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MAGIC LABELINGS OF GRAPHS, SYMMETRIC
MAGIC SQUARES, SYSTEMS OF PARAMETERS,

AND COHEN-MACAULAY RINGS

RICHARD P. STANLEY

1. Introduction.
Let r be a finite graph allowing loops and multiple edges, so that r is a

pseudograph in the terminology of [5]. Let E E(F) denote the set of edges
of r and 1 the set of non-negative integers. A magic labeling of r of index r
is an assignment L :E -- N of a non-negative integer L(e) to each edge e of r
such that for each vertex v of F, the sum of the labels of all edges incident to v
is r (counting each loop at v once only). We will assume that we have chosen
some fixed ordering el e2, e, of the edges of F; and we will identify the
magic labeling L with the vector a (al, a, a,) N, where a L(ei).

Let Hr(r) denote the number of magic labelings of F of index r. It may happen
that there are edges e of r that are always labeled 0 in any magic labeling. If
these edges are removed, we obtain a pseudograph / satisfying the two condi-
tions: (i) Hr(r) Ha(r) for all r 1, and (ii) some magic labeling L of A
satisfies L(e) > 0 for every edge e of 4. We call a pseudograph A satisfying (ii) a
positive pseudograph. By (i) and (ii), in studying the function Hr(r) it suffices
to assume that r is positive. A magic labeling L of P satisfying L(e) > 0 for
all edges e E(F) is called a positive magic labeling. Any undefined graph
theory terminology used in this paper may be found in any textbook on graph
theory, e.g., [5].

In [14] the following two theorems were proved.

THEOREM 1.1. [14, Thm. 1.1]. Let r be a finite pseudograph. Then either
Hr(r) rio, (the Kronecker delta), or else there exist polynomials Pc(r) and Qr(r)
such that Hr (r) Pr (r) -- (- 1)Qr (r) ]or all r ll.

THEOREM 1.2 [14, Prop. 5.2]. Let F be a finite positive pseudograph with at
least one edge. Then deg Pr(r) q p -- b, where q is the number o] edges o] F,
p the number o] vertices, and b the number o] connected components which are
bipartite.

For reasons which will become clear shortly, we define the dimension of F,
denoted dim r, by dim P 1 + deg Pr(r). In [14, p. 630], the problem was
raised of obtaining a reasonable upper bound on deg Qr(r). It is trivial that
deg Qr(r) _< deg Pr(r), and [14, Cor. 2.10] gives a condition for Qr(r) 0.
Empirical evidence suggests that if P is a "typical" pseudograph, then deg Qr(r)
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will be considerably smaller than deg Pr (r). In this paper we will give a rigorous
justification of this empirical fact. We will give an upper bound for deg Qr(r)
which we believe to be the best possible "theoretical" upper bound. (The degree
of Qr(r) may be smaller than this upper bound because of "accidents" in the
structure of r. See Example 3.2 for an illustration of what we mean by the
term "accident.") The upper bound we obtain depends on analyzing a certain
commutative ring R r associated with r. We will try to provide a reasonable
amount of ring-theoretic background for the reader unfamiliar with commutative
algebra.
When F is the complete graph on n vertices with one loop at each vertex,

Hr(r) is the number Sn(r) of n X n symmetric matrices of non-negative integers
such that every row (and therefore every column) sums to r. Using a combina-
torial argument whose basic idea was kindly supplied to this writer by Daniel
Kleitman, we can transform our bound on deg Qr(r), which depends in a rather
complicated way on the structure of F, into an explicit, integer. We obtain the
result that S,(r) P,(r) - (-1)rQ,(r), where

degP,(r) () and degQ’(r) < (n- 1)1-2
if n is odd, while

deg Q’(r) < (n- 2)2

if n is even. We conjecture that equality holds for all n. This conjecture is
true for n < 5.

It is more convenient to work with the generating function Fr(X)
r_-o Hr(r) than with the function Hr(r) itself. Using the fact that the
ring R r is a Cohen-Macaulay ring (which follows from a result of M. Hochster),
we are able to obtain information on the coefficients of certain polynomials
associated with Fr(X). For instance, we are able to show that Fr()(1 X) is a
polynomial with non-negative integer coefficients, where d dim r.

2. Some ring theory background. Let F be a finite pseudograph with edge
set E E(r) {x, x, xo}. Regard the x’s as independent indeter-
minates and let R denote the polynomial ring R C[x, x], where C denotes
the complex numbers. (We could use any infinite field in place of C, but for
definiteness we will use C.) Let R r denote the subring of R generated by all
monomials x"’.., x", where a (a a) is a magic labeling of r. For
short we write x" x"’ x, "’. Thus since the suma z7 of two magic
labelings a and of r is also magic, it follows that the monomials x", where a

is a magic labeling of F, form a vector space basis for R r.
We want to investigate the structure of the ring R r. First we will review

certain relevant facts from commutative ring theory. Most of these facts are



GRAPHS SYSTEMS OF PARAMETERS 513

well-known and can be found in a number of references, of which [1], [3], [9], [11],
[12], [13], [17], are a sample. Results which we shall need which can be found in
these references we will merely state without proof; a few results which do not
explicitly appear in these references we will prove. We shall restrict our attention
to certain kinds of rings which we call "G-algebras", though some of our results
on G-algebras are actually valid for more general classes of rings. There is a
well-known analogy between the theory of (;-algebras and the theory of local
rings. Thus many of the references which we shall give for results on G-algebras
actually do not refer to G-algebras as such, but to local rings. If one replaces
"local ring" by "G-algebra", "the maximal ideal m of a local ring R" by "the
irrelevant ideal A + A2 -t- of a G-algebra A A0 -t- A1 -[- A + ...",
"ideal" by "homogeneous ideal", etc., the theorems and their proofs remain
valid.
We proceed to define the concept of a G-algebra. By a graded ring, we mean a

commutative ring A with identity whose additive group has a direct sum deeom-
positionA A0 +A + suehthatAA CA/i. If in additionA0isa
field k, so that A is a /c-algebra, and if A is finitely-generated as a /c-algebra
(so that A is Noetherian), then we say that A is a G-algebra. We can make the
ring R r defined above into a G-algebra by defining Rr r to be the vector space
spanned by all monomials x such that a is a magic labeling of index r.

