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A unified method is presented for enumerating permutations of sets and mul- 
tisets with various conditions on their descents, inversions, etc. We first prove 
several formal identities involving Miibius functions associated with binomial 
posets. We then show that for certain binomial posets these MBbius functions 
are related to problems in permutation enumeration. Thus, for instance, we 
can explain “why” the exponential generating function for alternating per- 
mutations has the simple form (1 + sin x)/(cos x). We can also clarify the 
reason for the ubiquitous appearance of ex in connection with permutations 
of sets, and of C(s) in connection with permutations of multisets. 

1. BINOMIAL POSETS 

We wish to show how the theory of binomial pose& as developed in 
[l I] to formalize certain aspects of the theory of generating functions, can 
be used to unify and extend some results dealing with the enumeration 
of special classes of permutations. Although our results about permuta- 
tions can be proved directly (i.e., without the use of binomial posets), 
binomial posets provide a means of handling in a routine way complicated 
recursions and identities involving permutations. 

First let us recall the salient facts about posets in general, and binomial 
posets in particular. Through this paper we use the following notation: 
c=, complex numbers; N, nonnegative integers; P, positive integers; [n], 
the set (1, 2,..., n}, where n E P; T C S or S 3 T, T is a subset of S, allowing 
T= 0 andT=S. 

Recall that a poset (or partially ordered set) P is locally $finite if every 
interval [x, y] = {z E P: x < z < y} of P is finite. Let Y(P) denote the set 
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BINOMIAL POSETS 337 

of all intervals of P, where by convention the null set m is not an interval. 
If P is locally finite, define the incidence algebra Z(P) of P to be the vector 
space (over C) of all functionsf:Y(P) + C endowed with the multiplica- 
tion (convolution) 

where we writef(x, z) for f( [x, z]), etc. This makes Z(P) into an associative 
C-algebra with identity 6 given by 8(x, y) = a,, (the Kronecker delta). A 
function f~ Z(P) is invertible if and only if f(x, x) + 0 for all x E P. The 
zeta function [ E Z(P) is defined by i(x, y) = 1 for all x < y in P. The 
A48bius function ,u is defined to be [-I, and is characterized by the recursion 

for all x in P 

for all x < y in P. 
(1) 

Recall the result [17, Proposition 6, p. 3461, known as “Philip Hall’s 
theorem,” that 

p(x, y) = cg - Cl + c2 . ..) (2) 

where ci is the number of chains x = x0 < x1 < 1.. < xi = y (so c,, = 0 
unless x = y). 

DEFINITION 1.1. A binomial poset is a partially ordered set ,? satisfying 
the following three conditions: 

(a) P is locally finite and contains arbitrarily long finite chains. (A 
chain is a totally ordered subset of P.) 

(b) For every interval [x, y] of P, all maximal chains between x and 
y have the same length, which we denote by t(x, y). If 8(x, y) = n, then we 
call [x, y] an n-interval. (The length of a chain is one less than its number 
of elements, so 4(x, x) = 0.) 

(c) For all n >, 0, any two n-intervals contain the same number B(n) 
of maximal chains. We call B the factorial function of P. Note 
B(0) = B(1) = 1. We write B(P, n) for B(E) if we wish to em:phasize the 
binomial poset P. 

Binomial posets were first defined in [ll], where they were called 
“posets of full binomial type.” (In [I l] it was not assumed that P contains 
arbitrarily long finite chains, but we have added this condition for con- 
venience in what follows.) Many examples of binomial posets are given in 
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[I l] and [20]. We shall be concerned here mainly with the following class 
of examples. 

EXAMPLE 1.2. Let 4 be a prime power, and let Ya be a vector space of 
infinite dimension over the finite field (X(q). If I’ E P, define &(V,) to be 
the set of all r-tuples ( W, ,.,., W,), where each Wi is a finite-dimensional 
subspace of V, satisfying dim WI = dim W, = ... = dim W,. . Order 
L,( V,) by component-wise inclusion, i.e., (WI ,..., W,) < (U, ,..., U,) if 
Wi C Vi for 1 < i < Y. Then L,(V,J is a binomial poset with factorial 
function B(n) = [(l + q)(l + q + q2) *.. (1 + q + q2 + -*. + q”-l)]‘. In 
particular, L,(V,) is the lattice of finite dimensional subspaces of V, . We 
make the convention (which is not uncommon in these situations) that V1 
is an infinite set whose “finite dimensional subspaces” are simply its 
finite subsets. Thus L,(V,) consists of all v-tuples (W, ,..., JK,), where Wi 
is a finite subset of V, and 1 W, ! = ... = 1 W, / , and B(n) = n!‘. In 
particular, L,( VI) is the lattice of finite subsets of VI . 

