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1 Introduction.

Algebraic combinatorics is concerned with the interaction between combi-
natorics and such other branches of mathematics as commutative algebra,
algebraic geometry, algebraic topology, and representation theory. Many of
the major open problems of algebraic combinatorics are related to positivity
questions, i.e., showing that certain integers are nonnegative. The signif-
icance of positivity to algebraic combinatorics stems from the fact that a
nonnegative integer can have both a combinatorial and an algebraic inter-
pretation. The archetypal algebraic interpretation of a nonnegative integer
is as the dimension of a vector space. Thus to show that a certain integer
m is nonnegative, it suffices to find a vector space V,,, of dimension m. Sim-
ilarly to show that m < n, it suffices to find an injective map V,, — V,, or
surjective map V,, — V,,,. Of course the inequality m < n is equivalent to the
positivity statement n —m > 0, while the injectivity of the map ¢ : V,,, =V,
is equivalent to the statement that n —m = dimcoker(y) (where coker(y)
denotes the cokernel V,/¢(V},,) of ¢). However, it is often more natural to
deal with the inequality m < n rather than with n —m > 0.

We will attempt here an overview of the outstanding open problems in
algebraic combinatorics related to positivity. Naturally our choice is subjec-
tive, and we do not claim to be comprehensive.
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2 f-vectors

Many geometric objects [ are defined in terms of simple objects, which we
call faces, with well-defined dimensions. Examples (in increasing order of
generality) include simplicial complexes, polyhedral complexes, regular CW
complexes, and CW complexes. If I' has dimension d — 1 and has f; i-
dimensional faces, then the vector f(T") = (fo, fi1,--., fa_1) is called the f-
vector of I and is a fundamental combinatorial invariant of I'. (Unless I' = ()
one regards the empty set () as a face of I' of dimension —1, so f_; = 1.)

Much of algebraic combinatorics is concerned with obtaining a complete
characterization, or at least significant information, about the f-vector of
various classes of geometric objects. A good summary of this area, together
with a list of open problems, is given by Billera and Bjérner [9]. Quite so-
phisticated tools such as commutative algebra, exterior algebra, homological
algebra, and toric varieties can be used to investigate f-vectors. One im-
portant result in the area, known as the g-theorem for simplicial polytopes,
gives a complete characterization of the f-vector of a simplicial polytope P
(i.e., a convex polytope all of whose proper faces are simplices). This result
was conjectured by McMullen [66] in 1971. The sufficiency of McMullen’s
conditions was proved by Billera and Lee [13][14], while the necessity was
proved by Stanley [75] using the theory of toric varieties. Later McMullen
[67][68] gave a new proof of necessity avoiding toric varieties. We will not
state the full result here but will explain a corollary of it known as the Gen-
eralized Lower Bound Theorem (GLBT) for simplicial polytopes. Given any
(d — 1)-dimensional (abstract or geometric) simplicial complex A with f-
vector (fo, ..., fa 1), define the h-vector h(A) = (hg, hi,...,hg) of A by the

formula
Zf,lx—l thd ’

If A is the boundary complex of a simplicial polytope, then the Dehn-
Sommeruville equations assert that h; = hy_;. The GLBT consists of the
inequalities hy < hy < -+- < hyg9). The significance of the GLBT is that it
gives the most general linear inequalities satisfied by f-vectors of simplicial
polytopes.



It is natural to ask whether the Dehn-Sommerville equations, GLBT, and
g-theorem can be extended to more general objects than simplicial polytopes.
The most general objects that seem feasible for this purpose are the Goren-

stein® complexes. These are simplicial complexes A such that for every face
F € A (including F' = ()) we have

1

o Q, if i =dimlink(F
H;(link(F); Q) { 0, otherwise .

where

link(F)={GeA : FNG=0, FUG € A},

the link of F in A, and where H denotes reduced simplicial homology. It is
not hard to see that the Dehn-Sommerville equations h; = hy_; continue to
hold for Gorenstein® complexes.

Problem 1. Does the GLBT (or more generally the g-theorem) hold for
Gorenstein® complexes?

Problem 1 is perhaps the main open problem in the subject of f-vectors.
Special cases of Gorenstein® complexes for which the GLBT is also open in-
clude triangulations of spheres, PL-spheres, and complete simplicial fans. It
was shown independently by Kalai [53] (using algebraic shifting) and Stan-
ley [84, Cor. 2.4] (using Cohen-Macaulay rings) that the GLBT holds for
the boundary A of a (d — 1)-dimensional ball that is a subcomplex of the
boundary complex of a simplicial d-polytope. It does not seem to be known
exactly which simplicial complexes occur in this way. (The techniques of
Kalai and Stanley only establish the GLBT, and not the g-theorem, for the
above complexes A.)

When P is an arbitrary (i.e., not necessarily simplicial) convex polytope,
then the h-vector no longer has nice properties. For simplicial polytopes the
number h; is the 2:th Betti number of a certain toric variety Xp satisfying
Poincaré duality, whence the Dehn-Sommerville equations h; = hy_;. For
nonsimplicial polytopes, however, there is little connection between the ho-
mology of Xp and the f-vector of P. Moreover, Xp fails to satisfy Poincaré
duality, and the Dehn-Sommerville equations fail to hold for the h-vector
of P. This unfortunate state of affairs can be rectified by dealing with
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the (middle perversity) intersection homology TH,(Xp;R) (or cohomology
[H*(Xp;R)) of Xp, which can be defined whenever P has rational ver-
tices. We then have IHy; 1 (Xp;R) = 0. Define h; = dimg IHy;(Xp; R).
If dimP = d, then the vector h(P) = (hg,h1,...,hq) is called the toric
h-vector (formerly the generalized h-vector) of P. A purely combinatorial
definition of the toric h-vector can be given that extends to nonrational poly-
topes [77] and even more general objects, the most general being Eulerian
posets [86]. The toric h-vector depends only on the combinatorial type of
P (not on how it is embedded into R?) and satisfies the Dehn-Sommerville
equations h; = hy_;. However, the toric h-vector does not depend just on the
f-vector of P, nor can f(P) be recovered from h(P). When P is simplicial,
then the toric h-vector coincides with the usual h-vector. When P has ra-
tional vertices, the connection with toric varieties and intersection homology
leads to a number of results concerning the toric h-vector of P, in particular
the GLBT hg < hy < --+ < hg/o). For nonrational polytopes it is not known
whether the GLBT and related results continue to hold. If P is a (finite)
poset, then the order complex of P is the abstract simplicial complex A(P)
whose faces are the chains of P. We say that P has a certain topological
property such as Gorenstein™® if A(P) has that property. Then the GLBT
(or even just h; > 0) fails in general for Eulerian posets, but it remains open
for Gorenstein® lattices (with bottom element 0 and top element 1 removed).

