the question of determining when a finite pseudograph T
satisfies the condition fsd ' = dim T' — par J".

ProrosiTioN 4.7. Let T' be a finite pseudograph, and let J* be the ideal of R®
defined in Proposition 4.6. Define ¢ = max, (dim A), where A ranges over all
positive spanning subgraphs of T which do not possess a 1-factor. Then fsd T' =
dim I' — par J" if and only if fsd T = g.

Proof. By mimicking the proof of Theorem 3.3 we obtain dim I' — par J " =g.
The proof now follows from Theorem 3.3.

Example 4.8. Let T be the pseudograph of Figure 2. Then dim T' = 3.
By Corollary 4.5, the coefficients of Fr(\)(1 — A*)*® are non-negative. Indeed,

Fi1GURE 2
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Fr(\)(@ — A)® = 1 4+ 2% One also can find an h.s.0.p. ¢, , 2, ¢; such that
deg o, = deg oo = 2,deg ¢; = 3. Indeed, Fr(\)(1 — N\*)*(1 — A% =14+ \* + 2\,
in accordance with Corollary 4.3. Moreover, fsd T' = 1, so by Theorem 3.1,
Fr(\)(1 — N1 — A»?is a polynomial. In fact, this polynomial equals 1 —
X + A\ Thus R" does not possess an h.s.0.p. ¥, , ¥» , ¥, such that deg ¢, = 1,
deg ¢, = deg ¢s = 2. In fact, I' has no magic labeling of index one.

In general it is difficult to tell whether a sequence 6, , - - - , 6, of homogeneous
elements of R" (I' a finite pseudograph) is a partial h.s.o.p. Theorem 4.2
however, allows us answer this question when the 8,’s are monomials.

Prorosition 4.9. Let T be a finite pseudograph, and let o, , ay , -+ , @, be
magic labelings of T. The following two conditions are equivalent:
i) x*, x**, ---, x** is a partial h.s.o.p. of RT,

(i) If ais a magiclabeling of T, if 1 <1 < j<s,andif a — a; and o — «;
are magic (i.e., have non-negative entries), then o — a; — «a; is magic.

Proof. (i) = (ii). Assume (i). By Theorem 4.2, x**, x*°, --- , x** is an
R"-sequence. Hence if 7 # j, x*, x*' is an R"-sequence. By definition this
means that if x*'X = x*'Y, where X, Y € R", then X = x**Z for some Z € R".
It is easily seen that we can take X, Y, Z to be monomials. Thus the condition
becomes: if &; + 8 = a; + v for some magic labelings 8 and v, then 8 = a;, 4 §
for some magic labeling 6. This is clearly equivalent to (ii).

(il) = (i) Suppose that (i) fails. For convenience write y; = x**. Thus for
some ¢ > 2, y, is a zero-divisor modulo (y,, -+, #:-1). (We can assume ¢ # 1
since R is an integral domain so each y; is not a zero-divisor.) Thus there is a
relation

(4) ?/iY = ?le) + Z/zXz + -+ yi—lXi—l ’

where X, , X,, -+, X,.,, YER " and Y & (,, -+, y:-1). Now Y is a linear
combination of monomials, so one of these monomials x’ must appear with
non-zero coefficient and satisfy x* & (y, , --- , y;,.1). Since the monomials
x* € R" form a basis for R", we obtain y,x* = y;x” for some j < 7. Thus
a; + B = a; +vbut 8 a; + 5. Hence (ii) fails, and the proof is complete.

CoroLLARY 4.10. Let T be a finite pseudograph. Suppose T possesses §
pairwise edge-disjoint spanning subgraphs Ty, --- , T, such that each T'; has a
magic labeling of odd index. (F.g., the T'.’s could be disjoint 1-factors of T.) Then
fsd T < dim T — s.

Proof. Let a; be a magic labeling of T'; of odd index. Since the T';’s are
cdge-disjoint, the labelings o, , - - - , , clearly satisfy condition (ii) of Proposition

4.9. Hence x*', x**, -+, x** is a partial h.s.o.p. of R". Since each x** € I",
we have par I' > s. Since fsd I' = dim I' — par I", the proof follows.