If A Ao - A1 -- is a G-algebra, we say that an element x of A is homo-
geneous if x A for some r lg; and we say that x has degree r,
written deg x r. In particular, deg 0 is arbitrary. An ideal I of A is said to be
homogeneous if it is generated by homogeneous elements of A. The assumption
that a G-algebra is finitely-generated implies that each A is a finite-dimensiona,1

vector space over k Ao. The Hilbert function H lg -- lg of A is defined by
H(r) dim A. Thus for the G-algebra structure we have defined on Rr, we
have Hr(r) Hr(r), the number of magic labelings of r of index r.

If A is a G-algebra, the Poincard series F (X) is a formal power series with
integral coefficients in the variable X defined by F (X) __0 H (r)Xr. It is
well-known that F(X) is a rational function of X [1, Thin. 11.1] [13, Cor. 4.3].
If P is a finite positive pseudograph, we abbreviate Fr(X) to Fr(X). It follows
from Theorem 1.1 that Fr(X) has the form

(1) Fr(X) w(x)
(1 X)e(l -t- X)

where d, s lg and where Wr(X) is a polynomial in X with integral coefficients
satisfying (a) Wr(1) 0 and (b) Wr(- 1) 0 if s > 0. Thus d 1 -t- deg Pr(r)

dim r, and s 1 + deg Qr(r) (where we set the degree of the polynomial
0 to be -1). We call s the subdimension of F, denoted s sdm r.
A fundamental result of commutative algebra [1, Thin. 11.1.4] [3, Thm. 2.3]

[12, p. III-7, Thin. 1] [13, Thm. 5.5] states the following
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PROPOSITION 2.1. Let A be a G-algebra. Then the ]ollowing three nunbers
are finite and equal:

(i) The length o] a longest chain o] prime ideals o] A,
(ii) The maximum number o] elements o] A (which can be chosen to be homo-

geneous) which are algebraically independent over k Ao and
(iii) the order to which 1 is a pole o] the Poincard series FA ().

The integer defined by Proposition 2.1 is known as the Krull dimension of A
and is denoted dim A. (The Krull dimension "dim" is not to be confused with

dml, .) There follows immediately from Proposi-the vector space dimension :- "
tion 2.1 and our observations about Fr() the next result:

COROLLARY 2.2. Let F be a finite pseudograph.
Thus i] F is positive with at least one edge, then dim R r

notation o] Theorem 1.2.

Then dim Rr dim F.
q-- p--b+ 1, inthe

Corollary 2.2 of course explains our reason for the notation "dim F". We now
come to another basic result in commutative algebra [12, p. III-11] [13, 6].

PROPOSITION 2.3. Let A be a G-algebra, and let 01, 02 Od be homogeneous
elements o] A o] positive degree. The ]ollowing five conditions are equivalent:

(i) d dim A and dim A/(01, 0d) 0.
(ii) d dim A and dim A/(01 0) < (recall that dimk denotes dimen-

sion as a vector space over k, not Krull dimension),
(iii) For any subset 10, 0} of {01, 0}, dim A/(0, 0)

dimA j;anddimA d.
(iv) 01 0 0 are algebraically independent over k and A is a finitely-

generated module over the polynomial subring
(v) 01 02 0d are algebraically independent over ] and A is integral over

the subring B k[01, 0] (i.e., every element o] A satisfies a monic polynomial
with coecients in B).

A set 01,0, 0 of homogeneous elements of positive degree satisfying any
one of the above five (equivalent) conditions is known as a homogeneous system
o] parameters (h.s.o.p.) for A. Every G-algebra A possesses an h.s.o.p. (e.g.,
[1, p. 69, Ex. 19] [12, p. III-20, Thin. 2] [13, Thin. 5.4]). If 01, 0 belong to
some h.s.o.p., we call 01, 0 a partial h.s.o.p. If 0 belongs to some h.s.o.p.,
then we call 0 a parameter. A necessary nd sufficient condition that a set
01, 0 of homogeneous elements of A of positive degree be a partial h.s.o.p.
is that dim A/(01, 0) dim A i (e.g., [12, p. III-11, Prop. 6]).

PROPOSITION 2.4.
say with deg 0 e

Let A be a G-algebra, and let 01 0 be an h.s.o.p.,
Then the Poincard series Fa () can be written in the ]orm

Fa() VA()/I (1 ,’),
i=i

where Va () is a polynomial in with integer coe3ficients.
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Proo]. By Proposition 2.3, A is a finitely-generated (graded) module over
the polynomial ring k[O 0d]. The proof now follows from [1, Thin. 11.1]
or [13, Thin. 4.2].

If is a prime ideal of a G-algebra A, define the height of (sometimes called
the ranlc of ), denoted ht ?, to be the length of the longest chain of prime ideals
of A whose maximum element is . (Equivalently, ht dim A where
A is the localization of A at .) Thus ht ? 0 if and only if is a minimal
prime of A. If I is any ideal of A, define ht I inf ht , where the inf is taken
over all prime ideals of A which are minimal with respect to containing I.

Let I be a homogeneous ideal of a G-algebra A. Besides ht I, we wish to
consider two other numerical invariants of I. Define quo I, the quotient height
of I, by quo I dim R dim R/I. Also define par I to be the cardinality of
the largest partial h.s.o.p, contained in I.

PROPOSITION 2.5. Let I be a homogeneous ideal o] a G-algebra A.
htI

_
quoI parI.

Then

Proof. The inequality ht I

_
quo I is well-known and easy to prove. Namely,

let be a prime ideal containing I such that dim R/ dim R/I (such a
exists since the primes in R/I are just the images of primes in R containing I).
Then dim R/I - ht dim R/ - ht

_
dim R (see [12, p. III-21]) and

ht >_ ht I. Thus dim R _> dim R/I ht I, which is equivalent to ht I

_
quo I.