Problem 2. Let P be an arbitrary convex polytope, or even a Gorenstein™
poset that is a lattice with 0 and 1 removed. Does the toric h-vector (hg, hy, ..., hq)
of P satisfy the GLBT ho < hy < -+ < hq/2), or even just h; > 07

Some related problems dealing with subdivisions of polytopes and other
geometric objects appear in [83, Conjs. 4.11 and 5.4].

There are numerous additional conjectures concerning f-vectors. For
instance, the f-vectors of centrally-symmetric simplicial polytopes are poorly
understood (see [82] for some results in this area), and not even a conjecture
analogous to the GLBT is known. Such a conjecture would give the most
general linear inequalities satisfied by the f-vectors of centrally-symmetric
simplicial d-polytopes. One simple problem for arbitrary centrally-symmetric
polytopes, due to Kalai [52], is the following.



Problem 3. Let (fy, f1,..., fa_1) be the f-vector of a centrally-symmetric
d-polytope. Is it true that

L4+ fot+ fit+-+ faq >37

One feature that makes this problem difficult is that there is more than
one polytope that achieves this bound. We can extend Problem 3 somewhat
as follows.

Problem 3'. Let L be finite lattice of rank d + 1 such that L — {0,1}
is Gorenstein™. Suppose that L has a lattice automorphism o that is an

involution and that fizes only 0 and 1. Is it true that #L > 3% 417

A mussing face of an abstract simplicial complex A is a set S of vertices
of A such that S is not a face of A, but every proper subset of S is a
face. A flag complez is a simplicial complex for which every missing face has
two elements. For instance, order complexes of posets are flag complexes,
as are Coxeter complexes of finite Coxeter groups. Flag complexes are the
same as clique complexes or stable set complexes of graphs. There is a lot of
interest in obtaining information about f-vectors of flag complexes. One of
the most interesting open problems is known as the Charney-Davis conjecture
[27][87, p. 100] and is a discrete analogue of a conjecture of H. Hopf on the
Euler characteristic of a closed Riemannian manifold of nonpositive sectional
curvature. (Charney and Davis made their conjecture originally for spherical
flag complexes, but we have extended it to the Gorenstein* case.)

Problem 4. Let A be a 2e — 1-dimensional Gorenstein® flag complex with
h-vector (hg, hi, ..., hoe). Is it true that

(—=1)%(hog — h1 4+ hy — -+ + hge) > 07

For certain classes of simplicial complexes A whose f-vector satisfies
certain linear inequalities, these linear inequalities can be “displayed” by
a suitable decomposition (or partition) of the set of faces of A. For in-
stance, suppose that A is acyclic (has vanishing reduced homology, say over
Q). It was shown in [79] that there exists a partition IT of A into two-
element sets {F, F'} such that (a) F C F" and |F' — F| =1, and (b) the set
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{F : {F,F'} €I, F C F'} is a subcomplex I' of A. If follows that
(14+2))  fia(D)z' =D fia(A)a',
If C(T") denotes the cone over I, then clearly C'(T') is acyclic and

(1+2) Z fin(D)a' = Zfi—l(C(F))ﬁi-

Hence f-vectors of acyclic simplicial complexes coincide with f-vectors of
cones, which are relatively easy to characterize. Thus the existence of the
decomposition II leads to a characterization of f-vectors of acyclic simplicial
complexes. (Similar decompositions appear in the work of R. Forman [31][32]
on discrete Morse theory.) What other classes of simplicial complexes lend
themselves to this technique? Duval [28] has extended the above argument
to give a “decomposition-theoretic” proof of the characterization of pairs
(f,3), where f is the f-vector and [ the sequence of Betti numbers of a
simplicial complex, originally due to Bjérner and Kalai [16][17]. A different
generalization of the decomposition of acyclic complexes was conjectured by
Stanley [79, Conj, 2.4] as follows.

Problem 5. Suppose that A is a (finite) abstract simplicial complez such that
the link of every face F' of A of dimension at most j (including link(()) = A)
is acyclic. Can A (regarded as a partially ordered set under set inclusion) be
partitioned into intervals [F, F'| such that (a) dim F' — dim F' = j + 2, and
(b) the bottom elements F' of these intervals form a subcomplex of A?

A central role in the combinatorics of simplicial complexes is played by
the Cohen-Macaulay complexes. A simplicial complex A is said to be Cohen-
Macaulay (say over Q) if for every F' € A (including as usual F = ()) we
have

H;(link(F); Q) = 0, if i # dim link(F).
It can be proved algebraically (e.g., [87, Cor. 11.3.2]) that if A is Cohen-
Macaulay with h-vector (hg, ..., hg), then h; > 0. On the other hand, a pure
(i.e., all maximal faces have the same dimension) (d — 1)-dimensional simpli-
cial complex A is called partitionable if it can be partitioned into intervals



[F, F'] such that each F' is a facet (maximal face) of A. It is easy to see that
if IT is a partition of A into such intervals, then

2 : xl—l—dlmF ZE ’hzxz
i

[F,F]el

Hence h; > 0 if A is partitionable, and it is natural to ask if there is a
connection between the Cohen-Macaulay property and partitionability. The
simplicial complex with facets ab, ac, be, de, df, ef has the partitioning

1= {10, abl, [¢, bel, [ac, acl, [d, de], [e, e f1, [f, df1}

but is not Cohen-Macaulay. However, the converse question remains a central
open problem concerning the combinatorics of simplicial complexes.

Problem 6. Is every Cohen-Macaulay complex partitionable?

For further information related to partitionability, see [87, §I11.2].