EXAMPLE 1.3. Let P be a locally finite poset with a unique minimal 
element 8. Suppose that for all x < y in P, all maximal chains of the 
interval [x, ~1 have the same length 4(x, y). If k E P, define p(k) to be the 
subposet of P consisting of all x E P such that Q’(6, x) is divisible by k. 
Thus 6 E Pffi), and P(l) = P. Suppose P is binomial with factorial function 
B(P, n). Then PCk) is binomial with factorial function 

B(P’“‘, n) = B(P, kn)/B(P, k)“. (3) 

If P = L,( V,), then we write Per;) = LF’( V,). 
If P is a binomial poset, define R(P) to be the subvector space of I(P) 

consisting of all functions f~ I(P) satisfying f(x, JJ) = f(x’, 1)‘) whenever 
1(x, y) = 8(x’, u’). If f E R(P), then we can write f(n) for f(x, y) when 
n = {(x, JJ). The following theorem is the fundamental result linking 
binomial posets with generating functions. For a proof and some con- 
sequences and applications, see [l l] or [20]. 

THEOREM 1.4. Let P be a binomial poset with factorial function B(n). 
Then R(P) is a subalgebra of I(P) (i.e., is closed under convolution). 
Moreover, R(P) is isomorphic to the ring C[[x]] of jbrmal power series in 
the variable x over C. This isomorphism is given by 

f * 5 f(n) x”IB(n), (4) 
TL=O 

where f E R(P). 
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It follows from Theorem 1.4 that when f E R(P), the following three 
conditions are equivalent: (i) f-l exists in 1(P), (ii) f-l exists in R(P), 
(iii) f(0) f 0. In particular, *U E R(P). 

Let P be a binomial poset with factorial function B(H). Suppose [x, y] 
is an rz-interval and a, , a2 ,..., a, are nonnegative integers summing to n. 
Define 

C 

n 

a,, a2 >..., a, 1 
to be the number of chains x = x,, < x1 ,< .*. < xk = y such that 
t(xIW1 , xi) = a, , 1 < i < k. It follows from Theorem 1.4, or is easily seen 
by a direct argument, that 

al, a4 ,.-., ak = B(a,) B(aJ ... B(a,) ’ 
n 1 B(n) 

(5) 

and hence [,,,,,y . . . . .,I depends only on PI, a, , a2 ,..., ak (not on the partic- 
ular n-interval [x, y]). If k = 2, we write [,nl] instead of [aly,J, since in what 
follows there will be no confusion with the case k = 1. If we set A(n) = 
[T] = B(n)/B(n - I), then 

B(n) = A(n) A(n - 1) a.* A(1). (6) 

Equation (6) explains why we call B(n) a “factorial function..” Equation (5) 
is the P-analog of the multinomial coefficient formula 

( n n. I 

aI , a2 ,..., a, I- a,! a,! *** a,! ’ 

and indeed (5) reduces to (7) when P = L,(V,), as defined in Example 1.2. 
Moreover, when P = L,(V,), then (5) becomes the “q-multinomial 
coefficient,” which we denote by 

( 

n 

I- 
&(n) 

4, a2 ,..., ak n B&d &k%) --a B&d ’ 
(8) 

where 

B,(i) = (1 + 4)(1 + 4 + $) .‘. (1 + 4 f q2 f *.. + qi-‘). (9) 

2. MOBIUS FLJNCTIONS 

In this section we will establish some formal results concerning the 
MGbius function of certain posets [x, yls related to binomial posets. In the 
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next section we will show that for certain binomial posets these Mobius 
functions are related to problems in permutation enumeration. 

Let P be a binomial poset with factorial function B(n). Let S be any 
subset of the positive integers P. If [x, ~1 is an interval of P, define [x, v]~ 
to be the subposet of [x, y] consisting of x, y, and all z E [x, ~1 satisfying 
8(x, z) ES. Let ps denote the Mobius function of the poset [x, J>]~ . 
Suppose 8(x, JI) = 79 and S n [n - 1] = {sl , s2 ,..., sTeI), with 
s1 <s, < *.* <s,-1. Set s, = 0, s, = n. It then follows from (2) and (5) 
that 

where the sum is over all solutions to a, + a2 + ..* f ai = r in positive 
integers ai , and where tj = s,~+,+ ..+@. - s,,+,~+...+~. . Hence ps(x, v) 
depends only on n and S (not on the ;articular n-i&&al [x, y]), so we 
write p.,(n) for pLs(x, JJ), 

THEOREM 2.1. We have 

where 1 aij 1 denotes the r x r determinant with (i, j)-entry aij (i, j E [r]), 
with the convention l/B(-k) = 0 if k > 0 and [j”] = 0 ifj < 0. 

Proof. Let a(i, j) = l/B(s, - sieI). Then a(i, j) = 0 if i <j - 1, 
while a(i, i + 1) = 1. Hence 

= C (-l)sgn(n) ~(1, n(l)) a(2,42)) ... a(r, n(r)) 

= C (-lpi a(k, , 1) a(k, , k, + 1) a&, , k, + 1) ..* a(r, k,-1 + I), 

where the last sum is over all subsets {k, , k, ,..., kidI} C [r - I], with 
k, < k, < --. < k,pl. Now 

(-l)T-i a(kl , 1) a(k, , k, + 1) ... a(r, kipl + 1) 

= (- l)Y-i/B(s,,) B(g, - sk,) ... B(n - slciml) 

(-I)‘- n 
-B(n) f t1, ,I t, ,...> ti 

where tj = s,~+,,,+...+ - s,~+;~+...+~~-~ , with a, = k, - kiFI (k, = 0, L 
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ki = r), Hence, except for the factor (-1)’ B(n), the summand in the 
right-hand side of (10) is equal to the right-hand side of (12). Thus 
(- 1)’ pS(n) = B(n) . / n(i, j)i , as desired. Now 

[ 
tl ) (l',..,, t,] = [;;]r t, fl][n - ;: - f2] . . . [" - fl - fzt; ... - "i-l] . 