Suppose 0L 0 is a partial h.s.o.p, contained in I. By Proposition 2.3,
dimA/(O, ,t) dimA i, soaortioridimA/I

_
dimA i. Thus

parI_ quoI.
It remains to show par I >_ quo I. If quo I 0 there is nothing to prove.

Now suppose that quo 1 >_ 1 and par I 0. Thus for all homogeneous x I,
dim A/(x) dim A. This means each homogeneous x I is contained in a
prime ideal of A, necessarily minimal, such that quo 0. Since a N(ietherian
ring contains only finitely many minimal primes (e.g., [9, Thin. 88]), we have
that the set Ih of homogeneous elements of I is contained in a set union. k_) ; of prime ideals 1, ., i. A straightforward modification
of an argument in [9, Thin. 81] or [13, Lemma 5.1] shows that then Ih is contained
in some Namely, we argue by induction on j. For every i we may assume
I ( 1 L) kJ i, where the notation , means that is
omitted. Picky Ibutnotin2 L)%) The desired
result is trivial forj 1. Forj >_ 2, leta degyandb degy.ya y,
and sety y - (yy y). Theny Ibutyliesinnoneofthe’s,
a/contradiction. Thus I, C for some i. Since I is homogeneous, I
Thus quo I 0, contradicting the assumption that quo I _> 1. Hence if
quo I >_ 1, then par I >_ 1.
The proof now proceeds by induction on quo I. By the above paragraph,

we are done ifquoI 1. AssumequoI ) 1. By the above, Icontainsa
homogeneous parameter 0. Let S R/(O) and J I/(O). By Proposition 2.3,
dims dimR- 1. MoreoverS/J--R/I, soquoJ dimS-dimS/J
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dim R dim R/I 1 quo I 1. By induction we may assume J contains
a partial h.s.o.p, of cardinality quo I 1. Lifting these parameters back to I
and adjoining 0, we obtain a partial h.s.o.p, in I of cardinality quo I. Hence
par I >_ quo I, and the proof is complete.

Note. We will only need the equality quo I par I of Proposition 2.5, but
we have added the inequality involving ht I for the sake of completeness. Also
for the sake of completeness we include the next proposition.

PROPOSITION 2.6. Let A be a G-algebra, and suppose that A is also an integral
domain. Let I be a homogeneous ideal o]’ A. Then ht I quo I par I.

Proof. By Proposition 2.5, it suffices to show that ht I quo I. Now any
integral domain B which is a finitely-generated algebra over a field ]c has the
property that all maximal chains of prime ideals have length equal to dim B
(e.g., [12, Cor. 2, p. III-24]). Hence ht - dim A/) dim A for every prime
ideal of A. Thus ht I inf (ht ?) inf (dim R dim R/) dim R sup
dim R/ dim R dim R/I quo I, where the inf’s and sup’s are over all
primes minimal over I. This completes the proof.
We need some information on the degrees of the elements of a system of

parameters for a G-algebra A. We will prove a somewhat stronger result (Propo-
sition 2.9) than we need for the time being, since we will require such a result
in Section 5. An even stronger result can be proved, but Proposition 2.9 is
adequate for our purposes. Proposition 2.9 may be regarded as an elaboration
of the well-known fact (see, e.g., [1, p. 69, Ex. 16]) that if lc is infinite and A is
generated by A 1, then A possesses an h.s.o.p. 01, 0,t such that eachdeg 01 1
We first require two lemmas.

LEMMA 2.7. Let A be a G-algebra, and let I C J be homogeneous ideals. Lel
B =A/I, andletJdenotetheimageo]JinB. Then parj parJ parI.

Proo]’. Using Proposition 2.5 and the identity B/] A/J, we have par ,
dim B dim B/,f (dim A par I) dim A/J (dim A dim A/J)
par I par J par I. This completes the proof.

LEMMA 2.8. Let lc be an infinite field, and let V be a finite-dimensional vector
space over l. If S S, m’e subsets o] V whose set-union is V, then sone S
contaits a basis ]or V.

Proof. Let r dim V. We can find an infinite sequence vl v of ele-
ments of V such that any r of them form a basis for V, since choosing v/ once

vl v, v have been chosen merely involves avoiding the zeroes of finitely
many polynomials with coefficients in ]. Then one of the S must contain r
of the v’s (in fact, infinitely many of them), so the proof is complete.

PROPOSITION 2.9. Let A be a G-algebra such that ] (= Ao) is infinite. Let
I I be a sequence o] homogeneous ideals o] A such that each I is generated
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by homogeneous elements all o] the same degree, say di Furthermore assume that
d-t divides d.i ]’or 2 <_ i <_ s. Let Ji =11+12 I and let p parJ.
Then A possesses a partial h.s.o.p. Ot 02 0, such that

deg 0pi_x+ deg 0,_, deg 0, d 1 <_. i <_ s,

where by convention po O.

Proof. The proof is by induction on p8 The theorem is trivial for p8 0.
Now assume the theorem for p, < p, sy, and suppose we are dealing with the
situation p, p > 0. Let K; be the ideal of A generated by the set of all
x’/’", where for some i _< .i, x is an element of I of degree d Define K,
K. + I’.t + I.+ + + I,, j < m _< s.
WeclMmthatparK parJ,,j <_ m <_ s. LetB A/K,, Let3be

the image of J,, in B. Since K,, C d,, by Lemma 2.7 we have par K,, par J,
par 0 But. every element, of ].,,, is nilpotent, so par ],,, 0. This proves

the claim.
Now let .i be the least integer for which par K > 0, and suppose that K is

generated by homogeneous elements y, y2, y, all of degree di. We now
claim that some linear combination t, ayi a k, is 8 parameter.
Otherwise each such Ot belongs to 8 minimal prime ideM 3 of A satisfying
par 3 0. Since there are only finitely many minimal primes in 8 Noetherian
ring, by Lemm8 2.8 some minimal prime 3 satisfying par 0 contMns 8

basis for the vector space spanned by the y’s. Since 3 is 8n ideal, we get K; C 3,
contradicting par K > 0. This proves the elMm.