We have mentioned the toric h-vector as an extension of the h-vector of a
simplicial polytope. A different extension, which is much more natural from
the combinatorial point of view and which conveys much more information,
is the flag f-vector. It is most conveniently defined for graded posets, i.e.,
posets for which every maximal chain has the same length. Let P be a (finite)
graded poset of rank n — 1, so every maximal chain of P has n elements.
Define the rank function p: P — Z of P by letting k = p(t) be the number
of elements in the longest chain t; <ty < --- <t =t. If S is any subset of
{1,2,...,n}, then define the rank-selected subposet

Ps={te P : p(t) € S},

and let ap(S) be the number of maximal chains of Ps. The function ap is
called the flag f-vector of P. Thus ap counts the number of chains C' in
P according to the ranks of the elements of C'. The “flag-analogue” of the
h-vector is the flag h-vector (Bp, defined by either of the equivalent conditions

ap(S) = Y Be(T)

Be(S) = Y (~1)* Dap(T).

TCS



If A(P) denotes the order complex of P, then the f-vector and h-vector of
A(P) are related to the flag f-vector ap and flag h-vector Sp by

filAP) = > ap(s)

hi(A(P)) = Z Br(S).

We will mention here one central open problem in the theory of flag f-
vectors, viz., the problem of determining all linear inequalities satisfied by
the flag f-vector of a Gorenstein® poset P. (Note for experts: According to
the definitions given here, Gorenstein® posets do not have a 0 and 1. Thus for
instance the face lattice of a convex polytope P, with the improper faces ) and
P removed, is a Gorenstein™ poset.) The corresponding problem for arbitrary
graded posets was solved by Billera and Hetyei [12], while partial results
were obtained for Eulerian posets by Bayer and Hetyei [5]. Let a and b be
noncommuting variables. Given S C {1,2,...,n}, define a noncommutative
monomial ©° = ujusy - - -u, by setting u; = a if i € S and u; = bifi € S. If
P is a graded poset of rank n — 1, then define a noncommutative polynomial

Up(a,b) = Y Br(S)u’.

SC{1,...n}

Thus ¥p(a,b) is a noncommutative generating function for the flag h-vector
Bp. Moreover, it follows immediately from the definitions of ap and (p that

Up(a,a+b) = Z ap(S)u’.

SC{1,...,n}

In the case when P is Gorenstein® (or even Eulerian), Bayer and Billera
[4] determined the most general linear equalities that can hold among the
numbers ag(P) (or equivalently Gs(P)). Fine (see [6, Prop. 2]) discovered
an exceptionally elegant way to state these Bayer-Billera relations. Namely,
there exists a polynomial ®p (¢, d) in noncommutative variables ¢ and d such
that
Up(a,b) = ®p(a+b,ab+ ba).

The polynomial ®(c,d) is called the cd-index of P. The main open problem
concerning this polynomial is the following.
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Problem 7. If P is a Gorenstein™® poset, then are all coefficients of the cd-
index ®p(c,d) nonnegative?

It was conjectured in [85, Conj. 2.1] that the answer to Problem 7 is
affirmative. Moreover, it was shown in Theorem 2.1 of this reference that this
result, if true, is best possible in the sense that any linear inequality satisfied
by all flag f-vectors of Gorenstein® posets of rank n — 1 is a consequence
of the nonnegativity of the coefficients of the cd-index. A special case of

Problem 7, which includes face lattices of convex polytopes, was proved in
(85, Thm. 2.2].

E. Babson observed (stated incorrectly in [87, p. 103] without the factor
of 27™) that if P is a Gorenstein™ poset of even rank 2m, then the coefficient
of d™ in ®p(c,d) is given by

[d" ®p(c,d) = (=2)""(hg — h1 + hg — + -+ + hap),

where (hg, hy, ..., hap) is the h-vector of the order complex of P. It follows
that the Charney-Davis conjecture (Problem 4) for the special case of order
complexes is a consequence of an affirmative answer to Problem 7.

In general the cd-index is a highly intractable object. It would be of great
interest to find a natural algebraic or geometric description of the cd-index.
For some further work related to the cd-index, see for instance [10][11] and
the references given there.

The f-vectors of cubical compleres are much less well understood than
those of simplicial complexes. We may regard a (finite) abstract cubical com-
plex as a finite meet-semilattice such that every interval [0,#] is isomorphic
to the face lattice of a cube (whose dimension depends on t). An analogue
of the h-vector of a simplicial complex was defined by R. Adin [1] for pure
cubical complexes, i.e., cubical complexes such that every maximal face has
the same dimension. Let L be a pure cubical complex of rank d (or dimen-
sion d —1). Adin’s cubical h-vector h(L) = (ho(L), hi(L),...,hq(L)) may be
defined as follows. Let s be a vertex (element covering 0) of L. The subposet
{t € L : t > s} is the face poset of a simplicial complex Ay = link(s).
Let h(Ay,z) = S50 hi(A)z?, where (ho(A,), ..., kg 1(A,)) is the usual



h-vector of A;. We can now define h(L) by the equation

1+

. 1 _
D ()t = (2‘“ + Y (A7) + (=2 (L) ) CW
0 s
where s ranges over all vertices of L and

X(L) = S (-1,

teL

the reduced Euler characteristic of L. It is not difficult to see that the right-
hand side of equation (1) is indeed a polynomial in z.

Problem 8. (a) Let L be a pure cubical complex of rank d. If L is a Cohen-
Macaulay poset, then is h;(L) > 0 for all i?

(b) If L is in addition a Gorenstein™ poset, then is it true that hy(L) <
hi(L) < -+ < ha(L)? (Adin [1, §3] shows that h; = hq_;.)

Problem 8(a) was raised by Adin and solved by him when L is shellable
[1, §5], while Problem 8(b) was raised by Adin in the special case that L is
the face poset of the boundary of a cubical polytope [1, §5, Question 2]. Tt
was shown in [3] that an affirmative answer to Problem 8(b) would be best
possible, i.e., would give the tightest possible set of linear inequalities for the
Adin h-vector of a cubical Gorenstein® poset (or even a cubical sphere).