CoroLLARY 4.11. Let T be a finite pseudograph such that Hy(r) 5% 8,, . Then
either Pr(r) = Qv (r) or else deg Qr(r) < deg Pr(r).
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Proof. 1If Py(r) # Qr(r), then T has a magic labeling of odd index. Thus the
hypothesis of Corollary 4.10 holds with s = 1,80 fsd T < dim I' — 1. Since
deg Pr(r) = dim I' — 1 and deg Qy(r) < fsd T' — 1, the proof follows.

5. Symmetric magic squares. Theorem 3.3 may seem like an awkward
result to apply to specific graphs, but we will now give an example of its use.
Throughout this section A, denotes the complete graph on the vertex set

{1, 2, .-+, n} with one loop at each vertex. Thus A, has (n -|2— 1) cdges and

dim A, = (’2‘) + 1.

The functions H,, , Pa, , Q4. , F 4, are abbreviated S, , P, , Q. , F, respectively,
As pointed out in [14, p. 610], S,(r) is equal to the number of n X n symmetric
matrices of non-negative integers such that every row (and hence every column)
sums to . Such a matrix is called a symmetric magic square. S,(r) also has a
graph-theoretic interpretation—it is the number of regular pseudographs of
valency 7 on an n-element vertex set.

Some examples of the generating function F,(\) are:

RO = 1

) =

G = __li)liﬁ_

PO =T vaEy

oy L 4N 4 10N 4 437 4 N
P = rya Ty

L =N"a+N"
where
Vi) = 1 4 21N + 2223 + 1082)\° + 3133\* + 5722)\°
+ 7013\° + 5722\ + 3133\° + 1082)° + 222\"° + 21\ + N2

The formulas for F3 and F, are duc to L. Carlitz [2]. We calculated F5 with the
aid of a computer. By Theorem 5.5 below, it is only necessary to compute
Ss(r) for 1 < r < 6 in order to completely determine F;(A\). We computed
Ss(r) for 1 < r < &, using the last two values as a check. Methods for com-
puting S,(1) and S,(2) for any 7 appear in [2] and [4],

Recall that a 1-factor of a pseudograph T is a spanning subgraph I of T' such
that each vertex of T lies on exactly one edge of IV. Moreover, a 1-factorization
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of T'is a collection T';, , Ty, - -+, T',, of 1-factors of T such that each edge of T
appears in exactly one T'; .

LEmmaA 5.1, For any n > 1, the graph A, has a 1-factorization.

Proof. Let K, denote A, with its loops removed. A simple result of graph
theory (e.g., [5, Thm. 9.1]) states that when n is even, K, has a 1-factorization.

Assume n is even, and suppose Iy , -+ , T',_; is a 1-factorization of K, .
Let T, be the spanning subgraph of A, whose edges are the loops of A, . Then
Iy, -+, Iy, I, is a 1-factorization of A, .

Now assume 7 is odd, and let » be a vertex of K,., . Choose a 1-factorization
of K,,, . If we remove v from K,., and replace each edge from v to any other
vertex w by a loop at w, then we obtain a 1-factorization of A,. This completes
the proof.

I am grateful to Daniel Kleitman for providing me with the main idea for the
proof of the next lemma.

LeEMMA 5.2, Let n be a positive even integer, and let A be a positive spanning
subgraph of A, which does not contain a 1-factor. Then the number ¢(A) of edges
of A salisfies

q(A>s(";:1)+1.

Note. The bound (n ; 1) + 1 is best possible. Let v be a vertex of A, ,

and let the edges of A consist of the loop at » and all edges of A, not adjacent
to v and which are not loops. It is easily scen that A is positive, contains no
1-factor, and satisfies

w=("3+1

Proof of lemma. Suppose A is a positive spanning subgraph of A, (n even)
which does not contain a 1-factor. We wish to show A is missing at least

n + 1) (n - 1) 1 o

( 9 9 1=2n-—-2
edges of A,. Let A’ be A with all loops removed. Since A’ a fortior: has no
1-factor, by a theorem of Tutte [16] [5, Thm. 9.4] there is a subset S of vertices
of A’ such that the graph @ obtained from A’ by removing S and all edges incident

to S has at least |S| 4+ 1 odd components (i.e., components with an odd number
of vertices). Sincen iseven, this means @must have at least |S| + 2 components.