Let C A/(0), where t is the element constructed in the previous paragraph.
Since 0 is homogeneous, C becomes 8 G’-algebr8 by letting C be the image of A.
Letl denote the image in C of an ideal l of A. Then/{;,;/t,i;+, ,
is 8 sequence of homogeneous ideals of C such that /{; (respectively, ) is
generated by homogeneous elements 811 of degree d; (respectively, d). More-
over,/, Ki + ii+1 + + ii ,i i _< s. Letting I (0t) and J K,
inLemma2.7, we have par/- parK 1, j _< i _< s. By the induction
hypothesis, C possesses a partial h.s.o.p. 2, ,, such that deg 2 deg

deg ,. dt and deg ,_..t deg ,,_./2 deg ,, d, 2 _<
i _< s. Lifting 2, back to homogeneous elements t2, O,, of A and
adjoining tt, we obtain our desired partial h.s.o.p. O, 02, O,.. This com-
pletes the proof.

COROLLARY 2.10. Let A be a G-algebra where lc Ao is in.finite, and let I be a
homogeneous ideal o] A. Let par I p, and suppose that yt y2 y,. is
a homogeneous set o] generators ]or I (as an ideal o] A). Let e deg y, and let
N be the least common multiple o] et, e, Then I contains a partial h.s.o.p.
O O,, oif cardinality p, such that each is o] degree N.

/’ Let iProo]. Let It be the ideal of A generated by the elements y
I/It denote the image of I in A/It Then every element of i is nilpotent, so
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par i 0. It follows from Lemma 2.7 that par 11 par I.
follows from the case s 1 of Proposition 2.9.

The proof now

3. The formal subdimension of F.
sion of magic labelings.

We are now read)." to resume our discus-

Definition. Let I’ be a finite pseudograph, and let R r be the ring defined in
the previous section. Let Ir be the ideal of R r generated by all monomials x",
where a is a magic labeling of F of odd index (i.e., x" R; r for some odd integer
.i, where R r Ror -t- R1 r -4- is the grading defined in the previous section).
The ]ormal subdimension of F, denoted fsd F, is defined by

(2) fsd F dim F par I r.
THEOREM 3.1. Let F be a finite pseudograph. Then sdm F <_ ]sd F.

Proo]. Let s par 1 r. By Corollary 2.10, we can find a partial h.s.o.p.
0, 02 08 of R r such that each has degree equal to the least common
multiple of the degrees of the generators of I r. By assumption these generators
all have odd degree, so each ti has odd degree N. Extend 0,, 0s to an h.s.o.p.
0L,’",O,,whered= dimF. Letei degOifors-f-l_< i_< d. ByProposi-

(3) F,,(h) Hr(r)h
n=O

Vr(h)/(1 hN) II (1
i--s+1

where Vr(h) Z[h]. Then since N is odd, we have by (3)

sdmr _< d- s dimF- parI r.
This completes the proof.
We believe that Theorem 3.1 provides the best possible "theoretical" upper

bound for sdm F (and hence for deg Qr(r), since 1 -4- deg Qr(r) sdm F). In
other words, if F satisfies sdm F < fsd F, this is because of very special properties
of F which cannot be explained in a general way. Thus we believe that a
"typical" pseudograph F satisfies sdm F ]sd F. Of course we are speaking
heuristically when we use the term "typical".

Example 3.2. We give an example where sdm F < ]sd r, and we explain
why this strict inequality is due to "accidental" properties of F. Let r be the
pseudograph (actually a graph) of Figure 1. Define the magic labelings

(1 1 1 0 0 2 0 0 1 1 1) a 0,0 0 1 0 1 0,0, 1 0),

1 0 0 0 1 0,0,1 0),1 0 1 0 0 0 1 0 0 1), a (0,a (0,

a (1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1).

tion 2.4, we have
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e6

el I’elO
FIGURE

For convenience set y x Then a minimal set of generators for R r (as an
algebra over C) consists of yl y2 y5 The ideal I r in the definition of
]sd F is generated by y., y3, y4, y5 It is easy to check that dim F 4 and
par I r 3. Hence ]sd F 1, so we would expect Fr(h) to have a simple pole
at }, -1. However, in fact. Fr() is analytic at , -1. To see this, note
that all relations among the generators yl y are consequences of y2y3

y4y. Hence sincedegy 2anddegy2 degy3 degy4 degy. 1,
we have

1 }x 1Fr(),) (1 }Q4(1 })- (1 )4"

It is merely an "accident" that the relation between y2, y3, y4, y, giving rise
to a factor i },2 in the numerator, cancels the factor 1 k in the denominator
coming from the generator yi There is no "theoretical" reason why y should
be related to y., y3, y4, y in this way; indeed, y is algebraically independent
of y2 y3 y4 y.

There is another way to view the above example. An h.s.o.p, for R r can be
taken to be 0 yi 02 Y2, 3 y3,04 y + ys. Now by Proposition 2.3,
R r is a finitely-generated module over the polynomial ring C[0 0. 03 04].
In fact, R r is a ]ree module with generators 1 and y4 (For the significance of
R r being free, see Proposition 4.1.) Thus we get
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Again, it is an "accident" that the factor 1 + h in the numerator, coming from
the module generators 1 and y Ca.heels the factor 1 ,2 coming from the
parameter 01.

Remarlc. The reader familiar with [14] may wish to know its relationship to
the present paper. Although stated differently, Proposition 2.7 of [14] asserts
essentially that if J is the ideal of R r generated by all monomials x where is
magic of index two, then par J dim r. It then follows immediately from
Proposition 2.4 of this paper that Fr(X) has the form (1). In [14], Proposition
2.4 of this paper has been replaced by Theorem 2.5.
Theorem 3.1 gives us a bound for sdm F, but it is not very satisfactory since

it leaves open the problem of computing fsd r. We would like a purely com-
binatorial description of fsd r in terms of the structure of r. Such a description
is provided by the next result.