3 Representation theory and symmetric func-
tions.

The theory of symmetric functions is rife with positivity results and problems,
stemming from the possibility of expanding a symmetric function in terms of
a number of possible bases. If the coefficients in such an expansion are real
numbers (respectively, polynomials with real coefficients), then we can ask
whether they are nonnegative (respectively, have nonnegative coefficients).
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Often these coefficients will have a representation-theoretic interpretation,
such as the multiplicity of an irreducible representation within some larger
representation. Sometimes the only known proof of positivity will be such
an interpretation, and the problem will be to find a combinatorial proof.
Occasionally the reverse situation will hold. Finally it may happen that
positivity is only a conjecture, and we can try to find either an algebraic
or combinatorial proof. We will assume for the remainder of this section a
basic knowledge of the theory of symmetric functions as developed in [65,
Ch. 1] or [89, Ch. 7]. In particular, we will be dealing with the following
bases, indexed by partitions A of n (denoted A F n), for the Q-vector space

¢ of homogeneous symmetric functions of degree n in the variables z =

(271,.1'2, .. )

e m,: monomial symmetric functions
e hy: complete symmetric functions

e ¢,: elementary symmetric functions
e p): power sum symmetric functions

e 5,: Schur functions.

If {uy} is a basis for the space Ag of symmetric functions, then we say that
f € A is u-positive if the expansion of f as a linear combination of u)’s has
nonnegative coefficients. If A\ is a partition with a single part n, then we
write u,, for u,.

The archetypal example of a successful positivity result in the theory of
symmetric functions is the Littlewood-Richardson rule [65, §1.9][89, §A1.3]
for multiplying Schur functions. The Littlewood-Richardson coefficient c;\w is

defined by the expansion

_ A
S8y, = CuvS-

A
The representation-theoretic interpretations of s as an irreducible charac-
ter of GL(n,C) or as the (Frobenius) characteristic of an irreducible char-
acter of the symmetric group S, make it clear that cﬁy > 0. The cele-
brated Littlewood-Richardson rule gives a combinatorial interpretation of cﬁy,
thereby giving a combinatorial proof of nonnegativity.
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There are some variations of the multiplication of Schur functions that
are not as well understood. The three most well-known are the following.

e Let f[g] denote the plethysm [65, §1.8][89, Def. A.2.6] (denoted f o g
in [65]) of the symmetric functions f and g. A simple representation-
theoretic argument shows that the symmetric function s,,[s,| (or more
generally s)[s,]) is s-positive, namely, if S* denotes the kth symmetric
power, then the coefficient (s,,[s,], s)) of sy in $,,[s,] (When expanded
in terms of Schur functions) is equal to the multiplicity of the irreducible
character s, of GL(V') (where V' is a complex vector space of sufficiently
large dimension) in S™(S™V).

Problem 9. Find a combinatorial interpretation of the “plethysm coeffi-
cients” (Sm[snl, sx), thereby combinatorially reproving that they are nonneg-
ative.

A minor but still interesting conjecture related to the plethysm s, |[s,]
is the Foulkes plethysm conjecture [33, p. 206]: if n > m then s,[s;,] —
Sm[sn] 18 s-positive. The strongest results on this conjecture are due to

Brion [23].
The Foulkes plethysm conjecture can be generalized as follows. Let X
be an r-element set, and let A = (Aq,...,\;) be a partition of r into [

parts (so Ay > --- > X\, > 0 and > \; = r). Let II, denote the set of
all partitions m = { By, ..., B;} of X whose block sizes are A1,..., \;. A
partition o = {B],..., B! } of X is orthogonal to 7 (denoted o L ) if
the block sizes of o are \|, ..., Al where (\],..., A\ ) is the conjugate
partition to A, and if #(B; N B}) < 1 for all 7,j. For any set S, let
QS be the Q-vector space with basis S. Define a linear transformation

oy QI — QILy by

oa(m) = Za, 7 € II,.

olmw

Conjecture. If A\ > X in dominance order (i.e., \y + ---+ \; >
N+ -+ X for all i), then oy is injective.
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Using the well-known connection between plethysm and the represen-
tation theory of the symmetric group [65, p. 158|[89, Thm. A2.8], the
Foulkes plethysm conjecture follows from the case where A has m parts
equal to n [18]. Moreover, it can be shown that the above conjecture is
true when A is the “hook” with one part equal to k£ and j parts equal
to 1, with k£ > j + 1.

A further intriguing conjecture concerning the positivity of a plethysm
is due to S. Sundaram [93, Conj. 2.7][94, Conj. 2.2]. She defines an
action of S, on a certain homology group (the top homology of the poset
of all partitions of {1,2,...,n} with an even number of blocks, with 0
removed when n is even). Let R, denote the Frobenius characteristic
of this action. Sundaram shows [93, Thm. 2.1] that R, is determined
by the plethystic recurrence

Z(_l)nRZnJrl =i —Ry+Ry—---)[ha +hat---],

n>0

and she shows [93, Thm. 2.5] that Ry, is a polynomial in the symmetric
functions h; and hy. Sundaram’s conjecture is that when R,,, is written
as a polynomial in hy and hs, the coefficients are nonnegative. In other
words, Ry, is h-positive.

Let x* and y* be the irreducible characters of S, indexed by the
partitions A and p of n. The Kronecker product x*x* is defined by

(M) (w) = xMw)x*(w). Let

X)\XM - Zg)\/wXVa (2)

v

the decomposition of y*x* in terms of irreducible characters y”. If AM*
is an S,-module with character x*, then the natural action of S, on
M* ® M* has character x*x*. It follows that gy, > 0.

We can define g,, purely in terms of symmetric functions by

= 3" grsr(@)s,)5 (). (3)

Hz’,j,k(l TiYj2k) A
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The product * on symmetric functions defined by
S\ kS, = Zg/\uusu (4)

is called the internal product. For further information see [65, pp. 115—
116][89, Exer. 7.78-7.87].

Problem 10. Find a combinatorial interpretation of the “Kronecker product
coefficients” gy, thereby combinatorially reproving that they are nonnega-
tive.