Hence 

B(n) a(k, , 1) a(k, , k, $ 1) ... U(Y, k,-l + 1) 

where 

It follows from (12) (putting b(i, j) for a(& j)) that 

completing the proof. 1 

THEOREM 2.2. Let P be a binomial poset with factorial function B(n), 
and let S C p. Then 

Proof. Define a function x : N + (0, l} by x(n) = 1 if n = 0 or 
n ES, x(n) = 0 otherwise. Then the recursion (1) for Mobius functions 
gives 

n-1 
p&z) = - c 71 

c I i ~Ls(i) X(i>, 71 > 1, 
.L=O 

while ~~(0) = 1. Hence 

-bd4U - x(4> = %go [ 11 KS(~) x(i), n 3 1, (13) 
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which translates into the generating function identity 

This is clearly equivalent to the desired identity, completing the proof. [ 

Theorem 2.2 shows that the generating function Cz==, am P/B(~) can 
be computed in terms of CnsS Pi F/B(n). Thus it is natural to ask for 
what sets S can CnES &n) x”/B(n) be “explicitly” computed. 

THEOREM 2.3. Let k E P and let S = kP = {kn : n E IF’>. If P is a 
binomial poset with factorialfirnction B(n), then 

I + c ps(n) xn/B(n) = f xkn/B(kn) -‘. 
ncs i a=0 1 

First ProoJ: Suppose n ES and 0 < i < n. Then i E S if and only if 
IZ - i E S. Moreover, if n $ S and 0 < i < n, then i E S only if 
IZ - i $ S. Hence from (13) we get for any n 2 0, 

So, = $J [T ] p&3 x(0 ~01 - i>, 
i=O 

where aon is the Kronecker delta. Thus 

completing the proof. 

Secondproof. Let Pcrc) be the binomial poset of Example 1.3, with 
factorial function B’(n). If ,u’ is the Mobius function of Ptk), then it follows 
from (3) and from Theorem 1.4 that 

z. $@I x”iW4 = [i. W(4] -I- 

But p’(n) = p.,(kn) and by (3) we have B’(n) = B(kn)/B(k)‘“. Hence 

I + -f ,u&z)(B(k) x)“)“/B(kn) = f (B(k) x)“/B(kn) 
n=l f-Z=0 1 

If we put 9 for B(k) x, we get the desired result. 1 
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Although our first proof of Theorem 2.3 is more elementary than our 
second proof, the second proof gives more insight into why such a simple 
formula as (14) holds. Namely, it asserts that the zeta and Mobius func- 
tions are inverses of each other in the poset P(7G). 

Combining Theorems 2.2 and 2.3, we obtain the following corollary. 

COROLLARY 2.4. Let P be a binomial poset with fuctorial function B(n). 
Let k E [FD and S = kP. Then 

In the case k = 1 of Corollary 2.4, we have S = 5’ and ,u,(II) = p(n), 
the MGbius function p of P evaluated at any n-interval. Corollary 2.4 
becomes 

According to Theorem 1.4, Equation (15) asserts that the Mobius function 
p of P is the inverse of the zeta function 5. We now give a generalization 
of (15). Let P be any locally finite poset such that for all x < y in P, any 
two maximal chains of the interval [x, ~1 have the same length k(x, JJ). 
Given S C P, we can define [x, ylS and pLs(x, v) exactly as we did for 
binomial posets. Let t be a variable, and define g, h E I(P) (the incidence 
algebra of P) by 

&a Y> = ;l; + ,j:: = y f if [(x, y) = M 3 1 

ifx=y 
Mxyy) = g&J>)f"l-s, 

(16) 

if x < y, 
s 

where n = @, JJ), where S ranges over all subsets of [n - 11, and where 
s=jSj. 

LEMMA 2.5. We have g = h-l, as elements of I(P). 