THEOREM 3.3. Let r be a finite pseudograph. Then fsd r max (dim A),
where A ranges over all positive spanning sub-pseudographs of r which do not
possess a magic labeling of odd index.

Note. The assumption in Theorem 3.3 that h is positive is clearly unneces-
sary, since any finite pseudograph A has the same dimension as its maximal
spanning positive sub-pseudograph. The advantage of dealing only with
positive /x is that dim / (= dim R) can then be calculated by Corollary 2.2.

Proof.

Set

By Proposition 2.5 and the definition (2) of ]sd F, we have

fsd F dimP quoIr dimRr/Ir.

S r Rr/I r.
By Proposition 2.1, it follows that ]sd F is the maximum number of (homo-
geneous) elements of S r which are algebraically independent over C. Now Sr

is generated by monomials x, where a is a mgic labeling of F. Thus ]sd F is
equal to the largest integer h for which there exist h magic labelings al, a
of F such that x’, x are algebraically independent over C in S r. Now
x, x will be algebraically independent in S if and only if the following
two conditions are satisfied"

(i) If al a are non-negative integers, the monomial x /.../a does
not lie in I r. Equivalently, if a is a magic labeling of F, let supp a denote the
set of edges of F on which a is positive and let T J.__ supp a. Let h denote
the spanning subgraph of F with edge set T. Then A has no magic labelings
of odd index.

(ii) The vectors al a are linearly independent over Q.
Thus ]sd F is the largest integer h obtained as follows" h is a positive spanning

subgraph of F which does not possess a magic labeling of odd index, and
al, a are magic labelings of A for which al, a are linearly independent
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over Q. But al ," ", ah are linearly independent over Q if and only if x "’, x"h
are algebraically independent in R a. The largest h for which x "’, x are
algebraically independent in R is just dim A, so the proof follows.

4. A-sequences and Cohen-Macaulay rings. We know from Theorem 3.1 that
if r is a finite pseudograph, then Fr(X) Wr(X)/(1 X)e(1 + X), where
d dim F, ]sd F, and Wr(X) is a polynomial in X. In order to obtain more
information about the generating function Fr(X), we need to introduce the
theory of A-sequences and Cohen-Macaulay rings. If A is a G-algebra, a
sequence of homogeneous elements 0, 02 0r of A is said to be a homo-
geneous A-sequence if the following two conditions are satisfied:

(i) The ideal (0 02 0r) is not all of A. Equivalently, deg 0 > 0
forl <i<r.

(ii) If i <_ i _< r, then 0 is not a zero-divisor modulo the ideal (0, 02 ,..., 0_).
Two well-known facts concerning homogeneous A-sequences are the following’

Every permutation of a homogeneous A-sequence is a homogeneous A-sequence,
and every homogeneous A-sequence is a partial h.s.o.p. If is not true, however,
that an h.s.o.p, is a homogeneous A-sequence; and this fact leads to the next
proposition.

PROPOSITION 4.1. Let A be a G-algebra, and let O O be an h.s.o.p., say
with deg 0 e Let B A/(O 0), endowed with the natural "quotient
grading" (Br is the image o At). The following our conditions are equivalent:

(i) 0 0e is an A-sequence,
(ii) every h.s.o.p, of A is an A-sequence,
(iii) A is a free module over the polynomial ring k[O 0] (recall ]rom

Proposition 2.3 that A is always a finitely-generated module over k[O 0,]).

/(1- xe).(iv) F(X) F(X)
/ :

If A satisfies any of the equivalent conditions of Proposition 4.1, hen by
definigion A is a Cohen-Macalag G-algebra. The various implications needed
o prove Proposition 4.1 M1 can be found in he literature. The equivalence of
(i) and (ii) appears, e.g., in [12, p. IV-20, Thin. 2]. Condition (iii) is mentioned
in [7, p. 1036] and [13, Prop. 6.8]. Finally condition (iv) appears in [13, Cot. 6.9]
and .[15, Cot. 3.2].
The nex resul is a special case of a heorem firs proved by M. Hochser

[6, Thin. 1]. Another proof appears in [10, p. 52]. Hochser’s resulg is general-
ized in [8]. By using Theorem 4.2 and known properties of Cohen-Macaulay
rings we could have simplified he proofs of Proposition 2.5 and Proposigion 2.6
in he case A R r (see, e.g., [11, (16.B)], bu we felg it bes to avoid he rela-
tively deep Theorem 4.2 whenever possible.

THEOREM 4.2. Let F be a finite pseudograph. Then R r is Cohen-Macaulay.
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COROLLARY 4.3. Let F be a finite pseudograph, and suppose that O 0,
is an h.s.o.p. ]or R r with e deg t? Then the coefficients o] the polynomial
V r () Fr () I--id (1 ) are non-negative.

Proo.f. Let B R’/(O ). By Theorem 4.2 and Proposition 4.1 (iv),
Vr(h) F,() (dime B,)), r. This proves the corollary.

Corollary 4.3 expresses the coefficients of V r ()) as dimensions of vector spaces.
It would be desirable to obtain a more combinatorial interpretation of the
coefficients (expressed directly in terms of F), but we have been unable to do so.

Corollary 4.3 raises the question of what integers e e e can be the
degrees of the elements of an h.s.o.p, of R r, where F is pseudograph. A partial
answer to this question may be deduced from Proposition 2.9 and is the subject
of the next three propositions.

PROPOSITION 4.4. Let F be a finiite pseudograph, and let d dim F. Then Rr
possesses an h.s.o.p. 0, 0, 0, where deg 0 2 ]or I <_ i <_ d. Consequently
the power series F,()(1 )’ is a polynomial with non-negative inleger coe-
cients.

Proo.f. Let I be the ideal of R ’ generated by all monomials x ,where a is a
magic labeling of F of index two. It is n immediate consequence of [14, Prop.
2.7] that par I dim F. The proof now follows from Proposition 2.9 after
setting s 1, I I.