For Problem 10 we should take equation (3) as the definition of gy, or
equivalently equation (2) with x* defined combinatorially by the Murnaghan-
Nakayama rule [65, Exam. 1.7.5](89, §7.17], so that gy, is not a priori non-
negative. For some work related to Problem 10, see [96] and the references
given there.

e Let w be a permutation of P = {1, 2, ...} that fixes all but finitely many
elements of P. Let &, denote the Schubert polynomial indexed by w
[64]. The Schubert polynomials &,, form a Z-basis for the polynomial
ring Z[xy, xo, . ..]. If w fixes n+ 1,n + 2,... (which we denote as w €
Sy) then in fact &, € Z[xq,...,x,]. If €; denotes the ith elementary
symmetric function in the variables xzy,...,x,, then the quotient ring
R, = Z[xy,...,x,)/(e1,...,€,) is isomorphic to the cohomology ring
H*(X;Z) of the flag variety X = GL(n,C)/B. Under this isomorphism
the images of the Schubert polynomials &, for w € S,, form a Z-basis
which correspond to the closed Schubert cells in X. It then follows
from basic intersection theory [34] that the intersection coefficients ¢,
defined by

6.6, =) a6,

are nonnegative.

Problem 11. Find a combinatorial interpretation of the “Schubert intersec-
tion coefficients” c¥,, thereby combinatorially reproving that they are non-
negative.
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For some work on Problem 11, see [8]. A “quantum generalization” of
Problem 11 is due to Fomin and Kirillov [29, Conj. 11][30, Conj. 8.1].

A further interesting positivity problem whose only known solution uses
representation theory concerns the action of S,, on itself by conjugation, i.e.,
w € S, acts on S, by w-u = wuw'. Let G be any finite group, and let ¢
denote the character of the action of G on itself by conjugation. It is well-
known (e.g., [89, Exer. 7.71]) that the multiplicity of an irreducible character

x of G in 9 is given by
1/)07 Z X

where K ranges over all conjugacy classes of G, and where x(K) denotes
x(w) for any w € K. Hence the “row sums” ), x(K) of the character table
of G' are nonnegative.

Problem 12. Give a combinatorial interpretation of the row sums of the
character table of S, thereby combinatorially reproving that they are non-
negative.

For further information on this problem, see [89, Exer. 7.71]. For the
column sums of the character table of S,, see [65, Exam. 11, p. 120][89,
Exer. 7.69(b)].

Let us turn to some positivity problems involving symmetric functions
for which no proof is known. Undoubtedly the most important such prob-
lem concerns the (g, t)-Kostka polynomials K, (g, ). The definition of these
polynomials is at first sight rather obscure and will be omitted here. For
readers familiar with the Macdonald symmetric functions P,(X;q,t) and
plethystic notation, they can be defined by

ZL‘ Q7 ZK)\“ Q7 5/\ (1 - t)]a

where J, is a certain normalization of P, known as the integral form. For
further details see [65, Ch. VI]. A priori the above definition of K},(g,t) only
shows that they are rational functions of ¢ and ¢. It was not until recently that
several separate proofs [39][56](57][59][70] were given that Ky, (q,t) € Z[q, t].
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Problem 13. Show that the (q,t)-Kostka polynomial Ky,(q,t) has nonneg-
ative coefficients.

It follows readily from the definition of K, (q,t) that Ky,(1,1) = f*, the
number of standard Young tableaux of shape A (see [65, Ch. VI, (8.16)]).
Hence the coefficients of K),(q,t) should count the number of standard
Young tableaux of shape A with some property, but not even a conjecture
is known about what this property might be. When ¢ = 0, we have that
K,,(0,1) is the “ordinary” Kostka polynomial introduced by Foulkes (see
[65, Ch. VI, (8.12)]). Here the coefficients have a combinatorial meaning
discovered by Lascoux and Schiitzenberger [61][65, p. 242].

One reason why Problem 13 is so intriguing is that it has led to surpris-
ing properties of the Macdonald symmetric functions and to deep connections
with representation theory and algebraic geometry. For some remarkable pos-
itivity conjectures related to Problem 13, see [7][37][38][39]. Garsia-Haiman
[36] have a simple conjectured representation-theoretical interpretation of the
coefficients of K,(g,t) as the dimensions of certain vector spaces. Haiman
[49] has given many equivalent forms of this conjecture and has shown (based
on a suggestion of C. Procesi) that it is intimately connected with the Hilbert
scheme of points in the plane and with the variety of commuting matrices.

A special case of Problem 13 is of particular interest. Let % denote the
internal product of symmetric functions, as defined in equation (4). It is
known (see [89, Exer. 7.86]) that

Tyu(9)
syxs,(1,q,q¢°%,...) = =222
A M( ) H/\ (q)
where Ty,(q) € Z[g], Th,(1) = f*, and Hy(q) = [[,c, (1 —¢"™). Here u
ranges over all squares of (the diagram of) A and h(u) is the hook length of A
at u. It was conjectured by R. Brylinski and R. Stanley (see [76, Conj. 8.3])

that T),(¢) has nonnegative coefficients. It is shown in [65, Exam. VI.8.3,
pp. 362-363] that

Tau(a) = Kux (g, 9)-
Hence the conjecture of Brylinski-Stanley follows from a positive answer to

Problem 13. For some algebraic aspects of the Brylinski-Stanley conjecture,
see [24][25].
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The Macdonald symmetric functions Py(z;¢,t) may be regarded as a
generalization of the Hall-Littlewood symmetric functions Py(z;0,t) [65, p.
324]. A different kind of generalization of the Hall-Littlewood symmetric
functions is afforded by the “ribbon polynomials” H )(\];L(a:, q) of Lascoux,
Leclerc, and Thibon [60]. They are defined when A\/u is a skew shape that

admits a tiling by k-ribbons (or k-border strips) by
k s
H) (@1q) =Y ¢,
T

summed over all ribbon tableaux T' (also called border strip tableaux), as
defined e.g. in [89, p. 346], of shape A/u with all ribbons (border strips) of
size k. Here s(T') denotes the spin of T, defined by

() =y MU=

summed over all ribbons R appearing in T', where h(R) is the height (number
of rows) of R. When p = () then \ has a k-quotient (as defined e.g. in [89, p.
517)) (u°,..., u*=1). The coefficients of H")(¢) are then g-analogues of the
Littlewood-Richardson coefficients obtained from the product sjo---s,s-1.
Lascoux et al. give a number of fascinating theorems and conjectures about
H)(\I;L(a;, ¢q) and related polynomials. These theorems and (subsequently) con-
jectures have for the most part been proved using deep results from rep-
resentation theory (in particular, quantum affine algebras). In particular,
Hﬁk)(a:;q) is a symmetric function [60, Thm. VIL.1]. It would nevertheless
be desirable to have a combinatorial proof of this fundamental result. It is
also shown in [60] that the coefficients of Hgk) (¢) (suitable normalized) are
certain parabolic Kazhdan-Lusztig polynomials of affine type A. One of the
conjectures of Lascoux et al. (Conjecture VI.3) asserts that when H)(\k)(x; q)
is expanded in terms of Schur functions, the coefficients are polynomials in
q with nonnegative integer coefficients. In [62, p. 2], Leclerc and Thibon
mention that this conjecture would follow from some results in representa-
tion theory that experts think are probable (an analogue of the positivity
of the coefficients of Kahzdan-Lusztig polynomials for affine Weyl groups).
Positivity is proven combinatorially in the case £k = 2 by Carré and Leclerc
[26].