Proof. By (2), we have 

P.s(X, Y> = c C-l>“, 

where the sum is over all chains x = x,, < x1 < 0.. < x,, = y such that 
for each i E [m - l], e(x, xi) E S. Thus when x < y we can write h(x, y) as 

#za/zo/3-6 
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a double sum h(x, y) = & C (- 1),11 P-I-~. Interchanging the order 
of summation, we have h(x, y) = C (-I>,,1 Cs t+l--s, where for 
a fixed chain x = x0 < x1 < ..* < x, = y, S ranges over all subsets of 
[n - I] containing the m - I numbers 9x, xi), 1 < i < m - 1. Hence by 
the binomial theorem &. tn-l--s = (1 + t)n-m. It follows that 

Jvx, Y> = c (- 1>““f(-% > x3 f(Xl 7 x2) ‘. . fh?-1 > xm), (17) 

where the sum is over all chains x = x,, < x1 < ,*. < X, = y and where 
f(u v) = (1 + t)C(u.v)-l, u < v. If we define f(u, U) = 0, then from (17) 
we’have h = 6 -f+f” -f3 + ... = (6 -t-f)-‘, where 6 is the multi- 
plicative identity of I(P). Since 6 + f = g, the proof is complete. 1 

When P is a binomial poset, Lemma 2.5 can be transformed into a 
power series identity via Theorem 1.4. Specifically, given a binomial poset 
P with factorial function B(n), let t be an indeterminate and define for 
n E P, 

h,(t) = c /.A&) P--l--s, (18) 
s 

where S ranges over all subsets of [n - I] and where s = 1 S / . Thus 
h,(t) = h(x, y) (as defined by (16)) where [x, y] is an n-interval. For 
instance, h,(t) = -1, h,(t) = -t + B(2) - 1, h,(O) = p(n). Combining 
Lemma 2.5 and Theorem 1.4. there ,results: 

COROLLARY 2.6. We have 

= (1 + t)[t + f. (I ;(gx” 1-l. 

3. PERMUTATION ENUMERATION 

In the previous section we developed some formal properties of bino- 
mial posets. We now give these results a more concrete significance by 
giving a combinatorial interpretation to the numbers am for certain 
binomial posets P. 

Let rr = (a, , a? ,..., a,) denote a permutation of [n]. An ascent (or rise) 
of 71 is a pair (ai , a,+J with a, < ai+l . The ascent set A(T) of rr is defined 
by 

A(T) = {i E [n - 11: ai < a,,l>. 
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An inversion of rr is at pair (i, j) with i < j and ai > a? . Let i(n) denote the 
number of inversions of n, so 0 < i(r) < (g). 

THEOREM 3.1. Let q be a prime power or q = 1, and let r E $. Let 
L,(VJ be the binomial poset of Example 1.2. Finally let S be any subset of 
the positive integers. Then 

(- 1)” P&) = c 4 
i(~,)+i(~T,)+...+i(.~) 

? 

where the sum is over all r-tuples (rl , r2 ,..., 7~~) ofpermutations of [n] such 
that 

44 n 44 n ... n A(7rT) = [n - I] - S, 

and where m = 1 +’ / S n [n - 111 . 

Proof. Given T C [n - l], let 

f,(T) = c q i(nl)+i(nz)+...+i(n,) 
3 (19) 

where the sum is over all u-tuples (rl, 7~~ ,..., TV) of permutations of [IZ] 
such that 

A(T,) n A(T,) n a.- n A(T,) 3 T vo 

Define g,(T) in the same way asf?(T) except (20) is replaced with A(QP-,) n 
A(T,) n ... n A(~T,) = T. Thus we wish to prove g,([n - l] - T) = 
(- 1)” &z), where m = 1 + / T 1 . Suppose [n - 11 - T = {sl , s2 ,..., 
skwl}, with s1 < s2 < .*. < s~-~ . Let s0 = 0, sic = n. (Thus m + k = 
n + 1.) We claim that 

fdT) = L, - so ) s2 - z1 )...) Sk - Sk--l): ’ 

where the right-hand side of (21) is the g-multinomial coefficient of (8), 
raised to the rth power. Now the sum in (19) ranges independently over 
each ri subject to A(vJ 3 T, since (20) holds if and only if each A(ni) 1 T. 
It follows that fr(T) =fi(Ty, so it suffices to prove (21) for r = 1. For 
simplicity we write f(T) =f,(T), g(T) = g,(T). 

We prove (21) (when r = 1) by induction on k. The statement is trivial 
when k = 1, for then T = [n - 11, so A(V) 3 T is equivalent to v = 
(1, 2 ,..., n). Thusf(T) = 1 = (3, , as desired. 

Given [n - l] - T = (sl, s2 ,..., ~~-3, with- 0 = s,, < s1 < s2 < 1.. 
< sk-i < sic = N, any rr = (a, , a2 ,..., an) satisfying A(T) 3 T can be 
obtained as follows. The last IZ - s~-~ (or sk - sk-i) elements of n can be 
any of the (,-yk-,) choices C of IZ - skhl elements from [n], but they must 
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be arranged in 7~ in increasing order. The remaining slcel elements of r 
form a permutation 7~’ of [n] - C satisfying A(&) r) T’, where 
[s~~-~ - 11 - T’ = {sl , s2 ,..., .p-,}. Let C = (b, , bz ,..., bj} (j = n - sl,+) 
with 1 < b, < b, < .+. < bj < n. Then 

i(r) = i(d) + i (n - b, - j + c). 
C=l 

Abbreviating Cbzl (n - b, - j + c) to F(C), it follows by induction that 

fCT) = I:,, - so ) s2 - :-;.., Sk-l - SkJC .g qF’C’ ’ (22) 

where the sum is over all subsets C of [n] of cardinality j = IZ - slcpl . 
Now as C ranges over all sequences 1 < b, < b, < .a. < bj < n, we see 
that if d, = n - b, - j + c, then dl , d, ,..., dj ranges over all sequences 
satisfying 0 < d, < djpl < ... < dl = n - j. It follows that Cc qFtc) = 
~,.JJ~,~-~(Y) q’, where ~~,+~(r) is the number of partitions of Y into at most 
j parts, with largest part at most II - j. But it is well-known (see, e.g., [13, 
Theorem 3491 or [9, Example 8, p. 1171) that 