Case 1. |S| > 2andn > 10. Then Q has at most n — 2 vertices and at least
4 components. Thus it must be missing at least 3(n — 5) + 3 = 3n — 12 edges.
Since n > 10, we have 3n — 12 > 2n — 2, as desired.

Case 2. |S| = 1landn > 8. Then Q@ has n — 1 vertices and at least three
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components. It is easy to see that when n > 8, @ will be missing at least 2n — 2
edges unless Q has exactly two components Q, and Q, with one vertex each, and
one component Q; with n — 3 vertices. There are 2(n — 3) +1 = 2n — 5
edges missing which would be connections among the Q,’s. Thus if A is missing
less than 2n — 2 edges, there are at most two unaccounted for edges missing
from A.

Now let 6 be a subgraph of A, obtained by choosing two distinet vertices v,
and v, , and a set V of n — 3 vertices disjoint from v, and v, , and removing the
2(n — 3) + 1 edges which connect each v; to V or to v; . We need to show that
if any two edges are removed from 6 so that the resulting graph A is positive,
then A has a 1-factor. The condition that 6 minus two edges e, and e, be positive
implies that neither e, nor e, can be a loop at v, or v, . Now 8 restric ed to its
vertices other than v, and v, is isomorphic to A,_, . By Lemma 5.1, A,_, has a
1-factorization. Hence if remove two edges from A,_, (in fact, n — 3 edges),
A,_; retains a 1-factor. This 1-factor, together with the loops at v, and v, , form
a 1-factor of A, as was to be shown.

Case 3. S = andn > 8. Thus A (= Q) has at least two odd components.
If it has more than two components, then it will immediately be missing at
least 2n — 2 edges unless exactly two components have one vertex and one
component has the remaining n — 2 vertices. In this case, 2n — 3 edges are
missing which would connect the three components. Hence no other edges can
be missing, but in this case the loops form a 1-factor.

Hence assume A has exactly two components. Then these components must
be odd, from which it follows immediately that A will be missing at least 2n — 2
edges unless one component consists of a single vertex v. In this case, there are
n — 1 edges missing which would connect » to the remaining component. Let
6 consist of A, with all edges incident to v removed except for the loop at v.
We wish to show that if n — 1 edges are removed from 6 so that the resulting
graph A is positive, then A has a 1-factor. Clearly the positivity of A implies
that we cannot remove the loop at v. The subgraph of 8 obtained by removing v
is isomorphic to A,_; , which by Lemma 5.1 has a 1-factorization. Hence if any
n — 1 edges are removed from A,_, , a 1-factor remains. This 1-factor, together
with the loop at v, yields the desired 1-factor of A.

Case 4. Small values of n not covered by the preceding cases. Simple modifica-
tions of the above arguments, or independent ad hoc arguments, will eliminate
the remaining possibilities. We leave the details to the reader, so the proof of
the lemma is complete.

TurorEM 5.3. We have
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Proof. Tirst assume n is odd. By Lemma 5.1, A, has a 1-factorization.
Thus by Corollary 4.10,

fsd A, < dim A, — n = <n~2—1>

On the other hand, let A be the subgraph obtained from A, by removing all
loops, so A = K, . Clearly A is positive and since n is odd, possesses no magic
labelings of odd index. By Theorem 3.3,

fsd A, > dim A = ("51>

Thus

fsd A, = ("; 1>~

Now assume 7 is even. Let A be as in the note following the statement of
Lemma 5.2. Then again by Theorem 3.3,

fsd A, > dim A = (" 3 2)-
Now let A be any positive spanning subgraph of A, (n even) which does not
have a magic labeling of odd index, so a fortior: A does not have a 1-factor. By
Theorem 3.3, it suffices to show that

dim A < (n;2)

Let b be the number of bipartite components of A.

Case 1. b = 0. Now by Lemma 5.2, the number ¢g(A) of edges of A satisfies

ﬁ&s(”;$+1.

Thus by Corollary 2.2,

mmASﬂM—n+1s@§§,

as desired.