17



Problem 14. (a) Give a combinatorial proof that the polynomials H)(\k)(x; q)
are symmetric functions.

(b) When Hﬁk)(x;q) is expanded in terms of Schur functions, are the
coefficients polynomials in q with nonnegative integer coefficients?

No discussion of positivity problems would be complete without mention
of the Kazhdan-Lusztig polynomials P, ,(q) associated with a Coxeter group
W and a pair u < v of elements in the Bruhat order of W. For a short expo-
sition of the basic properties of these polynomials, see [51, Ch. 7]. When W
is a finite or affine Weyl group then a deep result of Kazhdan and Lusztig [55]
shows that the coefficients of P,,(¢) are dimensions of certain intersection
homology spaces and are therefore nonnegative. (A further class of Coxeter
groups for which P, ,(¢) has nonnegative coefficients was considered by Had-
dad [45].) For the remaining finite Coxeter groups (types Hsz, Hy, and I,,) it
has been checked that P, ,(q) always has nonnegative coefficients. Kazhdan
and Lusztig [54, p. 166] conjectured an affirmative answer to the following
problem.

Problem 15. Are the coefficients of P,,(q) nonnegative for any Cozeter
group W and any u < v in the Bruhat order of W ¢

It was shown by M. Dyer (unpublished) and H. Tagawa [95] that the coef-
ficient of ¢ in P, ,(¢) is nonnegative. Even though the answer to Problem 15
is known to be positive for finite and affine Weyl groups, we can still ask for
a combinatorial proof avoiding intersection homology theory. This problem
is especially interesting for the symmetric group S, since it is the Weyl group
with the simplest and most tractable combinatorial properties.

Problem 16. Give a combinatorial interpretation of the coefficients of P, ,(q)
when W is a finite or affine Weyl group, especially W = S,,, thereby combi-
natorially reproving that they are nonnegative.

For some work related to Problem 16, see [20][22] and the references
given there. There is a formal similarity between the previous problem and
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Problem 2, stemming from the connection of both problems with intersection
homology. For further details, see [83, Part IIJ.

A host of open problems deal with the connection between symmetric
functions and immanants. Let A = (a;;);;_, be an n X n matrix (with entries
in some commutative ring R), and let f : S, — R. Define the f-immanant

of A by
Immy(4) = D f(W)a1,00)8200) G-
’LUGSn

Hence if f(w) = sgn(w) then Imm(A) = det A, while if f(w) = 1 then
Imm;(A) = perA, the permanent of A. Immanants were probably first
considered by Schur [71] when f is an irreducible character of S,,, although the
term “immanant” was coined by D. E. Littlewood. A paper of Goulden and
Jackson [43] initiated a flurry of activity related to combinatorial properties
of immanants and has led to many conjectures. We do not have the space to
discuss all these conjectures here but will give a few typical ones.

If f is a function on S,, (usually assumed to be a class function), then we
define the characteristic ch f of f [65, p. 113][89, §7.18] by

1
chf=—> f(w)pmw),
wWESy
where p,(,) is the power sum symmetric function indexed by the cycle type
p(w) of w. If f = x*, the irreducible character of S, indexed by the parti-
tion A of n, then chx* = s, (a Schur function). We abbreviate Imm,x by
Immy. Let ¢* denote the unique class function on S, for which ch ¢* = m, (a
monomial symmetric function). Define a real matrix A to be totally nonneg-
ative (sometimes called totally positive) if every minor of A is nonnegative.
Stembridge [91] showed that if A is a totally nonnegative n X n matrix and
A F n, then Immy(A) > 0. (A different proof was later given by Kostant
[58].) Stembridge conjectured the even stronger result that the answer to the
following problem is affirmative.

Problem 17. If A is a totally nonnegative n X n matriz and \ = n, then is
Immy\(A) > 07

Problem 17 has the following equivalent formulation (see [89, Exer. 7.92]).
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Problem 17'. Let A = (a;j) be a totally nonnegative n x n real matriz.
Define a symmetric function

FA — Z A1,0(1)02,0(2) ** * Onyw(n)Pp(w)-
wESh

Is F4 h-positive, where {hy} is the basis of complete symmetric functions?

Now let p and v be partitions where v C pu, with ¢(u) < n. Here £(p)
denotes the length (number of nonzero parts) of u. Define the Jacobi- Trudi

matrix
n

Hypy = [hﬂi*VjJrj*i]z‘,j:l :

The Jacobi- Trudi identity [65, Ch. I, (3.4)][89, §7.16] states that det H,/, =
Su/v, a skew Schur function. Goulden and Jackson [43] were the first to
consider other immanants of H,/,. They conjectured that Immj(H,,) is m-
positive (where {m,} is the basis of monomial symmetric functions), which
was proved by Greene [44]. Stembridge [92] made a series of conjectured
strengthenings of this result. His Conjecture 4.2(a) asserts that Immy(H,,/,)
is s-positive. A remarkable proof was given by Haiman [48] based on the
theory of Kazhdan-Lusztig polynomials. Stembridge’s strongest conjecture
(Conjecture 4.1) asserts that the answer to the following problem is affirma-
tive.

Problem 18. If((;) < n, v C p, and X\ = n, then is Immgyx (H,,/,) s-postive?

Haiman has given in his paper mentioned above some intriguing conjec-
tures relating the virtual characters ¢* to the Kazhdan-Lusztig basis C’, of
the Hecke algebra H,,(q) (of type A,_1). We assume knowledge of Kazhdan-
Lusztig theory in order to state Haiman’s conjecture. Since the irreducible
characters of H,(q) correspond to irreducible characters of S,,, it follows that
the monomial (virtual) characters ¢* of S, have unique analogues for H,(q).
Haiman then conjectures an affirmative answer to the following question.