C h-j(r) 4’ = ( j” ), . T 

Hence from (22) we get 

This proves (21). 
We now wish to express g,(S) in terms of thef,(‘;r)‘s. Clearly, 

.M% = &T,(T) (SC TC [n - I]). 

Hence by the Principle of Inclusion-Exclusion, 

srtS> = c (61)“-“‘h(T) (SC T C [II - 11). (23) 

Comparing (21) and (23) with (lo), we conclude g,(S) = (-1)” pS(n), 
where nz = 1 + 1 S /. This completes the proof. 1 

Remarks. We have given a straightforward, elementary proof of 
Theorem 3.1. It is possible to give more combinatorial proofs using 
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lattice-theoretic techniques which, though less elementary, give more 
insight into the structure of the posets L,(V,J. For instance, the special 
case Y = 1, q = 1 (so L,(vr) is the lattice of finite subsets of an infinite 
set) follows from Theorem 9.1 and Proposition 14.1 of [18], in the special 
case that P is a disjoint union of points. The case r = 1 of Theorem 3.1 
(but q arbitrary) follows from letting L be the lattice of subspaces of an 
n-dimensional vector space over GF(q) in [19, Theorem 1.21. 

We can substitute the expression for ~&z) given by Theorem 3.1 into 
our results in Section 2 to obtain explicit information about the enumera- 
tion of certain classes of permutations. We now discuss some of the 
resulting formulas in more detail. 

COROLLARY 3.2. Let q be an indeterminate, and let S = {sl , s2 ,..., s,-~) 
beasubsetof[n-l],wheren~~ands,<s,<~~~<s,-,.Sefs,=O, 
S - n. Let r E P, and deJine m- 

where the sum is over all r-tuples of permutations of [n] such that A(n,) n 

471,) n -1. n A(z-,) = [n - l] - S. Then 

where B,(s) and (f), are given by (8) and (9), with the usual conventions 
l/B(O) = 1, l/B(--s) = 0 ifs > 0, and(F), = 0 ifj < 0. 

The proof is immediate from Theorem 2.1 and Theorem 3.1. If we put 
q = 1 and r = 1 in Corollary 3.2, we get that the number of permutations 
n of [n] with A(n) = [n - l] - S is equal to 

n! I l/(s, - sj-,)! !  = i(,“,:--;)l. 
z 

This is a well-known result of MacMahon [14, Vol. 1, p. 1901, rediscovered 
by Niven [15] and further studied by de Bruijn [2] and others. 

COROLLARY 3.3. Fix k, r E P. Let n E P, and let q be an indeterminate. 
Define 

where the sum is over all r-tuples (QT~, nz ,..., rr) of permutations of [n] 
satisfying 

A(rI) n A(n.J n .. . n A(~T,) = [n - l] - kP. 
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,zl (- 1)[(12-1) ‘“J&,(n) x”/B,(n)T 

= [ fy x~/B,(n) j [ f xL”/B,(kn)‘] -: 
n=l n=a 

(24) 

where [(n - 1)/k] is the greatest integer symbol and where B,(n) = (I + q) 
(1 + q + q2) -** (1 + q i q2 + **’ -I- q”-l). I 

The proof follows from Corollary 2.4 and Theorem 3.1, upon observing 
that the set k$ n [n - l] has [(n - l/k)] elements. We can eliminate the 
unsightly factor (- I)[ (n-1)~% from (24) by the following device. 

LEMMA 3.4. Let k E P, and let F(x) = Czzl (-l)[(n-l)lkl f(n) x” be a 
power series over C. Then, 

gl f(n) x1” = (Z,k)z F([1+2jx)/(<1,-2j - I), (25) 

where 6 = eziJk. 

Proof Let 1 < t < k. Then [(krz + t - 1)/k] = ~1. Hence 
k-l 

(l/k) C i-““jF(l;“jx) = f (-l)“f(kn + t) xknft. 
j=O n=1 

Therefore 
b-l 

(i-t/k) jFo <-2~jF(F(52j+1x) = $ .f(kn + t) xkm+t. (26) 
Tl=l 

Summing (26) for 1 < t < k, we obtain 

This completes the proof. 0 
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Combining Corollary 3.3 and Lemma 3.4, we obtain: 

COROLLARY 3.5. Let f&(n) and B,(n) be as in Corollary 3.3, and let 
F(x) equal the right-hand side of (24). Then 

zlfk&) xn/B&Y’ = W4 2 F~F(i2~+141(i1+2j - I>, (27) 

where 5 = eWils. 1 

We now turn to special cases of Corollaries 3.3 and 3.5. If we set k = I, 
it follows from (24) or (27) that 

1 + 5 j&(n) x”/B,(n)’ = 
I 
f (- 1)” xn/Bn(n)? 