Case 2. b > 1. If any of the bipartite components of A consists of a single
vertex, then dim A = 0. Thus we may assume each bipartite component of A
has at least two vertices, so b < n/2. Now A can be written uniquely as a
disjoint union A, + A, , where A, is bipartite and A, has no bipartite components.
Let p; (respectively ¢;) denote the number of vertices (respectively edges) of A, ,
for¢ = 1or 2. Thus p, + p. = n. Now any positive bipartite pseudograph
with at least onc edge has a 1-factor, since every magic labeling of a bipartite
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graph is the sum of magic labelings of index one (see [14, Prop. 2.9]). Thus A,
has no 1-factor since A has no 1-factor. Since A,, has a 1-factorization, we obtain

q: < (12)2) Since A, is bipartite with no multiple cdges, ¢, < p,*/4. Since b > 1,

we have p, > 2. It follows from the conditions

P22 p20, pitp=n ¢ <p'/4 @< (z)

that Q1+(I2SI+<n;2>'

Hence
dmA=q¢g +¢—n+b+1<

1+<";2)—n+;1+15<n;2), n> 2.

Since the case n = 2 is trivial, the proof is complete.

Remark. 1t should be noted that our proof of Theorem 5.3 did not use the
fact that R is a Cohen-Macaulay ring (Theorem 4.2). Although the proof did
use Corollary 4.10 (and therefore Proposition 4.9), we only used the implication
(ii)) = (i) of Proposition 4.9. This implication requires only the relatively easy
fact that a homogeneous R -sequence is an h.s.o.p. It is the implication (i) = (ii)
that requires the fact that R" is Cohen-Macaulay.

Note that for 1 < n < 5, fsd A, = sdm A, . It seems plausible that fsd A, =
sdm A, for all n, but we have no idea how to prove this fact.

Let f = fsd A, as given by Theorem 5.3, let

d=dimA"=1+<g>,

and let

V.(\) = <i0 S,,(r)x’)(l — N 4N

We know that V,()\) is a polynomial with integer coefficients, we would like to
show that these coefficients are non-negative. In view of Propositions 4.6 and
4.7, it suffices to show that fsd A, = max, (dim A), where A ranges over all
positive spanning subgraphs of A, which do not contain a 1-factor. However,
this result was actually shown in the proof of Theorem 5.3. The point is that
in Lemma 5.2, A is merely assumed not to contain a 1-factor, rather than the
stronger fact of having no magic labeling of odd index. Thus we have shown:

ProrosITION 5.4. Let d = dim A, , f = fsd A, . Then R*" possesses an
h.sop. 0,,0,, -+, 60, suchthatdeg 8, = 1if 1 <7 < d — fand deg 0, = 2 f
d— [+ 1<17<d Consequently, V.,(\) has non-negative coefficients.
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In conclusion, we collect together all our results which pertain to the function
S.(r), in particular Corollary 2.2, Theorem 5.3, Proposition 5.4, [34, Cor. 1.4],
and [14, Lemma 4.2}, to obtain the following result.

TueoreMm 5.5. Let n > 1, and let S,(r) be the number of n X n symmetric
mairices of non-negative integers such that every row (and hence every column)

sums tor. Let
n
1= (5)+1

and

n—1
( 2), n odd

<n N 2) n  even
2 /)7 ’

Let V,.(\) = reo” SulN)A — N4 + N, Then V,(\) is a polynomial with
integer coefficients satisfying the following additional properties:
1) degV,.(\) =d +f — n.
() NTVLL/N) = Va0,
(ili) V.(0) = 1, so by (ii) V,(\) zs monic.
(iv) the coefficients of V.(\) are non-negative.

We remark that property (iv) can be improved by examining the structure
of the ring R*" in more detail. For instance, it follows from [15, Thm. 5.15]
that R*" is a Gorenstein ring. (Property (ii) is a consequence of this fact, but
actually (i) was used to prove that R*" is Gorenstein.) From this one can
deduce that if 0 < ¢ < d + f — n, then the coefficient of \* in V,()) is positive.
It is possible to obtain better information about the coefficients (see [15] for
some relevant techniques), but we do not pursue this here.
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