Problem 19. For every monomial character ¢* of H,(q) and every Kazhdan-
Lusztig basis element C!, is it true that ¢*(¢")/2C")) is a polynomial with
nonnegative integer coefficients, and moreover that these coefficients are uni-
modal and symmetric about ¢*W/? 2
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Haiman also gives in his paper some interesting refinements of the above
problem.

4 Real zeros and total positivity.

There are a number of open problems in algebraic combinatorics concerning
whether certain polynomials have (only) real zeros. The connection between
real zeros and positivity is given by the theory of total positivity, in particular
the following fundamental result of Aissen, Schoenberg, and Whitney [2]. (A
famous conjectured generalization due to Schoenberg was proved indepen-
dently by Edrei and Thoma, and more recently Olshanskii and Okounkov.
See [89, Exer. 7.91] for further discussion and references.)

Theorem 1. Let ag,aq,...,a, € R. Set a; =0 if i < 0 orit > n. Then
every zero of the polynomial P(x) = ay + a1x + - - - + a,x™ is a nonpositive
real number if and only if the infinite Toeplitz matriz A = (a;_;) is totally
nonnegative.

1,§ 20

NoTE. The above theorem gives infinitely many conditions that have
to be checked in order for P(x) to have only real zeros. Even for quadratic
polynomials it does not suffice to check some finite subset of the minors of A.
Nevertheless this theorem is a useful tool in showing that certain polynomials
have only real zeros. Sometimes, for instance, it is possible to interpret the
necessary determinants combinatorially by using the Gessel-Viennot non-
intersecting lattice path method [42][81, §2.7]. See for instance Theorem 3
below. Gantmacher [35, Cor. on p. 203 of Vol. 2] was the first to explicitly
state a set of n — 1 inequalities among the coefficients of a real polynomial
P(z) of degree n that are necessary and sufficient for every zero of P(z) to
be real. However, Gantmacher’s conditions have not (yet) been applied to
any combinatorially defined polynomials.

The above theorem has an interesting formulation in terms of symmetric

functions. This result was first explicitly stated in [88, Thm. 2.11], but it is
easily seen to be equivalent to the Aissen-Schoenberg-Whitney theorem.
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Theorem 2. Let P(t) € R[t] with P(0) = 1. Let Fp(x) =[], P(x;), a sym-
metric formal power series in the variables x;. The following three conditions
are equivalent:

(a) Every zero of P(t) is real and negative.
(b) Fp(x) is s-positive.

(c) Fp(x) is e-positive, where {ey\} is the basis of elementary symmetric
functions.

The previous theorem opens up the possibility of giving combinatorial
proofs that certain polynomials P(¢) (normalized so P(0) = 1) have real
zeros. Namely, one can try to find a combinatorial interpretation of the coef-
ficients in the expansion of Fp(z) in terms of Schur functions or elementary
symmetric functions, thereby combinatorially proving that these coefficients
are nonnegative. We will mention below (see Theorem 4) a situation for
which this technique is successful, but in general it seems difficult to ap-
ply. For instance, it is well-known (e.g., [72]) that the Eulerian polynomial
A, (t) (defined below) has real zeros, but a combinatorial proof along the
lines just mentioned is not known. (We should work with P, (t) = A,(t)/t,
so P,(0) =1.)

An intriguing conjecture concerning real zeros is known as the Poset Con-
jecture. Let P be a partial ordering of 1,2, ..., n, with the order relation de-

P P
noted <. We say that P is natural if i < j (as integers) whenever i < j. Let
L(P) denote the set of all permutations a; - --a, of 1,...,n such that i < j

P
if a; < a;. Such permutations are in an obvious one-to-one correspondence
with the linear extensions of P. For a permutation w = a;---a, of 1,...,n,
define the number of descents d(w) of w by

dlw)=#{i : a; > a;41, 1 <i<n-—1}.
Set

W(Pz)= Y a'v.

weL(P)
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The polynomial W (P, x) plays an important role in the combinatorics of P,
and many special cases have been considered independently. For instance, if
P is an antichain (i.e., no two distinct elements are comparable) then Lp =
Sy and xW (P, ) is the Eulerian polynomial A, (z). For further information,
see e.g. [74][81, §4.5].

The following problem (stated in a somewhat different form) was conjec-
tured to have an affirmative answer by J. Neggers [69, p. 114] for natural
posets, and was extended to arbitrary posets by Stanley. For some work on
this conjecture, see [19][41][72][97]. It has been verified by Stembridge for
#P <8.

Problem 20. Is every zero of W (P, x) real?

When P is natural it can be shown [19, Conj. 3] that Problem 20 is
equivalent to the following. Let L be a finite distributive lattice, i.e., a finite
lattice L whose lattice operations A and V satisfy the distributive laws

e A(yVz)=(@Ay)V(tAz), zV(yAz)=(xVy A(zVz2).

Equivalently , L is isomorphic to a finite collection of sets, ordered by inclu-
sion, and closed under the operations of union and intersection (see e.g. [81,
Thm. 3.4.1]). For any finite poset P, let ¢, = ¢x(P) denote the number of
k-element chains in P (so in particular ¢y = 1, corresponding to the empty
chain, and ¢; = #P). Hence the sequence (cy,cs,...) is just the f-vector of
the order complex of P. Define the chain polynomial C(P,t) = >, cxt".

Problem 20'. When L is a distributive lattice, is every zero of C'(L,t)
real?

The zeros of C(P,t) are of interest for posets other than distributive
lattices. For instance, it is not known whether C'(L,t) has only real zeros
when L is a modular lattice.

There is a class of posets P for which C'(P,t) can be shown to have real

zeros using Theorem 2. Define a poset P to be (3 + 1)-free if P contains
no induced subset isomorphic to the disjoint union of a three-element chain
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and a one-element chain. (A subposet @ of P is induced if it is obtained by
choosing some subset of the elements of P and all relations on these elements
that hold in P. An n-element poset has 2" induced subposets.) The following
result appears in [88, Cor. 2.9]. A proof avoiding symmetric functions was
later found by M. Skandera [73].

Theorem 3. Let P be a (finite) (3 + 1)-free poset. Then all zeros of C(P,t)
are real.