1 
-l. (28) 

97.4 n=Q 

When in addition Y = q = 1, then&,(n) is equal to the number of permu- 
tations n of [n] such that A(n) = ,B. Clearly 7~ = (n, n - l,..., l), so 
fill(n) = 1. This agrees with (28), which reduces to e” = (e-r)-1. If we put 
q = 1 and r = 2 in (29, then we get a recent result of Carlitz, Scoville, 
and Vaughan [S, Theorem 11. Equation (28) is thus a q-generalization of 
[8, Theorem 11, and also a generalization to arbitrary r-tuples of permuta- 
tions. 

Let us now consider the case k arbitrary and q = r = 1. Then f,,,(n) is 
the number of permutations (a, , a2 ,..., a,) of [n] such that a, > ai+l if and 
only if k divides i. The functionf,,,(n) was considered by Carlitz in [4], 
and his equation (1.11) is equivalent to the case Y = q = 1 of (24). Note 
that f&(n) is the number of “alternating permutations” of [n], i.e., 
permutations (a,, a2 ,..., a,) satisfying a, < a, > a3 < a4 > *.a. Now we 
have that 

z. xknl&(k4 = f 

k-1 

n=O xk”/(kn) ! = (l/k) c epiZ , 
I==0 

where p = e Pnilh. It follows (using (27)) that the generating function 
~,“=,f,,,(n) x”/n ! can be explicitly expressed in terms of exponential 
functions. In theory this expression can be “rationalized” so that all non- 
real numbers disappear and only the functions exp, sin, and cos appear. 
For instance, when k = 2 we obtain 

1 + 2 fill(n) x”/n ! = set x + tan x 
n=1 

(29) 
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a famous result of Andre [I] (see also [9, p. 258; 12, p. 89; 7, Eq. (3.9)]). 
When k = 3 some computation reveals 

Note that Corollary 3.5 immediately provides us with q-analogs of 
and (30). For instance, the q-analog of (29) can be written in the form 

(30) 

G?l 

We now turn to the combinatorial significance of Corollary 2.6. Let P 
be the binomial poset LLk’( V,) of Examples 1.2 and 1.3. Let p be the 
Mobius function of P and let ,x’ be that of L,(V,J. If S C [n - 11, then it 
follows immediately from the definition of ps that p,(n) = &(kn), where 
ks = {ki : i E S>. Now define 

W-1 

Gmdt) = c gnlesds, 
S=O 

where 

gn1csrn 
= 1 qi(al)+i(~z)+“.+i(a,), 

where the sum is over all r-tuples (rI , mTTz ,..., v?) of permutations of [kn] 
such that 

(9 4.d n 4-J n --- n A(T,) 3 [kn - I] - k[n - 11, 

and 

(ii) 1 A(n,) n A(z-J n l me n A( = s + (k - 1) n. 

It follows from Theorem 3.1 that 

G,mq(t) = (- 1)” L(---th 

where h, is defined by (18) (with respect to the poset P). Hence by 
Corollary 2.6 there follows: 

COROLLARY 3.6. We have 

1 + f Gnkrq(t) x”/B,(kn)’ = [l - nzI (t - 1),-l x”jB,(kn)“]-l. 
n=1 
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We briefly discuss some special cases of Corollary 3.6. If we put t = 1, 
then 

where the sum is over all u-tuples (7~~ , rZ ,..., v?) of permutations of [kn] 
such that A(r,) n A(n,) n .*. n A(z-?) 3 [kn - I] - k[n - I]. From (21) 
it follows that 

This agrees with Corollary 3.6, which asserts that 

=l+n~lgk&7 4 

Now consider the case k = 1. Here condition (i) above is vacuous. Thus 
for instance when q = Y = 1, g,,,l, is simply the number of permutations 
of [n] with exactly s ascents. Hence g,l,,l is an Eulerian number A@, s + 1) 
and Gnlll(t) is the Eulerian polynomial A,(t) (see, e.g., [9, Section 6.5; 
12; 16]), and Corollary 3.6 is equivalent to the well-known result (e.g., 
[9, p. 244; 12, p. 215; 12, p. 681) 

It follows that G,,,,(t) is a q-generalization of the Eulerian polynomials 
and that gnllln is a q-generalization of the Eulerian numbers. This genera- 
lization differs from that of Carlitz [2] but agrees with the generalization 
alluded to in [19, pp. 20%2091. The generating function in Corollary 3.6 
can be expressed in terms of exponential functions whenever Y = q = 1 
(k arbitrary). For instance, 

1 + -f Gzzdt) x” t-1 
+x=1 Gw! = t - cash (x(t - 1))W (31) 