PROPOSITION 4.5. Let F be a finite pseudograph with dim F d, and suppose
that every magic labeling o] F is a sum o] magic labelings o] index one. Then R r

possesses an h.s.o.p. 1 2 d where deg t?,.. 1 ]or 1 <_ i <_ d. Consequently
the power series Fr ())(1 h) is a polynomial with non-negative integer coejcients.

Proo]. Let jr be the ideal of R r generated by all monomials x", where a is a
magic labeling of index one. By the assumption on F, jr is the entire irrelevant

Fideal RIF + R2 + SO par J’ dim F. The proof now follows from
Proposition 2.9 (or in fact directly from [1, Ex. 16, p. 69]) after setting s 1,
I jr.

In [14, Prop. 2.9] a necessary and sufficient condition is given for F to satisfy
the condition of Proposition 4.5. A sutiicient condition is that F minus its loops
be bipartite. Two special cases include: (a) F is the complete bipartite graph
Knn. Then dim I’ (n 1) + 1 and Hr(r) is the number of n X n matrices
of non-negative integers such that every row and column sum is equal to r.
(b) r is K with a loop adjoined to each vertex. Then dim r n: -t- 1 and
Hr(r) is the number of n X n matrices of non-negative integers such that every
row and column sum is at most r.

PROPOSITION 4.6. Let F be a finite pseudograph satisfying dim r d and
]sd r ]. Let jr be the ideal o] R r generated by all monomials x", where a is
a magic labeling o] index one. Assume that ] dim F par jr (or equivalently,
par jr parIr,withIrasin (2)). ThenR r possesses anh.s.o.p. 0 0e
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such that deg O l i.i 1

_
i

_
d ] and deg O, 2 i] d ] + 1

_
i d.

Consequently, the power series Fr(},)(1 },)d(1 + h)f is a polynomial with non-
negative integer coecients. (0] course even without the assumption ] dim F
par jr, we know ]rom Theorem 3.1 that Fr(h)(1 h)d(1 + },)f is a polynomial
with integer coecients.)

Proo.f. Let 11 jr and I. I, where I is defined in the proof to Proposition
4.4. Since par I dim F, the proof now follows from Proposition 2.9.

Proposition 4.6 raises the question of determining when a finite pseudograph F
satisfies the condition fsd F dim F par jr.

PROPOSITION 4.7. Let F be a finite pseudograph, and let jr be the ideal o] R r

defined in Proposition 4.6. Define g max (dim A), where A ranges over all
positive spanning subgraphs o] F which do not possess a i-]actor. Then ]sd F =
dim F par jr i] and only i] ]sd F g.

Proof. By mimicking the proof of Theorem 3.3 we obtain dim F par J r g.
The proof now follows from Theorem 3.3.
Example 4.8. Let F be the pseudograph of Figure 2. Then dim F 3.

By Corollary 4.5, the coefficients of Fr(k)(1 k) are non-negative. Indeed,

FIGURE
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Fr(X)(1 X2) 1 q- Xa. One also can find anh.s.o.p. , e2, 3suchthat
deg.l =deg2= 2, deg =3. Indeed, Fr(X)(1-X)(1-Xa) 1+ X + X,
in accordance with Corollary 4.3. Moreover, ]sd r 1, so by Theorem 3.1,
Fr(X)(1 X)(1 X) is a polynomial. In fact, this polynomial equals 1
X + X. Thus R r does not possess an h.s.o.p. t , Ca such that deg 1,
deg deg Ca 2. In fact, r has no magic labeling of index one.

In general it is diffieult to tell whether a sequence 0, 0, of homogeneous
elements of R r (r a finite pseudograph) is a partial, h.s.o.p. Theorem 4.2
however, allows us answer this question when the 0’s are monomials.

PROPOSITION 4.9. Let r be a.finite pseudograph, and let a a a be
magic labelings o] F. The ]ollowing two conditions are equivalent:

(i) x x is a partial h.s.o.p, o] R r
X

(ii) I] is a magic labeling o] F, i] 1 i j s, and i] a and
are magic (i.e., have non-negative entries), then a is magic.

XProo]. (i) (ii). Assume (i). By Theorem 4.2, x "’, x is an
Rr-sequence. Hence if i j, x "’, x" is an Rr-sequence. By definition this
means that if x"X x"’Y, where X, Y R r thenX x"’Z for some Z Rr

It is easily seen that we can tke X, Y, Z to be monomials. Thus the condition
becomes" if for some magic labelings and , then a W
for some magic labeling . This is clearly equivalent to (ii).

(ii) (i) Suppose that (i) fails. For convenience write y ’. Thus for
some i 2, y is a zero-divisor modulo (y y.-1). (We can assume i 1
since R r is an integral domain so each y is not a zero-divisor.) Thus there is a
relation

(4) y.y y,X, + yX + + y_,x_,
whereX,X,...,X_,YRrndY (y,...,y_). Now Yisliner
combination of monomiMs, so one of these monomiMs x must pper with
non-zero coefficient nd stisfy x (y y_). Since the monomiMs
x R r form bsis for R r xwe obtainy yx for somej < i. Thus
a + a + but a + . Hence (ii) fils, and the proof is complete.

COROLLARY 4.10. Let F be a finite pseudograph. Suppose F possesses s
pairwise edge-disjoint spanning subgraphs F such that each F has a
magic labeling of odd index. (E.g., the F’s could be disjoint l-]actors o] F.) Then
fsdF dimF- s.

SProo]. Let a be magic lbeling of F of odd index Since the F re
edge-disjoint, the lbelings a, a clearly stisfy condition (ii) of Proposition
4.9. Hence x x x ispartialh.s.o.p ofR r Since each x I r

we have pr Ir s. Since ]sd F dim F pr I r, the proof follows.