The proof consists of applying Theorem 2 to a result of Gasharov [40)].
Gasharov’s result easily implies a combinatorial interpretation of the coef-
ficients of the Schur function expansion of Fy(py(x) = [[, C(P, z;), thereby
establishing their nonnegativity. Gasharov’s result suggests two further open
problems, which we now discuss. Let G be a graph on the vertex set
V = {v1,...,v,}, with no loops or multiple edges. A proper coloring of
Gisamap k : V — {1,2,...} such that x(u) # k(v) whenever uv is an
edge of G. Think of k(v;) as the “color” of vertex v;. Define the chromatic
symmetric function Xq(x) = Xg(x1,22,...) of G by

Xo(a) = 3 _alaf- .,

summed over all proper colorings  of G, where a;(k) = #+ (i), the number
of vertices of G colored i. Clearly X¢(x) is a homogeneous symmetric func-
tion of degree n in the variables x1, x5, . ... Its basic properties are developed
in [80][88]. If P is a finite poset, then let inc(P) denote its incomparability
graph, i.e., the vertices of inc(P) are the elements of P, and uv is an edge
of inc(P) if and only if u and v are incomparable in P. The theorem of
Gasharov mentioned above is the following.

Theorem 4. If P is a (3 + 1)-free poset and G = inc(P), then Xq is s-
positive.

The following two problems are both strengthenings of Gasharov’s the-
orem. The first strengthens the conclusion, while the second weakens the
hypothesis. The first problem is due (in an equivalent form) to Stanley and
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Stembridge [90, Conj. 5.5] and is related to Problems 18 and 19, while the
second is due to Gasharov and is stated in [88, Conj. 1.4].

Problem 21. If P is a (3 + 1)-free poset and G = inc(P), then is Xq e-
positive?

Problem 22. Let G be a finite clawfree graph, i.e., G has no induced sub-
graph consisting of one vertex connected to three other vertices (and no fur-
ther edges). Is X s-positive?

A special class of (3 + 1)-free posets for which Problem 21 is still open
is the semiorders or unit interval orders, defined e.g. in [89, Exer. 6.30]. It
is not hard to deduce from [90] that an affirmative answer to Problem 17
implies that Problem 21 has an affirmative answer for semiorders. Even the
following very special case of Problem 21 is open (see [80, pp. 190-191]).

Define
Fn = E xilxiz ---xin,

01 ,eenin

where iy,...,1, ranges over all sequences of positive integers of length n for
which any three consecutive terms are distinct. Is F), e-positive?

Now let G be a graph and ¢, the number of stable (or independent)
k-element subsets S of vertices, i.e., no two vertices in S are adjacent in
G. The stable set polynomial of G is defined by D(G,t) = >, ¢xt*. In
particular, if P is a poset then D(inc(P),t) = C(P,t). Just as Theorems 2
and 4 imply Theorem 3, in exactly the same way an affirmative answer to
Problem 22 implies an affirmative answer to the following problem, which
was first raised by Hamidoune [50, p. 242].

Problem 23. Does the stable set polynomial D(G,t) of a clawfree graph G
have only real zeros?

There is one further class of problems we wish to mention concerning
polynomials with real zeros. These problems concern some polynomials that
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arise in the combinatorial subject of rook theory. We will simply state the
most central of these problems, which is due to Haglund, Ono, and Wagner
[47]. For further problems of this nature, see [46]. Recall from the previous
section that the permanent of an n x n matrix A = (a;;) is defined by

per A= Z A1,w(1)A2,w(2) " * * An,w(n)-

wWESy

Let J denote the n x n matrix of all 1’s.

Problem 24. Let A be an n xn real matriz for which every column is weakly
increasing. Does the polynomial per(A + xJ) have only real zeros?

There are a number of conditions on a sequence ag,aq,...,a, of real
numbers that are weaker than being the coefficients of a polynomial with
only real zeros, and that appear throughout combinatorics. The two best
known of these conditions are unimodality and logarithmic concavity (or
log-concavity for short). The sequence ag, ay, . .., a, is unimodal if a; < ay <
- < a; > aj1 > -+ > a, for some j, and log-concave if a? > a;_10;41
for 1 <1 < n —1. Isaac Newton showed that if the polynomial Zaixi
has only real zeros, then the sequence ay, ..., a, is log-concave. (Even more
strongly, the sequence ag/(g), al/(?), cel an/(Z) is log-concave.) Moreover,
it is easy to see that if ag,...,a, is a log-concave sequence of positive real
numbers, then it is also unimodal. The subject of log-concave and unimodal
sequences arising in algebra, combinatorics, and geometry is surveyed in [78],
with a sequel in [21]. In particular, a vast number of sequences have been
conjectured to be log-concave or unimodal. We will state here only a few of
the most intriguing such sequences, to give a flavor for this subject.

Problem 25. Are the sequences below unimodal or log-concave?

(a) The absolute value of the coefficients of the chromatic polynomial of a
graph, or more generally, the characteristic polynomial of a matroid.

(b) The number of i-edge spanning forests of a graph, or more generally,
the number of i-element independent sets of a matroid.
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(¢) The number of elements of rank i of a geometric lattice.

Our own feeling is that these questions have negative answers, but that
the counterexamples will be huge and difficult to construct. A similar phe-
nomenon concerns the problem raised by T. S. Motzkin in 1961 and D. Welsh
in 1972 whether the f-vector (fo, fi1,..., fa_1) of a d-dimensional convex poly-
tope is unimodal. The first counterexamples were obtained by Bjorner [15]
and Lee [63] (see also [14, §8]). Subsequently it was shown that the smallest
d for which there exists a simplicial d-polytope with a nonunimodal f-vector
is d = 20; the smallest such example known has fy ~ 4.2 x 10'? vertices
(see [98, p. 272]). All known examples are far too large to be found by
any kind of search; they are instead obtained by the use of the g-theorem
for simplicial polytopes or by the use of techniques for constructing large
polytopes from smaller ones (see [98, Example 8.41]). (Only the sufficiency
of the conditions characterizing f-vectors of simplicial polytopes is needed
here to construct examples of f-vectors.) Unfortunately there are no analo-
gous sufficient conditions or construction techniques known for the sequences
appearing in Problem 25.
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