Thus, to be explicit, the coefficient of tr”xpz/(2n) ! in (31) is the number of 
permutations (a,, a2 ,..., a& of [2n] such that a2i--1 < u2i for al.1 i E [n] and 
h,, < u2i+1 for exactly m values ofj E [n - 11. Finally we mention that the 
special case k = q = 1, r = 2 of Corollary 3.6 is equivalent to 
[8, Theorem 21. 
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4. DIRICHLET POSETS 

A Dirichlet poset is a generalization of a binomial poset; Dirichlet 
posets are associated with power series in more than one variable in the 
same way that binomial posets are associated with power series in one 
variable. We shall consider here only the simplest kinds of Dirichlet 
posets, viz., those which are products of binomial posets. For a more 
general discussion, see [l I, Section 71. If (P,> is a collection of posets, 
where i ranges over some index set J, and where each Pi has a unique 
minimal element 6, , define the (restricted) direct product P = UP, as 
follows. The elements of P are the ‘“J-tuples” (x&, such that xi = 8, 
for all but finitely many i. P is given the usual product ordering, i.e., 
(xi) < ( yi) if xi ,< yi for all i E J. Now suppose that each Pi is a binomial 
poset with factorial function B<(n) (not to be confused with the B,(n) of 
(9)). Let Z(P) be the incidence algebra of P = ITPi, and define a subset 
D(P) of Z(P) as follows. D(P) consists of all functions f E Z(P) such that 
f(W, ( yi)) = f((xt’>, (Vi’)) (where (4 < ( YJ and (xi’> < (ui’) in P> if 
for all i we have C(xi , vi) = t(xi’, vi’). Hence iffe D(P), then f((xi), (vi)) 
depends only on the J-tuple (ni) of nonnegative integers given by n, = 
/(xi , vi). Thus we write f(ni) = f(ni)i,, for f((xi), (vi)). The fundamental 
theorem about the set D(P), a generalization of Theorem 1.4, is the 
following (see also [II, Proposition 7.21, for a somewhat different point 
of view) : 

THEOREM 4.1. The set D(P) is a subalgebra of Z(P). Moreover, D(P) is 
isomorphic to the ring C[[xi]] off ormal power series in the variables xi , 
i E J, over @. This isomorphism is given by 

where the sum is over all J-tuples (n?) of nonnegative integers such that 
ni = 0 for all but$nitely marzy i. 

EXAMPLE 4.2. The archetypal example of a Dirichlet poset, and the 
one that explains the terminology “Dirichlet poset”, is the following. Let 
J be the set of all positive integers, and for each i E J let Pi = N, the 
nonnegative integers with their usual order. Each Pi is a binomial poset 
with B&Z) = 1. Thus P = I;IP, is a Dirichlet poset. P is isomorphic in a 
natural way to the lattice of positive integers ordered by divisibility. 
Indeed, if (xi) E P (so each xi E N), then we associate (xi) with the positive 
integer Llpfi, where pi is the ith prime. This establishes the desired iso- 
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morphism, so henceforth we shall identify P with the positive integers P. 
Then D(P) consists of all functions f E I(P) such that f(m, n) = f(m’, n’) 
whenever n/m = n’lm’. Thus we can write f (n/m) for f (rn, n), and the 
correspondence of Theorem 4.1 takes the form 

where G = p;l& ... . If we put pi” for xi , then we get f ++ CnE,f(n) IZP. 
Hence D(P) is isomorphic, in a natural way, to the algebra of formal 
Dirichlet series over C. This explains the terminology “Dirichlet poset.” 

In order to apply Dirichlet posets to permutation enumeration, we 
need an analog of Theorem 3.1 for special Dirichlet posets. Such an 
analog is provided by the next theorem. First we must extend our ter- 
minology on permutations to the case of multisets. AJinite multiset M of 
positive integers may be regarded as a collection of positive integers with 
repetitions allowed, such that the total number of elements appearing in 
the collection is finite. We write M = (l”1, 2”2,...,) to indicate that i is 
repeated vi times, so C vi < co since M is finite. We write D = 
C vi = 1 M / . A permutation 7~ of Mis a linear arrangement (a1 ) a2 ,..., aa) 
(Sz = 1 M I) of the elements of M. For instance, there are 7!/2!3 !2! = 210 
permutations of M = (12, 23, 42}, of which (4, 2,2, 1,4, 1,2) is one. A 
descent of r = (a,, a2 ,..., aa) is a pair (ai, ai+J with ai > aif , and the 
descent set D(n) of ZT is defined by D(V) = (i 5 [.Q - I]: ai > a,,,). For 
instance, O(4, 2,2, 1,4, 1, 2) = {I, 3, 5). 

THEOREM 4.3. Let P be the positive integers ordered by divisibility, and 
let [m, n] be an interval of P, so m j n. Suppose n/m = p>p2 ***, and let 
Q=!Z(n)=v,+v,+*... Let S be any subset of P, and let t = 1 f 
1 5’ n [Q - 111 . Finally let p be the M6bius function of P. Then (-1)t 
&m, n) is equal to the number of permutations rr of the multiset {1”1,2”2,...} 
satisfying D(r) = S n [.!I2 - 11. g 

We will omit the proof of Theorem 4.3, since it can be proved in 
a manner analogous to Theorem 3.1. It is also equivalent to combining 
[18, Theorem 9.11 and [18, Proposition 14.11 in the special case that P is 
a disjoint union of chains and w is a natural labeling (as defined in [lg]). 