COROLLARY 4.11. Let F be a finite pseudograph such that Hr(r) 50. Then
either Pr(r) Qr(r) or else deg Qr(r) < deg Pr(r).
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Proo]. If Pr(r) Qr(r), then F has a magic labeling of odd index. Thus the
hypothesis of Corollary 4.10 holds with s 1, so ]sd F _< dim F 1. Since
deg Pr(r) dim F 1 and deg Qr(r) <_. ]sd F 1, the proof follows.. Symmetric magic squares. Theorem 3.3 may seem like an awkward
result to apply to specific graphs, but we will now give an example of its use.
Throughout this section A, denotes the complete graph on the vertex set

{1,2, ,n} vith one loop at each vertex. Thus A. has (n +2 1) edges and

dim A,,= ()+ 1.

The functions H A., P A., Q., Fa. are abbreviated S, P, Q,,, Fn respectively,
As pointed out in [14, p. 610], S(r) is equal to the number of n X n symmetri
matrices of non-negative integers such that every row (and hence every column)
sums to r. Such a matrix is called a symmetric magic square. S(r) also has a
graph-theoretic interpretationit is the number of regular pseudographs of
valency r on an n-element vertex set.
Some examples of the generating function Fn(X) are:

1F(X)- 1 X

1
l,’.(h) (1-),)’

I+X+XF:(X) (1 ),)4(1 + X)

where

F.(X)

F.(X)

1 +4X+ IOX +4X + X
(1 x);(1 + X)

V(X)
(J. ))1(1 + X)

V.(X) 1 -t- 21X -t- 222X + 1082X -t- 3133X + 5722X

+ 7013X + 5722X + 3133), + 1082X + 222XTM + 21X + X.
The formulas for F and F are due to L. Carlitz [2]. We calculated F with the
aid of a computer. By Theorem 5.5 below, it is only necessary to compute
S(r) for 1 < r _< 6 in order to completely determine F(h). We computed
S(r) for 1 < r _< 8, using the last two values as a check. Methods for com-
puting S,(1) and S(2) for any n appear in [2] and [4],

Recall that a l-]actor of a pseudograph F is a spanning subgraph F’ of F such
that each vertex of F lies on exactly one edge of F’. Moreover, a 1-]actorization
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of r is a collection
appears in exactly one F.

r of 1-factors of F such that each edge of F

LEMMA 5.1. For any n >_ 1, the graph An has a 1-factorization.
Proo]. Let Kn denote h with its loops removed. A simple result of graph

theory (e.g., [5, Thm. 9.1]) states that when n is even, K, has a 1-factorization.
Assume n is even, .and suppose F1 F,_I is a 1-factorization of K.

Let Fn be the spanning subgraph of An whose edges are the loops of A,,. Then
F Fn_l F is a 1-factorization of A.
Now assume n is odd, and let v be a vertex of K/. Choose a 1-factorization

of K./I If we remove v from K+. and replace each edge from v to any other
vertex w by a loop at w, then we obtain a 1-factorization of Am. This completes
the proof.

I am grateful to Daniel Kleitman for providing me with the main idea for the
proof of the next lemma.

LEMMA 5.2. Let n be a positive even integer, and let A be a positive spanning
subgraph o] A which does not contain a 1-]actor. Then the number q(A) o] edges
o] 4 satisfies

q(A) < (n--l)2 +1.

Note. The bound
2 + 1 is best possible. Let v be a vertex of h

and let the edges of 4 consist of the loop at v and all edges of A not adjacent
to v and which are not loops. It is easily seen that 4 is positive, contains no

l-factor, and satisfies

2 +1.

ProoJ of lemma. Suppose 4 is a positive spanning subgraph of An (n even)
which does not contain a 1-factor. We wish to show/ is missing at least

(rt+2 1)__ (n-- 1) -1=2n-22
edges of h,. Let 4’ be A with all loops removed. Since 4’ a ]ortiori has no

1-factor, by a theorem of Tutte [16] [5, Thin. 9.4] there is a subset S of vertices
of 4’ such that the graph ft obtained from A’ by removing S and all edges incident
to S has at least IS q- 1 odd components (i.e., components with an odd number
of vertices). Since n is even, this means ftmust have at least ISI q- 2 components.

Case 1. SI >_ 2 and n >_ 10. Then t has at most n 2 vertices and at least
4 components. Thus it must be missing at least 3(n 5) + 3 3n 12 edges.
Since n >_ 10, we have 3n 12 >_ 2n 2, as desired.

Case 2. [SI landn _> 8. Thenthasn- lverticesandatleastthree
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components. It is easy to see that when n >_ 8, f will be missing at least 2n 2
edges unless f has exactly two components f and f. with one vertex each, and
one componentf3 withn 3vertices. There are 2(n 3) 4- 1 2n 5
edges missing which would be connections among the f’s. Thus if A is missing
less than 2n 2 edges, there are at most two unaccounted for edges missing
from A.
Now let 0 be a subgraph of A, obtained by choosing two distinct vertices vl

and v., and a set V of n 3 vertices disjoint from vl and v., and removing the
2(n 3) 4- 1 edges which connect each v to V or to v;. We need to show that
if any two edges are removed from 0 so that the resulting graph zX is positive,
then A has a 1-factor. The condition that 0 minus two edges el and e. be positive
implies that neither e nor e. can be a loop at Vl or v2. Now 0 restric ed to its
vertices other than v, and v. is isomorphic to A_. By Lemma 5.1, A_. has a
1-factorization. Hence if remove two edges from h_. (in fact, n 3 edges),
An-2 retains a 1-factor. This 1-factor, together with the loops at Vl and v., form
a 1-factor of A, as was to be shown.