We can now state multiset analogs of Corollary 3.3 and Corollary 3.6. 

COROLLARY 4.4. Fix k E P. If n = p;lp2 .‘a and Q = C vi, &fine 
f&z) to be the number ofpermutations z- of the multiset {l”l, 2*2,...) satisfying 
D(T) = [!i? - l] n kP. Also dejine tk(n) = (-l)[(n-l)lkl. Then 

2 44fkW n-s = (5(s) - I@ m-s)-‘, 
a=2 m 

(32) 
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where m ranges over all positive integers ppp? *.* satisfying k I G(n) (where 
as usual Q(n) = C vi). Here l(s) = CT IZP is the Riemann zeta function. 1 

The proof is analogous to the proof of Corollary 3.3 and will be omitted. 
Let us examine more closely the special cases k = 1 and k = 2 of 

Corollary 4.4. When k = 1 we seek permutations n of (1”1,2”~,...} satis- 
fying D(r) = [Q - 11. Such a permutation will exist (in which case it will 
be unique) if and only if each vi < 1, i.e., if and only if n is squarefree. 
Hence fi(n) = / p(n)1 (where p is the ordinary number-theoretic M6bius 
function), and ~~(n)f~(~) = (-l)“-l j p(n)1 = -,u(n). Thus (32) becomes 

- ,C, An) I?-’ = (C(s) - 1) 5@F1, 

which agrees with the well-known formula C,” p(n) nP = &s-l. 
We now turn to the case k = 2 of Corollary 4.4. If n = p&Q..., then 

fi(n) is the number of “weakly alternating” permutations of the multiset 
A4 = (1’1, 2”2,...}, i.e., the number of permutations v = (a, , a, ,..., an) of 
M satisfying a, < a2 > a3 < a, > .... Set y(s) = Cm m-S, where m 
ranges over all positive integers satisfying 2 1 Q(m). It is well-known and 
easily proved that <(2s)/<(s) = CT (-1)“(n) n+. Hence y(s) = 

(l/2) [5(s) + bXW5~~)~l and (32) becomes 

This implies the identity 

where by conventionf,(l) = 0, where T(n) is the number of divisors of ~1, 
and where brackets denote the integer part. We can rewrite (33) in the 
form 

1 - g +)fi(n) n-s = -& - 5(s) - Y(S) (34) 
n=2 Y(S) 

2 IT(1 - p-“)-I - II(1 + p-S)-’ 
= 17(1 - p-S)-1 + 17(1 + p-“)-I - 2T(l - p-s)-’ + 17(1 + p-S)-’ ’ 
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where the products range over all primes p. A little thought shows that 
we can eliminate the unsightly cz(n) from (34) as follows: 

1 + -f f2(n) 12-s = 
2 + (l/i)[lT(l - ip-8)-l - I7(1 + ip-s)-I] 

n=2 I7(1 - Q-S)-1 + 21(1 + ip-S)-1 

227(1 + p-2”) + (l/i)[fl(l + ip-“) - 17(1 - ip-“)] 
n(1 + ip-“) + 17(1 - ip-“) 

(35) 

Equation (35) is equivalent to a result of Carlitz [5] (corrected in [6]). It 
can be written in the equivalent form 

1 + 5 f2(n)n-s = [l f -jT(-l)wn-1) m-Q (+wj-"]-l, (36) 
n=2 m  

where m ranges over all positive integers such that Q(m) is odd, while j 
ranges over all positive integers such that Q(j) is even. Equations (35) or 
(36) can be extended to arbitrary k, but the formulas become messy. We 
do have, however, the relatively simple result 

where in both sums n ranges over all integers satisfying n > 2 and k 1 Q(n). 
The easy deduction of (37) from (32) is left to the reader. 

We now give a multiset analog of Corollary 3.6. Fix k E P, and let 
n = pppy2” ... where k 1 Q(n). Define gnks to be the number of permutations 
n of the multiset (l”1, 2”2,...) satisfying 

(i) O(r) C kP’, 

and 

(ii) / D(Z)/ = (Q(n)/k) - 1 - s 

Now let t be an indeterminate and define 

G&) = c 
3=0 

gnkst', 

COROLLARY 4.5. Wehave 

1 + c G,,(t) y1-s = [ 1 - c (t - l)(fi(n)l7+1 n-j-', 

n R 

where in both sums n ranges over all integers satisfying n > 2 and k j L?(n). 
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The proof is analogous to the proof of Corollary 3.6 and will be omitted. 
Note that if we put t = 0 in Corollary 4.5, we obtain (37). The case k = 1 
of Corollary 4.5 is equivalent to a result of Dillon and Roselle [lo, (1.4)- 
W-91. 
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