Case 3. S ;2 and n >_ 8. Thus A (= f) has at least two odd components.
If it has more than two components, then it will immediately be missing at
least 2n 2 edges unless exactly two components have one vertex and one
component has the remaining n 2 vertices. In this case, 2n 3 edges are
missing which would connect the three components. Hence no other edges can
be missing, but in this case the loops form a 1-factor.
Hence assume zX has exactly two components. Then these components must

be odd, from which it follows immediately that A will be missing at least 2n 2
edges unless one component consists of a single vertex v. In this case, there are
n 1 edges missing which would connect v to the remaining component. Let
0 consist of A with all edges incident to v removed except for the loop at v.
We wish to show that if n 1 edges are removed from 0 so that the resulting
graph zX is positive, then A has a 1-factor. Clearly the positivity of A implies
that we cannot remove the loop at v. The subgraph of 0 obtained by removing v
is isomorphic to A_I, which by Lemma 5.1 has a 1-factorization. Hence if any
n 1 edges are removed from A_I, a 1-factor remains. This 1-factor, together
with the loop at v, yields the desired 1-factor of h.

Case 4. Small values of n not covered by the preceding cases. Simple modifica-
tions of the above arguments, or independent ad hoc arguments, will eliminate
the remaining possibilities. We leave the details to the reader, so the proof of
the lemma is complete.

THEOREM 5.3. We have

fsd A
n odd,

n even.
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Proo]. First assume n is odd. By Lemma 5.1, An has a 1-faetorization.
Thus by Corollary 4.10,

fsdAn

__
dimAn-- n

2

On the other hand, let A be the subgraph obtained from An by removing all
loops, so A Kn Clearly A is positive and since n is odd, possesses no magic
labelings of odd index. By Theorem 3.3,

fsdAn> dimA (n-- 1)"-2

Thus

fsdA (-- i)"2
Now assume n is even. Let h be as in the note following the statement of

Lemma 5.2. Then again by Theorem 3.3,

fsdhn>dimA= (n--2)"-2

Now let A be any positive spanning subgraph of An (n even) which does not
have a magic labeling of odd index, so afortiori A does not have a 1-factor. By
Theorem 3.3, it suffices to show that

dimA < (n--2)"-2
Let b be the number of bipartite components of .

Case 1. b 0. Now by Lemm 5.2, the number q(A) of edges of A satisfies

q(A) < (n-- i)2 +1.

Thus by Corollary 2.2,

dim A< q(A)--nq-1 < (n--2)2

Case 2. b >_ 1. If any of the bipartite components of A consists of a single
vertex, then dim A 0. Thus we may assume each bipartite component of A
has at least two vertices, so b <_ n/2. Now A can be written uniquely as a
disjoint union A, q- A2, where A, is bipartite and 2 has no bipartite components.
Let. p (respectively q) denote the number of vertices (respectively edges) of/,
for i 1 or 2. Thus p, 3- p. n. Now any positive bipartite pseudograph
with at least one edge has a l-factor, since every magic labeling of a bipartite

as desired.
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graph is the sum of magic labelings of index one (see [14, Prop. 2.9]). Thus A2
has no 1-factor since A has no 1-factor. Since A,, has a 1-faetorization, we obtain

q2 _< (). Since

we have p _> 2.

A1 is bipartite with no multiple edges, q <_ p2/4.

It follows from the conditions

p >_ 2, p2 >_ O, pl -t-p2 n, q, <_ p/4,

Hence

Since b >_ 1,

that q-4- q _<. i d- 2

dimA qt-4- q2 rid- b-4- 1 _<

1-1-(n--2) n (’n 2)2 -n++< 2
n>2.

Since the case n 2 is trivial, the proof is complete.

Remarlc. It should be noted that our proof of Theorem 5.3 did not use the
fact that R r is a Cohen-Macaulay ring (Theorem 4.2). Although the proof did
use Corollary 4.10 (and therefore Proposition 4.9), we only used the implication
(ii) (i) of Proposition 4.9. This implication requires only the relatively easy
fact that a homogeneous Rr-sequence is an h.s.o.p. It is the implication (i) (ii)
that requires the fact that R r is Cohen-Macaulay.

Note that for 1 _< n _< 5, ]sd An sdm An. It seems plausible that ]sd An
sdm A, for all n, but we have no idea how to prove this fact.

Let ] ]sd An as given by Theorem 5.3, let

and let

Vn(x) E S,(r)X (1 X)(1 + X).
We know that V(X) is a polynomial with integer coefficients, we would like to
show that these coefficients are non-negative. In view of Propositions 4.6 and
4.7, it suffices to show that ]sd An max (dim A), where A ranges over all
positive spanning subgraphs of h which do not contain a 1-factor. However,
this result was actually shown in the proof of Theorem 5.3. The point is that
in Lemma 5.2, A is merely assumed not to contain a 1-factor, rather than the
stronger fact of having no magic labeling of odd index. Thus we have shown"

PROPOSITION 5.4. Let d dim An ] ]sd A,. Then R possesses an
h.s.o.p. 0 0., 0e such that deg 0 1 if 1 <_ i <_ d ] and deg 0. 2 if
d ] + 1 <_ i <_ d. Consequently, V(X) has non-negative coecients.
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In conclusion, we collect together all our results which pertain to the function
Sn(r), in particular Corollary 2.2, Theorem 5.3, Proposition 5.4, [34, Cor. 1.4],
and [14, Lemma 4.2], to obtain the following result.

THEOREM 5.5. Let n >_ 1, and let S,,(r) be the number o] n X n symmetric
matrices o] non-negative integers such that every row (and hence ee’y column)
sums to r. Let

and

n odd

n even.

Let V() (,_-o S(r),r)(1 },)d(1 + ). Then V,,() is a polynomial with
integer coefficients satis]ying the ]ollowing additional properties:

(i) deg V() d + ] n.
(ii) kd+-V(1/k) V().
(iii) V(0) 1, so by (ii) V(k) is monic.
(iv) the coefficients o] V,,(h) are non-negative.

We remark that property (iv) can be improved by examining the structure
of the ring R in more detail. For instance, it follows from [15, Thin. 5.15]
that R is a Gorenstein ring. (Property (ii) is a consequence of this fact, but
actually (ii) was used to prove that R is Gorenstein.) From this one cn
deduce that if 0 _< i d + ] n, then the coefficient of }, in V,() is positive.
It is possible to obtain better information about the coefficients (see [15] for
somc relevant techniques), but we do not pursue this here.
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